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Abstract
Probabilistic Graphical Models (PGMs) are widely used in many domains when reasoning
with uncertainty. They are used to obtain the maximum expected utility and the optimal
policy—the best decisions—in different scenarios. When dealing with real-world problems,
the model built can be quite complex. As not all the algorithms perform the inference
with the same efficiency, it is important to know which one is better to apply depending
on the circumstances. Therefore it is important to compare the performance of the those
algorithms for different models.

In this Master Thesis we compare four inference algorithms for influence diagrams
(IDs): variable elimination, arc reversal, strong junction tree, and the conversion into a
LIMID. For our experiments we have used OpenMarkov1, an open software tool developed
by the Research Centre for Intelligent Decision-Support Systems (CISIAD) of the UNED.
The first algorithm was already implemented in this tool; the other three have been
implemented by the author of this thesis. We have also programmed the generation of
different IDs that have been used to compare the algorithms. We then have confronted
the computational time and the memory used by the algorithms when facing these IDs
and analysing the results of the experiments we give some recommendations about which
algorithm to use depending on the structure of the model.
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Resumen
Los Modelos Gráficos Probabilistas (MGP) son ampliamente usados en diferentes domi-
nios donde hay que tratar con incertidumbre. Se emplean para obtener la máxima utilidad
esperada y la política óptima, las mejores decisiones, en diferentes escenarios. Cuando se
afrontran problemas de la vida real, el modelo final que los representa puede ser harto
complicado. Debido a que no todos los algoritmos de inferencia son igual de eficientes, es
importante saber cuál es mejor aplicar dependiendo de las circunstancias. Por lo tanto,
es importante comparar la eficiencia de los algoritmos cuando ante diferentes modelos.

En este Trabajo fin de máster, comparamos cuatro algoritmos para diagramas de in-
fluencia: eliminación de variables, inversión de arcos, árbol de uniones fuerte y conversión
a LIMID. Para nuestros experimentos hemos utilizado OpenMarkov2, una herramienta de
código abierto desarrollada por el Centro de Investigación sobre Sistemas Inteligentes de
Ayuda a la Decisión (CISIAD) de la UNED. El primer algoritmo estaba ya implementa-
do en esta herramienta; los demás han sido implementados por el autor de este trabajo.
Además, hemos implementado la generación de diferentes diagramas de influencia, que
después han sido utilizados para comparar los citados algoritmos. Después, hemos con-
trastado el tiempo y la memoria empleados por los algoritmos en la inferencia de estas
redes y el análisis de los resultados nos ha llevado a dar algunas recomendaciones sobre
qué algoritmo utilizar dependiendo de la estructura del modelo.
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Chapter 1

Introduction

1.1 Motivation

Almost any knowledge has uncertainty so there exists uncertainty in almost any real
life problem (Tversky & Kahneman, 1974). Image, natural language and document pro-
cessing, economics, social sciences, education and bioinformatics. All these real world
domains, and they are far from being the only ones, are rich in uncertainty. A knowledge
representation system cannot be just boolean. Things are not completely true or false. To
reason with uncertainty, we need probabilistic models to represent how likely something
is true or false.

Probabilistic models were developed to shape the uncertainty. However, modelling
with them many real-world problems, even some small ones, becomes difficult. Probabil-
istic graphical models (PGM) offer a way to represent, infer and learn from probabilistic
models. The basic structure of a PGM is a graph in which conditional (in)dependencies
are shown through arcs or the lack of these between nodes. Along with the graph, the
PGM will include a Conditional Probability Distribution (CPD) of the probabilistic model
that is representing.

Within the PGM framework, various models have been developed, each one of them
intended to be used in different areas of study, according to their purposes. Therefore, a
PGM can have different structural characteristics, according to the use it will have. In
a PGM graph there may be directed and undirected arcs, and different types of nodes:
chance, decision and utility. Those with only directed arcs connecting their nodes are
called directed graphical models. These are suitable to represent causal relationships
between their variables. The main types of directed PGMs are Bayesian networks (BNs)
and influence diagrams (IDs), where the former is a particular case of the latter. Both
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of them have a directed acyclic graph (DAG) whose nodes represent chance variables. In
IDs we can find also decision and utility variables. BNs are extensively used for diagnosis
problems whereas IDs are used as decision analysis tools (Barber, 2012).

When building a model, we could have information about the structure (graph) and
the system could be fully or partially observable. Learning about the structure and/or
the CPD, the probability distribution representing the model, can emerge from data.
Although sometimes approximate, once a problem is modelled using the representation
indicated above, the PGM can be used to make some inferences; through the use of the
inference and evaluation algorithms it is possible to estimate the values of those nodes of
which our knowledge is limited. Several tools have been developed—such as OpenMarkov,
Genie, Hugin, Elvira, to name a few—that can model a problem and evaluate it through
different algorithms.

When the inference algorithms have to deal with a real-world problem, not all of them
perform equally well. To evaluate an inference algorithm performance, there exist two
computational complexity indicators: time and space (Knuth, 1997). The time complexity
is how much does it take to the algorithm to complete the inference task. The space
complexity means the highest peak in the amount of memory used by the algorithm
during the inference process.

Regardless of the remarkable number of inference algorithms that have been developed,
it is difficult to find comparisons of the performance of the most important inference
algorithms about their efficiency regarding time and space complexities. What is more,
when they have been addressed it has been typically confronting only two algorithms and
with few examples. The comparison of these complexities in different scenarios, would
help to decide which algorithm is best to use according to the particular circumstances
of the problem in evaluation. Even more since the inference of PGMs is a NP-complete
problem (Cooper, 1988). This thesis will be focused on comparing and contrasting the
performance of different algorithms solely using problems modelled with IDs directed
graphical models.

1.2 Objectives

As stated in Section 1.1, the main objective in this thesis is to compare and contrast the
performance—time and space complexity—of different algorithms facing problems that
have been modelled using IDs. This comparison will be made in the interest of answering
the following questions: Why do algorithms perform different when facing the same ID?
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Is it a matter of the structure? Is it because of the data? The tools that are developed
to model and evaluate PGMs and are capable of using IDs can be benefited from the
answers to these questions; according to the information inferred from the comparison,
these tools will be able to distinguish which algorithm performs better on different real-
world models. Moreover, the conclusions obtained can be applied to other PGMs than
IDs, such as dynamic models. These models include DLIMIDs and POMDPs among
others. For their ability to model problems that evolve in time, these PGMs are more
powerful than IDs. Thus, the comparison that is going to be made can be utilised in a
range of tools and models to choose which algorithm fits better in a certain real-world
problem.

Only IDs with no super value nodes—value nodes with no children—will be accepted
in the algorithms implemented. If an ID with more than one value node is presented to
the algorithm, the expected utility will be the sum of the single expected utilities. And
regarding the algorithms, the following of exact inference type are the ones that are going
to be evaluated:

1. Variable elimination

2. Arc Reversal

3. Strong junction trees

4. Conversion to LIMIDs

Three of these algorithms, all but Variable elimination, need to be implemented in Open-
Markov. This will be another objective in this thesis. The Artificial Intelligence com-
munity will be benefited since almost none of them are available as open source.

1.3 Methodology

The investigation was conducted under the framework of the open source application
OpenMarkov. This tool is developed in the CISIAD at the UNED. It is implemented
in Java 1.7, and stores the probabilistic networks in the ProbModelXML format (Arias
et al., 2012)—see Section 3.2.1 for further details on it. As we expressed in Section 1.2,
we coded three out of the four algorithms that we compared. To compare them, we used
two different kinds of networks, which we explain in Chapter 3.

We have also developed this dissertation with the aim of providing a way in which
the research done on it is reproducible. Making research reproducible and making the
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development in an open source tool like OpenMarkov, allows researchers not only to
reproduce and check the data but also to contribute to the research—see 3.7 for details.

1.4 Organisation of the Master Thesis

The layout of this master thesis is as follows. First, we will present the state of the art
regarding the algorithms that we have used for the comparison. Then, we will discuss
the development of the algorithms, followed by their comparison which is presented along
with the applications of the research. We will end this document describing the future
work and summarising the results.



5

Chapter 2

State of the art

In this chapter we present the basic concepts and the state of the art of influence
diagrams—a type of Probabilistic Graphical Models—and four algorithms that evalu-
ate them. Their implementation and behaviour facing the inference of different types of
probabilistic networks, will be the core part in the remainder of this dissertation presented
in the subsequent chapters.

2.1 Probabilistic Graphical Models

The Probabilistic Graphical Models (PGMs) framework has been developed based on
declarative representation (Koller & Friedman, 2009), that splits the knowledge from the
reasoning. Using this approach, the framework is capable to host and model problems
of different natures and domains. Since real-world applications lack of full certainty, this
framework incorporates the probability theory as joint probability distributions associated
with some nodes of the model. Combining different kinds of techniques and algorithms,
PGMs allow manipulating high-dimensional scenarios that classical tools cannot cope
with.

