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Abstract

During the last two decades several specific decision analysis formalisms for the representation of
asymmetric decision problems have been proposed as the common decision analysis formalisms,
influence diagrams (IDs) and decision trees (DTs) are not able to represent asymmetric decision
problems efficiently. Although those formalisms provide different solutions, none of them has
been used in practice to represent real-world problems, what might be a sign that they are not
simple enough to facilitate the construction of the model or the communication with the expert.
The latter is very important in fields such as medicine where the expert needs to understand
the system to accept its advice. For these reasons a new probabilistic graphical model, decision
analysis networks (DANs) were proposed by Dı́ez & Luque (2010), which intend to represent the
asymmetric aspects of decision problems more naturally.

The main contribution of this work is a revision of DANs from the point of view of syntax and
semantics regarding the representation of asymmetric aspects and a comparison of the features
of DANs to the previous decision analysis formalisms. First this work presents a review of several
previous formalisms and a detailed description of the approaches these formalisms take for the
representation of order asymmetry and structural asymmetry, illustrating each method with the
representation of three typical asymmetric decision problems taken from the literature. Secondly
these alternative representations are compared with detail to the DAN representation, what
makes the strengths and weaknesses of each formalism evident. This comparison led further to
the improvement of the DAN formalism, because some loose ends and ambiguities were detected.
After improving DANs with some refined features, DANs compare now equally or even favorably
with the other decision analysis formalisms. As a result of the comparison, we confirm that
DANs are a suitable decision analysis tool, first because DANs provide a natural representation
of both order and structural asymmetry and second because DANs represent problems with
local descriptions, which are independent from the complexity of the problem, what makes DANs
suitable for the representation of many problems that cannot be represented efficiently with most
of the alternative formalisms.

Finally another important contribution of this work is the implementation of DANs at Open-
Markov, an open-source software tool for the edition and evaluation of probabilistic graphical
models with the objective that DANs can be used in practice for decision analysis.
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Resumen

En las últimas décadas se han propuesto varios formalismos para el análisis de decisiones espećıfi-
cos para la representación de problemas asimétricos, dado que los formalismos genéricos, como
diagramas de influencia y arboles de decisiones no pueden representar problemas asimétricos
eficientemente. Aunque estos formalismos proporcionan diferentes soluciones, ninguno de ellos
ha sido utilizado en la práctica para representar problemas reales, lo que puede significar que no
son lo suficientemente sencillo para facilitar la construcción del modelo o la comunicación con el
experto. Este último aspecto es muy importante en algunos campos, como por ejemplo la medi-
cina, donde el experto necesita entender el sistema para aceptar su consejo. Por estas razones un
nuevo modelo probabilista gráfico (MPG), los redes de análisis de decisiones (RADs) han sido
propuestos por Dı́ez & Luque (2010) para representar los aspectos asimétricos de problemas de
decisión con más naturalidad.

La contribución principal de este trabajo es una revisión de los RADs a nivel sintáctico
y semántico en relación con la representación de asimetŕıa y una detallada comparación de los
RADs con los formalismos anteriores. Este trabajo presenta primero una revisión de los diferentes
formalismos anteriores y una descripción detallada de los métodos que utilizan estos formalismos
para representar asimetŕıa estructural y de orden, ilustrando las soluciones con tres problemas
asimétricos que son usados en la literatura. A continuación estas soluciones son comparadas
con la de los RADs lo que hace las ventajas e limitaciones de los diferentes formalismos visible.
Esta comparación ha llevado también a la mejora de algunos aspectos de los RADs, ya que se
han detectado algunos cabos sueltos y ambigüedades. Tras adaptar las RADs, el formalismo es
ahora equiparable o incluso mejor respecto a otros formalismos de análisis de decisiones por los
siguientes motivos: Los RADs usan una representación natural para la asimetŕıa de orden y de
la estructural y segundo porque RADs representan los problemas con descripciones locales, que
son independientes de la complejidad del problema, lo que les hace apto para la representación
de muchos problemas, que no pueden ser representados eficientemente con la gran mayoŕıa de
los formalismos alternativos.