2.2 Bayesian networks

A Bayesian network (Pearl, 1988) (BN), is a probabilistic graphical model that can have
only one kind of node, chance nodes. We will refer to these types of nodes also as
random nodes, indistinctly. A real-world scenario problem may contain only events that
the decision maker can not control; it is modelled just with chance nodes. A Bayesian
network has three elements: a set of chance nodes, an Acyclic Directed Graph (ADG)
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G = (X,A), and a probability distribution over the set of nodes that can be factored as:

P (x) =
∏
i

P (xi|pa(Xi)) (2.1)

where P (Xi|pa(Xi)) is the joint probability derived from P (X). Given that each node
represents a variable, we will use indifferently the terms variable and node. The graph
is linked to the probability distribution which means that the graph determines how the
probability is factored. A link between two nodes, A→ B, means that the variables may
be correlated probabilistically.

When we are watching a system and the value of a chance node is known, the variable
is said to be observed and is part of the evidence of the model. The probability of a
chance node when evidence has yet to be taken into account is called prior potential, and
posterior potential otherwise (Kjærulff & Madsen, 2010).

2.3 Influence diagrams

While Bayesian Networks contain just one kind of node, chance nodes, an influence dia-
gram (Howard & Matheson, 1984) (ID), may contain two more kinds of nodes: decision
nodes and utility nodes—the latter can be ordinary or super utility nodes. Subsequently,
the BNs are a particular case of the IDs, where only one type of variable is present. The
decision nodes allow representing actions under the direct control of the decision maker.
When the IDs were developed the utility nodes had no children. Eventually, this limitation
was relaxed and the utility nodes were allowed to have children, only of utility type. The
former where then called ordinary and the latter super value nodes (Tatman & Shachter,
1990). A super value node combines the values of its parents, whether aggregating or
multiplying them.

In the influence diagrams, due to the increase in the types of nodes with respect to
Bayesian Networks, the links have different meaning, depending on which nodes they
connect. A link that emerges from a decision node Di and that ends in another decision
Dj implies that Di precedes Dj in time. Whereas if the link that finish in Dj has begun in
a chance node C, the link tells us that the variable C is known when the decision has to be
made. Finally, arcs into utility nodes represent functional dependency. If as described in
the previous subsection, random nodes have a probability distribution associated, utility
nodes have a real-valued function that maps each configuration of parents onto a real
number; for super value nodes, it is a utility-combination function. We will refer also to
this probability distribution or real-valued functions as potentials.
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A policy in a decision node (δd) specifies the values of the decision node for each
configuration of its parents. The union of all the policies in an ID conforms the strategy
(∆) of the model.

There exist two assumptions that are generally associated with IDs, and that we will
take in this dissertation: the decision ordering and the no-forgetting assumptions. The
first one establish that there is a total ordering of the decisions, showing the order in
which decisions are made. This assumption leads to the second one; if a chance variable
C is linked to a decision variable Dj and thus C is known when the decision maker chooses
over Dj, then C is also known to any decision node Dk that succeeds Dj.

2.4 Inference in influence diagrams

The aim of applying an inference algorithm on an ID is to seek for an optimal configuration
of policies that maximises the expected utility—an optimal strategy. We refer to the set
of chance nodes as VC and to the set of decision nodes as VD. Then, the formal definition
for the strategy is

P∆(VC,,VD) =
∏
CεVc

P (c|pa(C))
∏

DεVD

δd(d|pa(D)) (2.2)

With this formula, and knowing that ψ is the potential of the utility nodes, the
maximum expected utility of a strategy is defined as follows

UE(∆) =
∑
Vc

∑
VD

P∆(VC,,VD)ψ(VC,,VD) (2.3)

With all the above, the optimal strategy, the one that maximises the expected utility
the can be expressed as:

∆optimal = argmax∆ε∆∗UE(∆)

In the path to make it out, it may happen that not all the potentials or links are needed
in the inference process. Depending on the structure of the probabilistic network, some
nodes may be removed without losing any relevant information. Barren nodes (Shachter,
1988) have no descendants and their potentials have no variables of our interest. These
nodes can be eliminated from the graph.

On the other hand, some decisions may have non requisite links headed to them. In a
Probabilistic Graphical Model, a path between two (set of) nodes A and B can be blocked
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by a set of observations S, and if so the nodes are d-separated (Pearl, 1988).

A⊥B|S

If certain conditions of d-separation are met (see algorithm 2.4.4 for details) a node is
not a requisite for a certain decision, and is safe to remove their link. Processing the model
looking for this kind of nodes and links can be cost-efficient, but not all the algorithms
take advantage of them.

Summing up, to calculate an optimal strategy and consequently the maximum expec-
ted utility of an ID, we can carry out two main operations over the potentials, apart from
the multiplication. The first one is to determine the marginal probability of a chance
node to remove it from the graph. We will call it in the algorithms, marginalisation.

P (X ′) =
∑
i

P (X)

The other operation, maximisation, has been described above and is used when a
decision is alienated from the graph

argmaxD∆

2.4.1 Variable elimination algorithm

This is a simple algorithm, one of the earliest to be applied to the inference of PGMs and
it is hard to say who implemented it. First, it is established a strong elimination order
(Jensen & Nielsen, 2007). Since the operations described at the beginning of this section
(marginalisation and maximisation) do not commute, they have to be applied in a certain
order that comes from the structure of the model. The temporal order of the variables
imposes limitations. In the temporal order, the decisions are like milestones that split
the chance nodes that lay between them in the graph. In the elimination order, only the
decisions have a fixed position, whereas to the chance nodes between two decision nodes
a heuristic is applied to choose their order. There are several heuristics for this that try
to reduce the number of operations to be made, as the complexity grows exponentially.
In the variable elimination algorithm, the time and space costs depend on the size of the
largest operand created during the inference.

The potentials remaining have the desired information. In the Figure 2.1 it can be
found an example of the variable elimination algorithm applied to an influence diagram.
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Algorithm 2.1 Variable elimination algorithm.
1: eliminate barren nodes in the influence diagram
2: S = variable elimination order calculation
3: L = list of potentials to be returned
4: while !S is empty do
5: s = the first variable to be eliminated from S
6: Remove s from S.
7: C = chance network potentials related to s
8: U = utility network potentials related to s
9: Remove C and U from the network

10: if s is a chance node then
11: C = marginalize and multiply the potentials C over s
12: U = marginalize and multiply the potentials U over s
13: if s is a decision node then
14: C = maximize and multiply the potentials C over s
15: U = maximize and multiply the potentials U over s
16: The lists C and U are added to L
17: L is returned

Figure 2.1: An example of the Variable Elimination inference. The figure (a) is an influ-
ence diagram and from (b) to (e) we can see in each step one variable eliminated, in the
order X, D, Y and T.

2.4.2 Arc Reversal algorithm

The first implementation of the Arc Reversal algorithm was proposed by Shachter (1986).
This algorithm evaluates the influence diagram directly, but only copes with models that
have just one utility node. Tatman & Shachter (1990) proposed an algorithm that deals
with networks that host super value nodes, but only when all the values are positive. The
basic idea that underlines in the algorithm is to eliminate nodes, sometimes modifying
the arcs in the network and their related potentials. Nodes are consecutively eliminated
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Figure 2.2: Adding “no forgetting” arcs.

from the network and eventually there will be no remaining nodes. At this point, both
the strategy and the maximum expected utility are calculated.

Before the model is evaluated, some transformations must be done on it. On the
one hand, when a decision node precedes temporally another one, the informational pre-
decessors (parents) of the former have to be also informational predecessors of the lat-
ter. This process is shown in Figure 2.2. On the other hand, all the barren nodes are
removed from the model. Besides the operations described before—maximisation and
marginalisation—, there are three additional operations that may be applied to the ID
to calculate the strategy and the maximum expected utility. Two of them pursue the
elimination of one kind of node in the graph and below we show to the organisation of
the model after the deletion of such nodes. We explain also below the circumstances in
which a certain node is eligible to be deleted. The Figures 2.3 and 2.4 picture which
links remain and/or which links are created when removing a chance node and a de-
cision node, respectively. In the figures, the cloud represents a group of nodes, where CP
states for conditional predecessors—parents—of chance or decision nodes and IP states
for informational predecessor—parents—of utility nodes.

The algorithm is named after the third operation that is applied on the model, arc
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Figure 2.3: Example of removing a chance node.

Figure 2.4: Example of removing a decision node.
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Figure 2.5: Example of reversing an arc.

reversal. It changes the orientation of a link and in order not to lose any information,
the nodes involved in the operation share their parents after the reversal. This process
is outlined in Figure 2.5. The operation is applied only between chance nodes and seeks
making a chance node suitable to be deleted.

With the operations described above, the algorithm can be performed. Once the
model is ready for the inference (the “no forgetting” arcs are added and the barren nodes
are eliminated), the algorithm of Tatman & Shachter (see Algorithm 2.2) goes into an
iterative process to select which node(s) will be deleted. The algorithm is quite similar
to the original one, as it just add some operations to deal with Super Value Nodes. The
first line of the iteration process deals with them indeed. In the event that two value
nodes (V1 and V2) have the same successor (V3) it has to be, by definition, a super value
node. If the set of conditional predecessors of V1 is a subset of the one of V2 and they
are the only informational predecessors of V3, they can be removed. If the SVN has more
informational predecessors, V1 and V2 can be merged.

The rest of the iterative process, deals with the selection of a decision or a chance node
and its elimination. First, the algorithm tries to find an eligible decision node. There
are two scenarios for eligibility in the case of decision nodes. The first one, when the
decision node has among its successors just one value node and it has to happen also
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Algorithm 2.2 Arc reversal for models with Super Value Nodes algorithm.
1: add “no forgetting” arcs
2: eliminate all barren nodes
3: while value nodes have conditional predecessors do
4: if there is any set of value nodes that fit the subset rule then
5: remove these value nodes (with a sum of a product of them)
6: else
7: if there is a removable decision node then
8: remove the decision node and the necessary value nodes
9: eliminate any resulting barren nodes

10: else
11: there must be a removable chance node that will be removed and the necessary

value nodes (maybe some arcs must be reversed)

Algorithm 2.3 Arc reversal iteration.
1: while the chance node has successors do
2: find a chance node among its successors with no other directed path between them
3: reverse this arc
4: remove chance node

that all the conditional predecessors of the value node, besides the decision node, are also
informational predecessors of the decision node.

If among the successors there are several but only values nodes, there are two more
conditions to be met. But we need two more definitions. The indirect predecessors of
a node are all nodes in the diagram that belong to a directed path that leads to that
node. The terminal decision node in a graph with super value nodes is the one that
agglutinates all of them and has no successors. With these definitions, we can explain
the conditions needed in this second case. The first one, is that there is a value node (Vs)
which ancestors are a subset of the set formed by the informational predecessors of the
decision node and the decision node itself. The second one, that all the directed paths
from the decision node to the terminal value node of the graph contain Vs. But before
removing the decision node, those value nodes that belong to the indirect predecessors of
Vs (Cind(Vs)) are removed and then Vs is maximised over the decision node.

Should no decision node be eligible for deletion, a chance node will be. If there is a
chance node which only successor set contains value nodes—it can be only one node—, it
can be deleted. If it has more than one value node as successors, these are merged. Then
the resulting value node inherits the conditional predecessors of the chance node. If there
is not a chance node with these characteristics, we look in the ID for a chance node that
has no decision nodes among it successors. Then, Algorithm 2.3 is applied in order to get
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Figure 2.6: An example of the Variable Elimination inference. The figure (a) is an in-
fluence diagram. The figure (b) represents the arc reversal between X and Y to be able
to remove X, that is seen in figure (c). The remaining steps are the same as in Variable
Elimination.

a chance node with only value nodes among its successors and then it can be removed.
Basically these operations make a decision node to met the conditions explained before
where the chance node was eliminated directly without any extra steps.

In Figure 2.6 it can be found an example of the arc reversal algorithm applied to the
same network as in the example of the variable elimination algorithm.

2.4.3 Strong junction trees

The strong junction tree algorithm (Jensen et al., 1994), as the variable elimination al-
gorithm uses a strong variable elimination order (see Subsection 2.4.1), but opposite to
variable elimination and arc reversal algorithms, it relies on an auxiliary structure—a
junction tree—where all the computation is done. This structure is not novel of the art-
icle where the algorithm is outlined. The contributions of the authors focus on the way
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Figure 2.7: An example of the moralisation and triangulation process inference. The
figure (a) is an influence diagram. The figure (b) represents the moral graph, where the
links to marry the nodes appear with a dash line. Figure (c) shows the triangulation
links. The figure in an adaptation from Jensen et al. (1994).

the junction tree is built and the way the messages are passed along it.
In a junction tree each clique (each node of the tree) represents a set of nodes of

the Probabilistic Graphical Model. Should a variable of the network be present in two
different cliques it will belong also to any group of nodes in the path that connects both
cliques; this is called the junction tree property. Finally, each clique will have a potential
with two lists of potentials, a probability list and a utility list. Each potential in the
model will be put in the corresponding list of a clique that contains all its variables.

So, the first step to create the strong junction tree is to create a moral graph (Lauritzen
& Spiegelhalter, 1988). This graph modifies the PGM linking—if they were not already
connected—those nodes that share a child; and then losing all link orientation in the graph.
Then, the utility nodes are drooped from the influence diagram. Strong elimination order
plays a role in the next step. The obtained moral graph is then triangulated, if is not
triangulated already. Losing the directions in the links, the model is no longer acyclic. Any
graph is triangulated if for any cycle longer than three there is at least one link between
to non consecutive nodes in the cycle. The graph is went through in the reverse order
indicated by the strong variable elimination order. And if any cycle that not complies
with the requirements is found, a link on it is drawn. At the end, a strong triangulated
graph is obtained. An example of this process can be seen in Figure 2.7.

Finally, following the same special elimination order used for the triangulation, the
cliques are created. The root of the strong junction tree is named strong root and all the
links are directed towards the leaves. Between two cliques there is a separator that is
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Figure 2.8: An influence diagram borrowed from Nilsson & Lauritzen (2000).

Figure 2.9: The strong junction tree of Figure 2.8.

formed by the variables present in both groups.

In Figure 2.8 it can be seen an ID borrowed from Nilsson & Lauritzen (2000) and
modelled in OpenMarkov and in Figure 2.9 it is drawn the strong junction tree associated
to the model.

When the strong junction tree is built, all the potentials in the cliques are merged. The
probability potentials are multiplied between them and the utility potentials are summed.
Then the messages from the leafs towards the strong root go along all the way up. When
the potentials visit a clique its potentials absorb the potentials of the message and the
new message continues its way to the strong root. Having two cliques, C1 and C2, and
the separator S in the middle of them, and being their probability potentials φ and their
utility potentials ψ, the message from C2 is absorbed by C1 as follows:

φ
′

C1 = φC1φS

ψ
′

C1 = ψC1 + φS
φS
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φS =
∑
C2\S

φC2

ψS =
∑
C2\S

φC2ψC2

The ∑ operator is a maximisation or a marginalisation, depending on the variable
that is being eliminated, a decision or a random node, respectively. Also of note is that
the variables are eliminated with the same order used for the triangulation. The strategy
is created with the maximisation of each decision that belongs to the clique closest to the
strong root. When the message(s) arrive the strong root and the last eliminations are
performed, the goal is reached.

2.4.4 LIMID conversion

The LImited Memory Influence Diagrams or LIMIDs were introduced by Lauritzen &
Nilsson (1999). This model takes the basics of IDs and relaxes the two assumptions that
we described in the opening of this section: the decision ordering and the no-forgetting
assumptions. In general, finding optimal strategies within LIMIDs is prohibitive and thus
usually approximate algorithms are applied to solve them. However, there exist some
LIMIDs that are soluble and for them and exact solution can be calculated. A LIMID is
soluble if all its decisions are extremal, and a decision is extremal if it fulfils the following
assertion about d-separation:

u⊥L(
⋃
{fa(d) : dε∆\{d0}})|fa(d0) (2.4)

This equation, in words, designate as extremal decision node (d0) a decision node that
is d-separated from every utility node that is among its descendants, from all the families
(the union of a node and its parents) of the decisions in the LIMID but the family of the
decision d0 given the family of this decision. When a decision node is marked as extremal,
it is converted in a chance node and a new extremal decision is tried to be found. If every
decision node in the LIMID is extremal, the model is soluble.

If we draw in a model links from the family of a decision to every decision that
succeeds it in the temporal order, the influence diagram will continue to be faithful with
the assumptions indicated above. This new model is called the LIMID version of an ID.
These models are soluble and therefore exact solutions can be found. In soluble LIMIDs
there is an optimisation available. It is based in eliminating non-requisite links from
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Figure 2.10: An ID from Nilsson & Lauritzen (2000).

parents of the decision nodes to their children that are of decision type. This way, some
links may be eliminated and fewer calculations may be performed. This model is called
the minimal reduction of the LIMID. The cost of the reduction is linear O(k(grap_size)).

As the strong junction tree, the algorithm proposed needs an auxiliary junction tree
structure but the order to build it is not constrained by the temporal order in the graph
and thus is simply called junction tree. Both this and the strong junction tree algorithm
are not the only ones that use this structures, but each algorithm modifies the creation
or the way the messages are passed.

For the LIMID conversion algorithm, the order for the triangulation of the moral graph
is established by selecting the node that would create the smallest clique in the tree. The
objective behind this design is to create small cliques and hence manage smaller potentials
that in the end would need fewer computations efforts—but this set-up comes with a cost
in the message passing as we will explain later in Chapter 3. Both the junction tree
and the strong junction tree of Figure 2.8 can be seen in Figures 2.13 and 2.14. Before
making any other operations, each clique potentials are initialised as explained in the
strong junction tree.

In Figure 2.13 the links of the tree have no directions. This is because the authors
propose the use of the Single Policy Updating algorithm to perform the inference on it.
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Figure 2.11: The LIMID version of the ID of Figure 2.10.

Figure 2.12: The minimal reduction of the ID of Figure 2.11.
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Figure 2.13: Junction tree of the minimal LIMID of Figure 2.8.