Finalmente otra contribución importante de este trabajo ha sido la implementación de RADs
en OpenMarkov, un programa libre para la edición y evaluación de MPGs, con el objetivo que
RADs puedan ser utilizados en la práctica para el análisis de decisiones.
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1 Introduction

1.1 Motivation

The construction of intelligent systems for decision making under uncertainty is one of the
main objectives of Artificial Intelligence (AI) and has been addressed by different paradigms.
From the beginnings of AI until the 1990’s a great expectation was put on rule-based expert
systems, but due to their specificity for a certain domain and their inefficiency for distributed
computations at inference they are nowadays less relevant. In contrast, probabilistic graphical
models (PGMs), in particular Bayesian networks (BNs) and influence diagrams (IDs), are gaining
further importance since their beginnings in the early 1980’s. PGMs gave a new approach to
the treatment of uncertainty based on the Bayesian probability theory, which allows for efficient
inference procedures capable to solve problems with a complexity which could not be addressed
by other methods so far. Furthermore PGMs use a graphical model which encodes dependency
relationships directly thus providing a qualitative and easy to understand description of decision
problems.

Although IDs provide an efficient solution for knowledge representation and reasoning, they
have difficulties to represent asymmetric decision problems, i.e., situations where the outcomes of
a variable or the decision options are restricted by previous observations and decisions (structural
asymmetry) or the order of decisions is undefined (order asymmetry). As real-world problems
are more often asymmetric than symmetric, there is a need to find decision analysis formalisms
which can represent asymmetry well. Several specific formalisms have been proposed in the last
decades, but none of them has been used to build a real-world application, what might be a sign
that they are not simple enough to facilitate the construction of the model or the communication
with the expert. The latter is very important in fields such as medicine where the expert needs
to understand the system to accept the advice of the expert system. For these reasons Dı́ez &
Luque (2010) proposed a new formalism, the decision analysis network (DANs), which represents
asymmetry more naturally. Until this master thesis, DANs were presented as a new formalism
with a theoretical definition of the model and an evaluation method, both illustrated by means
of a simple example and compared briefly to the alternative solutions proposed so far.

The main motivation of this work was to extend Dı́ez & Luque (2010)’s research on DANs.
First there was a need to carry out a more detailed comparison of DANs to alternative formalisms
in order to assure that DANs address all aspects of the representation of asymmetry. In this thesis
the modeling capabilities of DANs are analyzed by representing three typical asymmetric decision
problems taken from the literature, which contain all known types of asymmetry, and comparing
these representation to the solution the alternative formalisms provide. This comparison should
make the strengths and weaknesses of the DAN formalism evident and lead to the improvement of
the formalism if necessary. Secondly, there was a need to implement DANs in a decision analysis
support tool, so that the formalism can find a practical application. We have implemented the
DAN formalism in OpenMarkov, an open-source software tool for the edition and evaluation
of graphical probabilistic models developed by the CISIAD 1 . This software tool implements
already several types of decision analysis formalisms and is available to a wide audience as it is
freely available.

1CISIAD stands for Research Center on Intelligent Decision-Support Systems a UNED dependent center

1
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1.2 Objectives

Because of the needs described in the previous section, the objectives of this research can be
summarized as follows:

1. Analyze the DAN formalism to ensure the correctness and completeness from the point of
view of syntax and semantics regarding the representation of asymmetry:

(a) Compare the capabilities of the DAN formalism, regarding the representation of all
types of asymmetry, with other decision analysis formalisms.

(b) Revise the use of the main characteristics of DANs, such as partial temporal order,
restrictions and revelation arcs in the representation of decision problems, in order to
refine their specification. This task includes the revision of the meaning of restrictions,
the scope and conditions under which restrictions and revelation arcs apply and an
analysis of the use of revelation arcs to describe information precedence.