Figure 2.14: Strong junction tree of Figure 2.8.

The Algorithm 2.4 selects a decision node and then searches for a clique that contains the
family of the decision node. This node will act as root of the junction tree and all the
messages will be directed towards it. Once the messages reach the root, the calculated
optimal policy for the decision is multiplied in the probability potential of the clique and
then the process continues till all the decisions have been taking in count. At the end of
this process, both the optimal strategy and the maximum expected utility are calculated.

So it is clear that more messages are passed in this algorithm than in the strong
junction tree. Nevertheless, the authors propose two improvements to the algorithm that
involve fewer messages moving in the tree.

The first improvement states that not all the messages calculated in an iteration after
the first one. Only the messages in the path from the new root to the old root need to

Algorithm 2.4 Single Policy Updating.
1: for all di ∈ [k..1]being dk..d1 the inverse of the exact ordering solution of the decisions

do
2: Calculate the optimal policy for di
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be calculated. The previous messages can be merged with the new ones to calculate the
optimal policy of the iteration. Lauritzen & Nilsson call this improvement partial collect
propagation.

The second improvement says that some messages are not needed and thus, some
branches of the tree do not have to be visited in certain iterations. When a clique acting
as root (R) has a neighbour (C), and their intersection is a proper subset of the parents
of the decision node which optimal policy is being calculated, this optimum policy can be
computed without the message from C. This way, it is possible to avoid all the passing
of messages to C as well.

2.5 State of the art of the comparison of the al-
gorithms

There are in the literature few empirical comparisons of the performance of the algorithms
described in Section 2.4. We have been able to track just one paper (Luque & Díez, 2010)
where the authors compare and contrast the time and memory consumed by hundreds of
networks which inference was performed using variable elimination and arc reversal. In
the paper by Butz et al. (2009b) the authors make experiments with six large Bayesian
Networks. These two studies obtained that VE is never slower than AR and that the
former can even be significantly faster than the latter. There is another study (Butz et al.,
2009a) that compares the lazy variations of these algorithms. In (Madsen & Nilsson, 2001)
the authors make a comparison between some algorithms (none of the ones in the scope of
this dissertation) but they only depict some information about the number of operations
involved in the different inferences. To the best of our knowledge this is a novel empirical
comparison of all the algorithms referred in the previous section.



22 Chapter 2: State of the art



23

Chapter 3

Empirical comparison of the
algorithms

3.1 Introduction

As outlined in Chapter 1, previous works (Luque & Díez, 2010; Butz et al., 2009b) have
carried out experiments which results indicated that variable elimination requires less
memory and is faster than arc reversal. To the best of our knowledge, no other studies
have confronted empirically the variable elimination, arc reversal, strong junction tree
and the LIMID-conversion algorithms. Nevertheless, a priori, strong junction tree and
conversion to LIMID should perform worse than variable elimination regarding the speed,
as neither of the formers eliminate redundant variables; variable elimination is capable of
detecting when a variable is not necessary to compute an optimum policy and therefore
is able of ignoring it. Also, strong junction tree and LIMID-conversion algorithms need
to create intermediate structures to perform the inference. The results of our tests are in
Section 3.4.

3.2 Implementation of the algorithms

3.2.1 OpenMarkov

OpenMarkov1 (Bermejo et al., 2012), an Open Source tool for Probabilistic Graphical
Models, that was born as Carmen (Arias & Díez, 2008) an renamed in 2010, started in
2002 at the Department of Artificial Intelligence of the Universidad Nacional de Educación

1http://www.openmarkov.org

http://www.openmarkov.org
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a Distancia (UNED), in Madrid, Spain. The project commenced with the knowledge
acquired in the construction of Elvira2. In pursuance of multi-platform interoperability,
the tool is programmed in Java. OpenMarkov is able to represent several types of networks
as well as several types of temporal modes and all these are stored in ProbModelXML
formats—see Arias et al. (2011) for definitions and references. Though it can evaluate
only a subset of all the networks it is able to represent, the number of network types which
inference the tool is capable of handle is growing. There are three types of variables in
OpenMarkov: finite-states, numerical, and discretized. This last type has a finite set of
states, each one having an associated numeric interval.

In this master thesis, three algorithms have been incorporated to OpenMarkov: arc
reversal, strong junction tree and conversion to LIMID. The algorithms developed can
handle Probabilistic Graphical Models with several value nodes, which none of them can
have children—so no Super Value Nodes (SVNs) are allowed in the networks. We will
discuss some characteristics of their implementations in the remaining sections of this
chapter.

3.2.2 Arc reversal

The original algorithm proposed by Jensen et al. (1994) is able to manage networks with
just one value node. The algorithm was extended by Tatman & Shachter (1990) to cope
with SVNs; however, the algorithm only accepts non-negative numerical values. We have
developed a hybrid algorithm that manages several value nodes with negative numerical
values, if necessary. Our implementation is very similar to the original algorithm and
takes some notions from the newest one.

3.2.3 Strong junction trees

OpenMarkov has an algorithm to evaluate Bayesian networks with junction trees. The
code of the algorithm has been adapted to handle also influence diagrams. The code we
have developed does not need to triangulate the moral graph as a previous step of the
construction of the strong junction tree, and the creation of the cliques is done directly
from the moral graph. This is an improvement compared to the original algorithm.
Actually, the output of the algorithm in OpenMarkov is a forest, not a tree, because the
same networks can be expressed with different trees.

2www.ia.uned.es/~elvira

www.ia.uned.es/~elvira
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3.2.4 Conversion to LIMIDs

In the implementation of the algorithm proposed in Nilsson & Lauritzen (2000) the authors
did not state the heuristic used to select the node that would create the smallest clique.
There are two classic metrics: the number of variables (Kjærulff, 1993) and the combined
number of the states of the variables that the clique will host (Huang & Darwiche, 1996).
We have chosen a hybrid solution and we have taken both metrics. We apply the first one
and if a tie is produced, we apply the second metric. The auxiliary structure used by this
algorithm is also a junction tree, like in strong junction trees, but it has several differences
with this model that have affected the implementation. To start with, the junction tree
of the LIMID-conversion has no directions in the links of the cliques, as several of them
may act as root during the Single Policy Updating process. It is also of note that in this
case the messages that move along the tree need to be stored to avoid calculating them
more than once, as several iterations are performed.

3.3 Design of the experiments

3.3.1 Generation of the influence diagrams

We used two different kinds of influence diagram to test the algorithms. We programmed
in OpenMarkov the generation of both networks, to which we will refer to as the n-test
medical decision problem and the follow-up problem, respectively.

3.3.1.1 The n-test medical decision problem

Two examples of this network can be seen in Figures 3.1 and 3.2. The network follows
a pattern, and if the first figure shows the smallest network of this kind, the second one
shows the fourth iteration of the network. While chance variable X represents a disease, a
non-observable variable, the decision variable Tr corresponds to a treatment. The states
of the disease node can be either present or absent and their values are settled with the
prevalence of the disease, that gives out the proportion of a population that may have a
certain condition. If the value of the present state is equal to the prevalence, the value
of the absent state is 1− present.

The Tr node has a domain of yes and no—to express whether the treatment is applied
or not—and is linked to a utility node, U0, that reveals the Quality of life associated to the
treatment. Then, to complete the example network, there is a set of three nodes: a decision
node (T1) that has two children, a chance node (R1) and a utility node (U1). This set
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Figure 3.1: The n-test medical decision problem with 1 test (slice = 1).

Figure 3.2: The n-test medical decision problem with 4 tests (slice = 4).

stands out for the decision of making a test (with the same domain as the treatment), the
results obtained (the node R1 has three possible states: positive, negative and not_done),
and the medical cost-effectiveness of the tests. The characteristics of the test result are
its sensitivity and specificity, that measure how well it performs; the sensitivity indicates
the amount of positive outcomes correctly identified while the specificity does the same
with the actual negatives outcomes obtained. The cost-effectiveness analysis is a resource
in medicine to make decisions regarding health care interventions.
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The links emerging from the disease node mean that the disease has en effect on the
destination variables. The decision of applying or not a test changes its results and has a
consequence in the cost, that is measured through the utility node related to it. Alongside,
links headed to the treatment indicate knowledge at the disposal of the decision maker
when the decision has to be made. Finally, the links headed to the U0 node point to nodes
that have an impact on the Quality of life.

To generate a network the user may call the method generateIDTestProblem in the
OpenMarkov package org.openmarkov.inference.tools. The method requests four
parameters that stand for the number of slices desired in the network, the prevalence
of the disease, the minimum sensitivity and the minimum specificity. The slices of the
network requested by the user determine the amount of test sets that the created network
will have. In the case of the parameters related to the sensitivity and the specificity, these
are referred as minimum because for every test in the network the method produces a
random parameter between the specified values and 1, that then assigns to the potential of
decision node accordingly. The values of the other variables in the network are completely
random.

3.3.1.2 The follow-up problem

The follow-up problem, which we define in this thesis, consists of finding at each moment
the best treatment for a patient. The ID built for this problem considers n time slices (n
is called the horizon). In the i-th slice, the variable Xi, represents the presence or absence
of a disease that cannot be observed directly. Whereas the observable variable Yi stands
for the presence or absence of a symptom. With Di variable (it is also called the action)
the decision maker chooses whether to apply or not a treatment to the patient—that may
cure the disease or lessen the possibilities of it to reappear. Finally, Ui corresponds to the
Quality of life of the patient in the time slice; it is affected both by the disease (or the
status of the disease in subsequent time slices) and the decision taken. These nodes also
have links headed to the following chance node, Xi+1, that is the sign of the evolution of
the disease and the entry point of the following time slices that repeat the explained set.
An example of this network with a horizon of 3 periods is reproduced in Figure 3.3.

This ID is a particular case of a Partially Observable Markov Decision Process
(POMDP), in which we have an unobservable variable, Xi, and an observable one, Yi.
However, we will evaluate this model as a dynamic ID, i.e., we will obtain for each decision
Di the optimal policy as a function that depends explicitly on all the previous observa-
tions, {Y0, . . . , Yi}, while in POMDPs, whose horizon is usually assumed to be infinite,
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Figure 3.3: The follow-up problem, with a horizon of 3 periods (n = 3).

the optimal policy consists of a stationary policy that depends on the belief state (the
probability) of the state variable, X0 (Hansen, 1998).

To generate this kind of network, there is a method called generateMedicalPOMDP in
the same package of OpenMarkov indicated above. The method shares two parameters
with the method of the previous network, slices (horizon = slices−1) and prevalence. It
requests three more parameters, all related to the evolution of the disease. The first two
are also minimum values to calculate a random value within a range of the received value
and 1.

The minAbsentNoTreatment parameter reflects the minimum probability for the dis-
ease to be absent if in the previous time slice the state was also absent and no treatment
has been applied. Should it have been applied, to calculate the probability of the same
evolution and with the same previous states, the method adds a small amount (0.01)
to the same value, as it is assumed that applying the treatment reduces the chances of
having the disease. The second parameter, minPresentNoTreatment, is the minimum
probability for the disease to be present if also the previous state was present and the
treatment has been applied. Finally, the method takes the prevalence to calculate if the
disease is present if it already was and no treatment has been applied. The last parameter
stationaryProbabilitiesAndUtilities is for the user to indicate whether s/he wants
stationary probabilities and utilities, what is common in POMDPs, or not. The values of
the other variables in the network, the symptoms and the utilities, are completely random.

3.3.2 Experiments

Once we coded and tested the algorithms, we conducted an empirical study of their per-
formance. We measured both the time and the memory the algorithms employ to perform
the inference of the two kinds of influence diagram real-world applications described in
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Subsection 3.3.1. We took the difference between two times measured using the precision
timer System.nanoTime() of Java3 to compare the first component of the performance
and the size of the variables in memory for the second. Within each one of the problems
described, we incremented the number of slices4 till the feasibility border flagged by any
of the algorithms not being capable of making the inference. The complexities we reached
were 8 slices for the n-test medical decision problem (n = 8) and 9 slices (horizon = 8)
for the follow-up problem. Therefore, we have tried the algorithms against 17 networks.
While the follow-up problem is a multi-stage network, somehow horizontal, the n-test
medical decision problem is somehow a vertical network, with two groups of nodes con-
nected between them. Here we picture again both networks in the Figure 3.4 and the
Figure 3.5 to illustrate this description.

We set up a database in MySQL (Widenius & Axmark, 2002) format to achieve some
dynamic execution of the algorithms. The database has been used to store the basic
configuration of the tests and hence if we needed to change certain parts of the experiments
we did not need to change the source code. We were able to know which networks had
been generated, to configure which networks were profiled, and the location of them, to
name just some possibilities of the database.

Once we had the algorithms and the database ready, we compiled the sources in two
executable jar format programs. One of them to test the efficacy of the algorithms and
the other one to test their efficiency against the networks. The first program, the one
that checks the inferences needs two parameters:

1. ID type [string, one] to specify the type of network that the user wants to test. For
this research, MedicalDecisionProblem or MedicalPOMDP.

2. InferenceAlgorithm [string, one] to specify the inference algorithm that will be used.
For this research, VariableElimination, ArcReversal, StrongJunctionTree or LIMID-
versionID.

The program will take all the networks that had been generated of the type received and
will test their efficacy against variable elimination, if it has not be done before. All the
algorithms have to obtain the same result in the inference than variable elimination. If
this is not the case, the algorithm will be stored in a table of the database that indicates
that an error has been produced. If the algorithm in test is arc reversal, the elimination

3http://docs.oracle.com/javase/7/docs/api/java/lang/System.html, checked the 6th of
September, 2014

4In the rest of the chapter, the slice term matches n in the case of the n-test medical decision problem
and horizon + 1 in the follow-up problem

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html
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Figure 3.4: n-test medical decision problem with 6 tests (slice = 6).

Figure 3.5: The follow-up problem, with a horizon of 2 periods (n = 2).
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order of the algorithm is stored, to force variable elimination to use it—further detail in
Section 3.5.

The second program retrieves the data—time and/or space use—from the different
inferences and needs the following parameters:

1. db [true or false] to store or not the obtained information in the database

2. csv [true or false] to store or not the obtained information in csv files

3. forceGarbageCollector [true or false] to force or not the Java Garbage Collector in
several points of code

4. measureTime [true or false] to measure or not how much time does it take to an
algorithm to perform the inferences

5. measureSize [true or false] to measure or not how much memory does an algorithm
need to perform the inferences

6. forceVariableEliminationOrder [true or false], to force or not in variable elimination
algorithm the same elimination order than in arc reversal

7. numberOfIterations [integer] if measureSize is true, the number received will be
disposed and only one iteration will be made

8. deletePreviousProfiling [true or false] to delete or not the previous tests. If they
are not deleted, only those experiments that are missing from the database are
performed.

9. interventionsOff [true or false] to take in count or not the time used by variable
elimination during the calculation of the interventions.

10. ID type [string, one or more] to specify the network type that the user wants to
test. For this research, MedicalDecisionProblem or MedicalPOMDP.

11. InferenceAlgorithm [string, one or more] the 10th and subsequent parameters are
the inference algorithm(s) that will be used. For this research, VariableElimination,
ArcReversal, StrongJunctionTree and LIMIDversionID.

When we carried out the collection of the samples with the same machine (see Table
3.12) we did it in several stages; we also needed several attempts to circumvents some
problems that will discuss later in this Section. In any case, the time and size were
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measured independently for the experiments not to collide one with each other. We also
did our best to shut down any non essential program or service in the machine, in order
to interfere the less possible with the inferences. All the data was stored in the MySQL
database and we then analysed the collected information with the statistical program R
(R Development Core Team, 2008). We created some R scripts to read the information
from the database, for which also some views were stored in the database. Then we split
the experiment’s data, by kind of network and, then, by algorithm. Another script took
this information and calculated some statistical values, like the mean and the median. All
this information was used to generate some excel-sheets where the empirical comparison of
the algorithms rests. Finally, we drew some plots to compare and contrast the algorithms
graphically.

When designing the experiments, all the algorithms but variable elimination were al-
lowed to play freely. For the purpose of comparing variable elimination and arc reversal
under the same conditions, we imposed the variable elimination order in the first men-
tioned algorithm. The order elimination of each influence diagram we utilised in the
study was established by the inference made through arc reversal. This process was done
independently to the obtention of any efficiency data. Before exhibiting the results, we
will discuss at the beginning of Section 3.4 some issues that we came across during the
analysis of the performance of the algorithms and that lead to change some factors of the
experiments.

3.4 Experimental results

Our firsts examinations involved conducting the inference of each algorithm over each
network 100 times. We expected some extreme values because a computer is not a per-
fectly stable environment; for this reason we had decided to use the trimmed mean to
juxtapose the time efficiency of the algorithms. This value is a robust statistical measure,
that suits the analysis of heavy-tailed distributions (Stigler, 1973). It is associated with
a numerical value that indicates the amount (%) of values of each tail that are removed.
Hence, the trimmed mean 2 leaves out the 2% of the highest and lowest values of the
data. When we pulled out the initial results, the values of the trimmed mean 2, 5, 10 and
15 were extremely different. Meaning that the distribution obtained was skewed. So we
decided to trigger again the programs, but requesting 500 inferences over each network.
The new results showed trimmed means that were nearly the same—the data we expected
(see Table 3.1).
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Figure 3.6: Configuration of the R environment used in the research.