2. Implement DANs at OpenMarkov, so that they can be used in practice to represent decision
problems.

1.3 Methodology

The character of the research of this thesis is analytic. The objective is to ensure that DANs
address all aspects of the representation of asymmetry correctly. The methodology for achieving
these objectives is based on an analysis of the capabilities of the DANs for the representation of
asymmetry and a critical comparison of their solution to other formalisms. In more detail the
methodology is an iterative process, which involves four phases as described in Figure 1.1:

1. Definition of the features of the formalism.

2. Implementation of DANs at OpenMarkov.

3. Representation of typical asymmetric decision problems with DANs.

4. Comparison of the DAN representation of the asymmetric decision problems with other
formalism.

Starting from the initial definition of the DAN formalism from Dı́ez & Luque (2010), the first
phase is the definition of the characteristics of the DAN formalism. The second phase is the
implementation of the network definition in OpenMarkov, which makes it possible the represen-
tation of different asymmetric decision problems with DANs in the third phase. In this phase
we use some typical asymmetric decision problems presented in the literature. The DAN rep-
resentation of each decision problem is compared in the following phase to the correspondent
solution of each other formalism. This phase includes eventually the revision of solutions already
published in the literature. As this comparison may make visible strengths and weaknesses of
DANs, the process is restarted again to improve the DAN formalism.
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Figure 1.1: Phases in the development of the analysis.

1.4 Organization of the thesis

This master thesis is structured in five chapters. Chapter 1 presents the motivation, objectives
and methodology of this research. Chapter 2 reviews the state of the art of decision analysis for-
malisms for general purpose and specific for the representation of asymmetric decision problems.
This part presents an introduction to decision analysis formalisms in general, a description of
the fundamentals of PGMs and a discussion of the state of art of several alternative formalisms
known so far for the representation of asymmetry. The alternative formalisms examined are
decision trees (DT), influence diagrams (IDs), extended influence diagrams (EIDs), sequential
valuation networks (SVNs), asymmetric influence diagrams (AIDs), unconstrained influence dia-
grams (UIDs) and sequential influence diagrams (SIDs). Chapter 3 presents the DAN formalism
and explains its capabilities for the representation of asymmetry. The representation of the typi-
cal asymmetric decision problem is used to make a comparison for the strengths and weaknesses
of the DAN network to the alternative formalisms. Chapter 4 explains the implementation of
DANs at OpenMarkov describing the new features of the software system. Chapter 5 presents
the conclusions and some open lines for future research.
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2 State of the art

In this chapter we present the basic concepts and the state of the art of probabilistic decision
analysis formalisms. First an introduction to decision analysis is made, comprising the descrip-
tion of its origins and its evolution to modern decision analysis and the description of the formal
procedure of decision analysis. The second section describes the fundamentals for probabilistic
graphical models (PGMs), which are nowadays the most promising model for decision analy-
sis. The third section focuses on decision analysis formalisms regarding the representation of
asymmetric decision problems.

2.1 Introduction to decision analysis

2.1.1 Historical background

Every day we face the problem of making decisions under uncertainty, as our perception of the
world is based on incomplete information. The necessity of reasoning preceding a decision taking
into account the possible factors that may influence the outcome of the decision is recognized
since earliest time. The intuitive approach humans take at reasoning is organized in the following
steps: (1) foresee of all possibilities that might arise (2) judge how likely each is, based on the
perception of the current state of the world and the past experiences and (3) consider the possible
consequences (outcomes) of the different acts. This analysis gives us support for making a good
decision, at least for simple problems.

Although this kind of reasoning was well known for a long time, it was not until the 17th
century that it was formalized with mathematical models based on probability theory. In 1670
Blaise Pascal defined the concept of expected value, which is the weighted average of all possible
values of a variable. This concept led to a description of the choice under uncertainty as a rational
procedure considering the expected value to be the crucial criterion. The theorem of observed
frequencies of Jacob Bernoulli (published eight years after his dead at 1713 in Ars conjectandi)
made it possible to represent mathematically the state of incomplete knowledge or information.
Bernoulli stated that when the number of trials is large, the relative frequencies with which
things happen will approximate the probability of an event, therefore probabilities are legitimate
to predict the occurrence of states of the world. In 1738 Daniel Bernoulli demonstrated by means
of the Sant Petersburg paradox (Bernoulli, 1954) that the criterion for making a choice should
be the expected utility, not the expected value. Bernoulli introduced formally the concepts of
utility function and expected utility, which are built upon the personal preferences of a person.