## Loading required package: methods
## Loading required package: DBI
## Loading required package: MASS
## Loading required package: gld
## Loading required package: mvtnorm
## Loading required package: lattice
##
## Attaching package: ’PairedData’
##
## The following object is masked from ’package:RMySQL’:
##
## summary
##
## The following object is masked from ’package:DBI’:
##
## summary
##
## The following object is masked from ’package:base’:
##
## summary

## R version 3.1.1 (2014-07-10)
## Platform: x86_64-apple-darwin13.1.0 (64-bit)
##
## locale:
## [1] C
##
## attached base packages:
## [1] methods stats graphics grDevices utils datasets base
##
## other attached packages:
## [1] PairedData_1.0.1 lattice_0.20-29 mvtnorm_1.0-0 gld_2.2.1
## [5] MASS_7.3-34 ggplot2_1.0.0 WriteXLS_3.5.0 data.table_1.9.2
## [9] RMySQL_0.9-3 DBI_0.2-7 knitr_1.6
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.11.2 colorspace_1.2-4 digest_0.6.4 evaluate_0.5.5
## [5] formatR_1.0 grid_3.1.1 gtable_0.1.2 munsell_0.4.2
## [9] plyr_1.8.1 proto_0.3-10 reshape2_1.4 scales_0.2.4
## [13] stringr_0.6.2 tools_3.1.1

## Error: package ’ggplot2’ is required by ’PairedData’ so will not be
detached
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Table 3.1: Time employed ratio arc reversal / variable elimination in the n-test medical
decision problem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 0,89399 0,98807 0,98158 0,98674 0,98696 0,98468 0,97909 0,14906 1,05345 0,91645
2 1,07749 1,13645 1,11374 1,12181 1,12437 1,12259 1,07956 0,32511 1,18200 1,04394
3 1,22258 1,32117 1,29005 1,29679 1,30029 1,29814 1,24425 0,21570 1,37242 1,17867
4 1,74141 1,90437 1,83559 1,85673 1,87029 1,87202 1,78522 0,56922 1,94854 1,52076
5 3,50871 3,81281 3,64807 3,68389 3,71119 3,72712 3,46973 1,71780 3,83967 3,09235
6 8,50288 9,28006 8,99126 9,07203 9,12047 9,14873 8,28584 2,46212 8,97049 8,01920
7 16,73938 17,15829 16,57186 16,64021 16,74345 16,84370 15,28471 27,43599 15,87175 15,77993
8 22,91046 22,72740 22,89736 22,88547 22,85127 22,80890 22,43113 21,72129 23,61546 22,67344

Table 3.2: Time employed ratio arc reversal / strong junction Tree in the n-test medical
decision problem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 7,15187 7,39286 7,20266 7,22145 7,25342 7,28712 7,39474 4,88540 7,45122 6,54872
2 7,18187 7,15323 7,09377 7,07936 7,09145 7,10613 7,15455 5,51362 7,18967 7,03875
3 4,88787 4,72610 4,79393 4,77796 4,76916 4,75883 4,81356 14,52394 4,82443 4,96844
4 2,29240 2,20853 2,24693 2,24331 2,24153 2,23462 2,33295 5,88420 2,27427 2,23043
5 1,28133 1,23868 1,24525 1,24109 1,23990 1,23918 1,26587 4,21393 1,26214 1,26907
6 0,98807 0,97882 0,98013 0,97986 0,97860 0,97865 0,96869 2,96793 1,01074 0,97417
7 0,93911 0,91628 0,92018 0,92051 0,92104 0,92149 0,90929 3,91699 0,91489 0,92574
8 0,86580 0,86772 0,86893 0,86895 0,86905 0,86906 0,85838 0,88031 0,88977 0,84505

In spite of that, another values caught our attention; the inference of arc reversal
was being made faster than the one of variable elimination. We examined the source of
code of variable elimination and noted that within it, in every iteration, it was performed
the search of the Interventions of the network; these are a tree structure that stores
the optimal policy, but that are not needed for the inference itself. The process of their
creation involves several loops, so we set off again the program against variable elimination
without taking in count the time expended by the algorithm with the Interventions. We
are in general confident about the consistency of the data, even though the final data
produced still threw some unexpected results. We will continue this dissertation discussing
them.

Figures 3.7 and 3.9 plot the trimmed mean at 2% against the slices of the networks
for every algorithm we tested. This graphs, that have been obtained with the statistical
program R (see configuration of the R environment in Table 3.6) show also the maximum
and minimum values thrown by each algorithm in every slice, which illustrate that even
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Table 3.3: Time employed ratio arc Reversal / LIMID-conversion in the n-test medical
decision problem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 4,16647 4,03247 4,14356 4,12353 4,10060 4,06873 4,16296 2,74161 4,39568 4,23315
2 3,02687 2,84295 2,96953 2,95242 2,94197 2,92812 2,95865 3,76862 3,17500 3,04296
3 1,26433 1,28808 1,34146 1,33646 1,33429 1,32584 1,34279 0,14542 1,43964 1,31406
4 0,44783 0,42666 0,44154 0,43955 0,43732 0,43478 0,43896 0,58749 0,47423 0,44838
5 0,18168 0,17632 0,17806 0,17776 0,17753 0,17738 0,17393 0,57457 0,18997 0,17416
6 0,11636 0,11615 0,11650 0,11656 0,11653 0,11648 0,12154 0,14434 0,12603 0,10866
7 0,09734 0,09635 0,09561 0,09569 0,09588 0,09607 0,09010 0,37099 0,09205 0,09637
8 0,08848 0,08848 0,08821 0,08825 0,08829 0,08833 0,08646 0,15562 0,08957 0,08632

using a high number of inferences there are some extreme values in the outcomes of the
experiments. Figures 3.8 and 3.10 contain the same information, focused on those network
of four slices or fewer.

We have divided the results into two sections, one per characteristic measured. The
results, that we will detail later, grosso modo are:

1. Regarding the time expended in the inference by the algorithms:

(a) In most cases, variable elimination performs better than arc reversal.

(b) Strong junction tree beats the others in both types of networks till the fourth
slice and in the follow-up problem even in the fifth one.

(c) The LIMID-conversion, performs mostly like the strong junction tree till the
networks with three slices but then its performance get worse exponentially

2. Regarding the memory employed in the inference by the algorithms

(a) Generally speaking, variable elimination uses less memory space than arc re-
versal.

(b) Strong junction tree is the best in almost all the cases.

(c) The worst behave corresponds to the LIMID-conversion.

3.5 Analysis of the results

Next, we will dive on the details of the experiments, that are revealed in the tables of
this chapter. In the tables, we present the ratio of the values of arc reversal over the
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Figure 3.7: Trimmed mean 2 vs. slices in n-test medical decision problem inferences with
minimum and maximum values.

other algorithms. A comparison of the four algorithms at the same time can be seen in
the figures of the chapter. As we said before, variable elimination wins almost always to
arc reversal both regarding the time utilised for the inference and the memory necessary
during it. The ratios of the Tables 3.1 and 3.4 show that the time employed ratio grows
exponentially with the slices of both kinds of networks. In these tables, though, arc
reversal appears to be faster in the simplest networks. In the case of the n-test medical
decision problem it is true that arc reversal has to eliminate one less node (X1) than
variable elimination because it becomes barren variable during the inference. But this is
not the case in the follow-up problem network. We have not been able to find a reason for
this value, although it could be due to the forced elimination order imposed to variable
elimination. Maybe if it had performed freely, it would have been faster. Speaking about
the memory occupied, only in the follow-up problem of 1 and 2 slices arc reversal need
less memory than variable elimination. The reason is that arc reversal process one less
node in each case because they become barren variables during the inference. It is true



3.5. Analysis of the results 37

Figure 3.8: Trimmed mean 2 vs. slices in n-test medical decision problem inferences with
minimum and maximum values, only of networks with four slices or less.

that in bigger networks arc reversal may remove up to four barren nodes that variable
elimination has to process; but the elimination of these nodes also brings a cost, both
regarding memory and time, as some operations have to be performed over the potentials.
Bigger networks bring bigger potentials and thus these operations are more complex for
both characteristics of the performance. Overall, we think the result about the speed in
the simplest networks is a minor deficit in the research, that even could be related to the
skewed distribution, and that out results match those of other authors and their analysis
of these two algorithms.

Maybe the most surprising results are those obtained by the strong junction tree al-
gorithm. The junction tree algorithms generalise the variable elimination algorithm and
perform better than this, but only when querying the network about different probabilit-
ies. In the case of the variable elimination algorithm, when the inference about a certain
probability is performed, and then the decision maker asks for another probability, the
algorithm has not cached any other results. So it has to make all the calculations again.
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Table 3.4: Time employed ratio arc reversal / variable elimination in the follow-up prob-
lem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 0,78748 0,96610 0,93026 0,94380 0,95274 0,96031 1,00673 0,13077 1,00331 0,77446
2 1,19167 1,35043 1,27265 1,29525 1,32161 1,34278 1,38481 0,22300 1,37272 0,98437
3 1,39492 1,64984 1,53122 1,55606 1,58869 1,60831 1,58880 0,29950 1,60473 1,18779
4 1,68322 1,95435 1,82385 1,85966 1,89577 1,91772 1,80617 0,22161 1,87069 1,37247
5 2,06506 2,45069 2,30671 2,34649 2,38812 2,41465 2,19910 0,23812 2,28888 1,89819
6 3,01399 3,62021 3,52223 3,56938 3,61189 3,62478 3,15483 0,21413 3,26287 3,04281
7 5,10819 5,77563 5,79917 5,83803 5,88006 5,90035 4,97914 0,46631 5,12406 5,62426
8 10,95218 10,36900 11,26167 11,29245 11,27154 11,22331 9,22240 8,35552 9,26029 12,65420
9 19,48522 17,73383 19,78860 19,67054 19,50728 19,31561 15,91451 6,28657 15,89298 25,30379

Table 3.5: Time employed ratio arc reversal / strong junction tree in the follow-up prob-
lem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 4,28569 4,32911 4,20340 4,25616 4,32043 4,29747 4,39706 6,62003 4,39130 3,19409
2 4,37582 4,68148 4,46764 4,52133 4,61523 4,62305 4,63559 1,02936 4,63292 3,44912
3 4,19439 4,32906 4,11885 4,16330 4,23986 4,24778 4,07426 11,20641 4,14098 3,24134
4 3,50237 3,66784 3,60802 3,63966 3,67945 3,69476 3,31536 0,54629 3,47200 3,07287
5 2,52438 2,57586 2,55941 2,56911 2,58450 2,59774 2,25490 0,80378 2,36449 2,43109
6 1,76373 1,69827 1,77262 1,77558 1,77663 1,77120 1,46233 1,42485 1,52512 1,87241
7 1,24633 1,17291 1,25164 1,24884 1,24451 1,23655 1,00643 2,18069 1,04191 1,45627
8 1,09179 0,95165 1,06782 1,06324 1,05727 1,04718 0,84363 5,21311 0,85452 1,31011
9 0,91495 0,82258 0,92793 0,92018 0,91072 0,89972 0,75091 0,26853 0,76241 1,20208

Table 3.6: Time employed ratio arc reversal / LIMID-conversion in the follow-up problem.

Slices Mean Median TM2 TM5 TM10 TM15 Min Max Per5 Per95
1 3,55665 3,42000 3,52301 3,51813 3,48764 3,46636 3,28571 4,03175 3,29348 4,03320
2 3,08148 2,99526 3,05490 3,05963 3,06204 3,06579 2,92513 4,80514 2,91073 3,26394
3 2,51474 2,50123 2,50560 2,50993 2,51651 2,52214 2,31180 1,74158 2,35806 2,51373
4 1,61593 1,56563 1,61216 1,61429 1,62189 1,63504 1,40251 1,24845 1,47452 1,64183
5 0,70709 0,73245 0,75843 0,75724 0,75693 0,75789 0,63557 0,07627 0,66944 0,84035
6 0,34722 0,32817 0,34653 0,34551 0,34430 0,34266 0,27363 0,33995 0,28718 0,41551
7 0,18831 0,17630 0,18645 0,18502 0,18350 0,18224 0,14522 0,31819 0,14966 0,24537
8 0,13962 0,12156 0,13546 0,13429 0,13275 0,13131 0,10270 0,96516 0,10368 0,18683
9 0,10342 0,09136 0,10342 0,10229 0,10087 0,09959 0,07727 0,11526 0,07826 0,15432
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Figure 3.9: Trimmed mean 2 vs. slices in the follow-up problem inferences with minimum
and maximum values.

As the junction tree can store, if desired, the intermediate calculations, later inferences
on the network may be done faster at the expense of occupying memory. But in general is
worth the expense. When only making one question to the network, the efficiency should
be the same as the overall complexity of the two algorithms is the same. Given that we
are just querying the network once, the question that arises is why strong junction tree
performs better than variable elimination in 50% of the networks examples of the n-test
medical decision problem tested and near the 56% in the case of the follow-up problem.

Before the creation of the clique tree, the algorithms chooses the elimination ordering in
one single step while variable elimination invokes this subroutine each time a node is going
to be deleted. This is not a trivial operation, as it consumes resources. There is another
reason for strong junction tree being superior in the indicated cases and it is another
advantage of the junction trees, and it is their ability to perform several operations over
several potentials in a single clique. The cliques created in the different cases can be seen
in Table 3.7. In spite of the advantages of strong junction tree over variable elimination
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Figure 3.10: Trimmed mean 2 vs. slices in the follow-up problem inferences with minimum
and maximum values, only of networks with four slices or less.

defined above, the complexity of the algorithm grows with the width of the clique tree.
Therefore, as the size of the cliques scales, the performance of variable elimination retakes
the leading.

In the tables that show the memory results of the inferences, we see opposite results
than with the time efficiency. The numbers show that the worse the strong junction
tree behaves regarding the time employed the better it behaves regarding the memory in
use during the inference. It is the algorithm that uses the less amount of memory of all
of them when run against the n-test medical decision problem. And this response is in
almost 67% of the cases of the follow-up problem, where also the ratio soars. The reason
for this performance is, once again, found in the cliques and their separators. Every time
a clique sends a message upwards to the root, it eliminates all the nodes in the message
that do not belong to the clique receiving the message. Variable elimination only removes
one node per iteration. When there are some big cliques in the network, it is possible
to eliminate several variables at once, and then, less memory is necessary. But these



3.5. Analysis of the results 41

Figure 3.11: Time comparison: trimmed mean 2 vs. slices in the n-test medical decision
problem inferences.

operations are complex, thus the poor time efficiency.

The memory performance is no so high in the case of strong junction trees and the
n-test medical decision problem because only one clique is involved. And in the case of
the follow-up problem the algorithm is beaten by variable elimination and arc reversal
in the simpler networks, those till three slices of complexity, because the cliques are not
so big, and one of the pre-process of the algorithm is to gather together the potentials
assigned to each clique. The multiplication of probability potentials and the sum of utility
potential lead to bigger potentials, and this amount of memory is not compensated with
the weight of the cliques.

It is necessary to emphasise that in the experiments we have eliminated the messages
that were passing along the network, as we only needed to consult the network once. If the
comparison had been about the speed with several questions asked to the same network,
the messages should have been stored and then the values would vary though it would
have been faster than variable elimination and arc reversal.
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Figure 3.12: Time comparison: trimmed mean 2 vs. slices in the n-test medical decision
problem inferences (networks with 5 slices or less).

Finally, the LIMID-conversion algorithm is remarkably the worst of all the algorithms
compared. The authors of the algorithm (Nilsson & Lauritzen, 2000; Lauritzen & Nilsson,
2001) stated that their method is better than the strong junction tree as it creates smaller
cliques and as a result the complexity of the operations is also smaller. Nevertheless, as we
explained in Section 2.4.4 the method requires several iterations, one per decision present
in the network. And also it needs to store the messages passed between the cliques in
every iteration as they might be needed in subsequent iterations.

The authors, to overcome this difficulty proposed an enhancement to the algorithm so
only one flow of the message would be needed. But this strengthening in the algorithm
is completely related to the structure of the clique tree and hence to the structure of the
network. Actually, in Lauritzen & Nilsson (2001) they show one example that requires
going through all the network twice. The results of this algorithm are those that we
expected from the beginning and refute the assumptions of its authors.
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Figure 3.13: Time comparison: trimmed mean 2 vs. slices in the n-test medical decision
problem inferences (networks with 4 slices or less).

3.6 Discussion

With the results exposed in Section 3.4, it seems that the LIMID-conversion is not a
recommendable algorithm as in the tested networks from the complexity of three slices
and over, its performance fell exponentially compared to the other three algorithms.

Putting aside the LIMID-conversion algorithm, and paying attention to the small
networks—those of 4 slices or less—, strong junction tree performs slightly better than
variable elimination and then it comes arc reversal. We find the same ranking in the
memory ratios. As we said in the previous Section, this is likely because the strong
junction tree has to calculate the elimination order of the variables just once and can
perform several operations in the same clique. For the networks we are speaking about
the cliques are small, so the operations inside them are not very complex. In Figures 3.13
and 3.17 the gradient of the speed of the inference of each one of these three algorithms
is similar between the networks they are confronted to. It seems that the structure of
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Figure 3.14: Time comparison: trimmed mean 2 vs slices in the n-test medical decision
problem inferences (networks with 5 slices or more).

the network is not affecting the speed ratios. But taking in count the average of all
the networks (see Table 3.9) the kind of network in use affects both speed and memory
consumed.

If we focus now in the biggest networks—those of 5 slices or more—which time com-
parison graph for the n-test medical decision problem and the follow-up problem are in
Figures 3.14 and 3.18 respectively, the scenario changes. Variable elimination becomes
the faster algorithm, followed by arc reversal and just only a bit slower than it then it
comes strong junction tree. But looking at the memory comparison, the ranking is turned
over again and strong junction tree beats the other algorithms. And it outperforms in the
case of the follow-up problem. We above framed this numbers in the different structures
of the networks, the cliques formed and their separators. This would imply that if the
memory is a concern during the evaluation, in horizontal networks strong junction tree
should be use. It also uses less memory in the vertical network but its performances
resembles the ones of the other algorithms. As we said before, there are ways to use
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Figure 3.15: Time comparison: trimmed mean 2 vs. slices in the follow-up problem
inferences.

the strong junction tree that would require occupying more memory but that also would
improve their performance regarding the speed, depending on the scenarios. In any case,
these comparisons are not within the scope of this dissertation.

From all the above, it could be inferred that variable elimination algorithm is the most
balanced algorithm for both kinds of networks and for their different sizes when addressing
just one question to the network: maximum expected utility and optimal policy.

3.7 Results reproducibility

As we stated in the introduction of this thesis, we wanted the research community
to be able to check the data we obtained and, if desired, reproduce the research
and even to contribute to it. In the repository https://bitbucket.org/artasom/

master-thesis-reproducible-research/ anyone will find:

1. The complete database used to store the experiments with the data obtained from

https://bitbucket.org/artasom/master-thesis-reproducible-research/
https://bitbucket.org/artasom/master-thesis-reproducible-research/
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Table 3.7: Cliques of the strong junction tree algorithm in the different networks.

Slices n-test medical decision problem Follow-up problem
1 1 clique of 4 variables 2 cliques of 3 variables each
2 1 clique of 6 variables 3 cliques of 5, 4 and 3 nodes
3 1 clique of 8 variables 4 cliques of 7, 5, 4 and 3 nodes
4 1 clique of 10 variables 5 cliques of 9, 6, 5, 4 and 3 nodes
5 1 clique of 12 variables 6 cliques of 11, 7, 6, 5, 4 and 3 nodes
6 1 clique of 14 variables 7 cliques of 13, 9, 6 (2 of them), 5, 4 and 3 nodes
7 1 clique of 16 variables 8 cliques of 15, 9, 8, 6 (2 of them), 5, 4 and 3 nodes
8 1 clique of 18 variables 9 cliques of 17, 10, 9, 6 (3 of them), 5, 4 and 3 nodes
9 - 10 cliques of 19, 12, 9, 8, 6 (3 of them), 5, 4 and 3 nodes

Table 3.8: Cliques of the LIMID-conversion algorithm in the different networks.

Slices n-test medical decision problem Follow-up problem
1 1 clique of 4 variables 2 cliques of 3 variables each
2 1 clique of 6 variables 3 cliques of 5, 4 and 3 nodes
3 1 clique of 8 variables 4 cliques of 7, 5, 4 and 3 nodes
4 1 clique of 10 variables 5 cliques of 9, 6, 5, 4 and 3 nodes
5 1 clique of 12 variables 6 cliques of 11, 7, 6, 5, 4 and 3 nodes
6 1 clique of 14 variables 7 cliques of 13, 9, 6 (2 of them), 5, 4 and 3 nodes
7 1 clique of 16 variables 8 cliques of 15, 10, 7, 6 (2 of them), 5, 4 and 3 nodes
8 1 clique of 18 variables 9 cliques of 17, 10, 9, 6 (3 of them), 5, 4 and 3 nodes
9 - 10 cliques of 19, 11, 10, 7, 6 (3 of them), 5, 4 and 3 nodes

them. The connection to the database can be done with the user artasom and the
password artasom.

2. Also, the data in csv format.

3. The described programs ACGenerateNetworks and ACGenerateStatistics in ex-
ecutable jar format.

Table 3.9: Computational time and memory used ratio comparison of the n-test medical
decision problem over the follow-up Problem (till slice number 8).

Algorithm Time comparison Memory comparison
Variable elimination 3,795376545 18,09639944

Arc reversal 7,453063889 17,60600901
Strong junction tree 9,906587178 148,7520652
LIMID-conversion 14,49292242 16,44713659
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Figure 3.16: Time comparison: trimmed mean 2 vs. slices in the follow-up problem
inferences (networks with 5 slices or less).

Table 3.10: Memory comparison of the n-test medical decision problem.

Slices Memory AR / VE Memory AR / SJT Memory AR / LIMID
1 1 1 0,625
2 1,053571429 1,340909091 0,7375
3 1,064220183 1,5 0,776785714
4 1,066221766 1,564006024 0,791539634
5 1,066586683 1,5875 0,797003074
6 1,066652379 1,595737859 0,798961901
7 1,066664126 1,598560987 0,799645795
8 1,066666217 1,599516823 0,799880288

4. The OpenMarkov networks used to compare the efficiency of the algorithms.

5. The outcome of the R programming language: the excel-sheets in xls and csv

formats and the plots in png format.
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Figure 3.17: Time comparison: trimmed mean 2 vs. slices in the follow-up problem
inferences (networks with 4 slices or less).

6. The RMySQL library used to read the data from the database into R.

7. The R project of RStudio5 and an RMarkdown file to compile with knitr (Xie, 2013)
the outcome of the R scripts used in HTML.

8. The R scripts generated to read the data from the database, structure it, generate
the numerical comparisons, store the excel-sheet files and the plots.

9. The unix scripts used to launch the java programs, where anyone can consult also
the parameters requested by the programs.

With all theses resources, and once the database is up & running in the machine, anyone
can replicate the results we obtained. In order to access the source code of OpenMarkov,
any researcher may head to http://www.openmarkov.org/ and request for access to the
repository where a full copy of OpenMarkov is located.

5http://www.rstudio.com/products/RStudio/

http://www.openmarkov.org/
http://www.rstudio.com/products/RStudio/
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Figure 3.18: Time comparison: trimmed mean 2 vs. slices in the follow-up problem
inferences (networks with 5 slices or more).

Table 3.11: Memory comparison of the follow-up problem.

Slices Memory AR / VE Memory AR / SJT Memory AR / LIMIDs
1 0,555555556 0,416666667 0,5
2 0,764705882 0,433333333 0,295454545
3 1,1875 1,096153846 0,483050847
4 1,109375 2,476744186 0,605113636
5 1,110677083 3,985981308 0,71440536
6 1,112304688 9,285326087 0,755639098
7 1,111083984 11,91361257 0,79655776
8 1,111104329 24,68942134 0,820655767
9 1,111109416 26,04351454 0,827479754
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Figure 3.19: Memory comparison of the n-test medical decision problem inferences.

Table 3.12: Machine hardware information.
Model Name MacBook

Model Identifier MacBook6,1
Processor Name: Intel Core 2 Duo
Processor Speed 2,26 GHz

Number of Processors 1
Total Number of Cores 2

Memory 8 GB
OS X Version 10.9.4
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Figure 3.20: Memory comparison of the n-test medical decision problem inferences (net-
works with 5 slices or less).
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Figure 3.21: Memory comparison of the follow-up problem inferences.
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Figure 3.22: Memory comparison of the follow-up problem inferences (networks with 5
slices or less).
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Chapter 4

Conclusions and future work

4.1 Conclusions

The results we obtained of the performance of variable elimination and arc reversal are
analogous to those given by other authors (Luque & Díez, 2010; Butz et al., 2009b). Our
experiment of the comparison with the other two algorithms is novel and provides the
first empirical evidence of the performance of the LIMID-conversion algorithm.

As we have seen in Chapter 3, no algorithm of the studied is a winner in all the
scenarios. Despite this fact, some recommendations emerge from the inferences performed.
The graphics and tables pulled out of the comparison reveal that with small networks there
is little difference between the algorithms. But with bigger networks, if memory is an issue
then the strong junction tree algorithm ought to be used; it will give outstanding results
with horizontal networks. If a balance between memory and speed is sought, variable
elimination should be used as it is remarkably faster than the others in all the big networks
analysed. Generally speaking, the LIMID-conversion of an ID must be avoided because,
contrary to the claim of Nilsson & Lauritzen (2000) it does not “yield significant savings
of memory and computational time when compared to traditional methods”.

Also of note is the comparison of the time employed between the two types of networks
tested. The ratios show that all the algorithms perform the inference faster in the follow-
up problem than in the n-test medical decision problem. In the case of the algorithms
that use junction tree structures, the inference is at least 10 times faster. Regarding the
memory, the n-test medical decision problem requires 18 times more memory than the
follow-up problem, except in the case of the strong junction tree where the memory used
by this network compared to the other one skyrockets to 148 times.

In the scope of this thesis, we have implemented in Java and put at the disposal
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of the Artificial Intelligence community three classic algorithms to perform inference in
influence diagrams. With the aim of giving more power to this research, we have pursued
its reproducibility. A public repository has been set where any expert, researcher, or
student can find all the data used in the experiments as well as the files necessary to
reproduce the research. We think this could be very useful for people involved the field
of PGMs.

4.2 Future work

The main lines for the future work related to this dissertation are to include some im-
provements on the algorithms and compare them again. For example, the possibility of
avoiding redundant variables could be introduced in the strong junction tree algorithm.
There is also some ongoing work regarding the election of the elimination order of the
variables, an NP-complete problem, that may be implemented in variable elimination.
Also, there is some research on lazy evaluation for IDs (Madsen & Jensen, 1999; Vomlel-
ová & Jensen, 2004), which can be combined within variable elimination and arc reversal.
There are contradictory recent reports about arc reversal performing better than variable
elimination under certain scenarios when using lazy propagation (Butz et al., 2011).

It would be also also interesting to code more algorithms into OpenMarkov, such as
Branch-and-Bound Search (Yuan et al., 2010) and Decision Circuits (Shachter & Bhat-
tacharjya, 2010) and incorporate them to the comparison. Basically, as we have developed
a framework to compare and contrast different algorithms, any improvements on the ex-
isting ones or any implementation of new algorithms, can be included in new analyses.
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