The principles for inductive reasoning are the Bayes theorem, named for Thomas Bayes, who
formalized the idea of using the inverse probabilities to update beliefs (Bayes & Price, 1763).
Bayes idea was further extended by Pierre Simon Laplace in his famous work Theorie analytique
des probabilités (Laplace, 1812). Inference gives insight into a problem as it describes how
compelling a piece of information is by assigning it a numerical value. Intuition until then only
was able to describe whether a piece of information is relevant for a decision. Laplace applied
Bayesian inference to problems in different areas, such as astronomy, medical statistics and even
jurisprudence. Although Laplace’s application of inference had great success, Bayesian theory
was not generally accepted until one century later.

5
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During the first half of the 20ths century several important advances were made in the field
of game theory. Wald (1939) renewed some important concepts of statistical analysis as he con-
nected formally classic statistic with decision analysis. He showed that hypothesis testing and
parameter estimation are special cases of decision problems. His renewed concepts of statistics
were presented more extensively in Wald (1950), which is considered nowadays the paradigm
for modern statistics. Another key contribution of this period were the game trees of von Neu-
mann & Morgenstern (1944), which are considered the foundations of game theory. This work
formulated the axioms for rationality under which the principle of maximum expected utility
hold, and presented a mathematical analysis for strategies for games with imperfect information
and multiple players. It was the assertion of the authors that economic behavior problems are
identical to the mathematical solutions of strategy games that made this work ground-breaking
for decision analysis in any field.

Until the mids of the 20’s century decision analysis was based on statistic methods and the
interpretation of probabilities was objective, i.e., the probability was understood as the relative
frequency of occurrence of an event measured by statistics. Although already von Neumann &
Morgenstern (1944) mentioned the idea of subjective probabilities, it was not until Savage (1954)
that this idea got foundation. Subjective probabilities represent personal beliefs of an event to
happen and are obtained from humans, while objective probabilities represent the frequency with
which events occur and are obtained from statistic data. In consequence objective probabilities
are used in machine learning tools, where the plausibility of a proposition is measured, while
subjective probabilities are used in decision analysis systems built from the knowledge of human
experts. In the mid 1950’s two researchers from the Business School of Harvard, R. Schlaifer
and H. Raiffa, switched away from the classical decision theory based on statistics and took a
different approach of decision analysis in practice. They explained how to apply decision analysis
to business by assessing subjective probabilities from experts, and described decision scenarios
with decision trees (Raiffa & Schlaifer, 1961). At this period of time also Markovian decision
processes (MDPs) were invented, which model decision making in situations where outcomes are
partly random and partly under the control of a decision maker. The initial research of Bellman
(1957) on MDPs was further extended by Howard (1960), who proposed solution methods based
on dynamic programing. R. A. Howard is also known for his contribution of the formal definition
of decision analysis from a interdisciplinary point of view (Howard, 1966), which is until now
a field of research he is actively working on, and for proposing influence diagrams (Howard &
Matheson, 1984).

In the early 1970’s arose the idea of using probabilistic inference systems instead of rule-based
systems for decision support systems. J. Pearl, a researcher in the field of automated reasoning,
made significant research on Bayesian probabilistic models. His work was motivated by the need
to study distributed probabilistic computations, which allow to make top-down and bottom-up
inferences to overcome the limitations of current rule-based systems, which used an approximate
approach for uncertainty management (Pearl, 1993). In the early 1980’s, he focused on how a pure
Bayesian framework performs at belief propagation and inexact reasoning and demonstrated that
Bayesian inference can do deductive, abductive and even intercausal reasoning inference (Kim
& Pearl, 1983). He investigated also how directed or undirected graphs can be used as language
to encode independence relationships. He recognized the facts that “conditional independence is
the most fundamental relation behind the organization of probabilistic knowledge and the most
crucial factor facilitating distributed computations” (Pearl, 1993) and that such independencies
can be represented suitably with graphical models. Finally at Pearl (1986) he formalized the re-
lationship between graphs and probabilities introducing the d-separation criterion, which allowed
to describe conditional independence and which led to belief networks, referred to as Bayesian
network (BNs) nowadays.
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At almost the same time influence diagrams were presented by Howard & Matheson (1984),
which are a graphical representation of the domain knowledge of a decision problem and a
alternative to the tree-like representations used so far. The main strength of IDs was their
ability to express any relationship between variables with the graphical structure and measure
the strength of the relations with probabilities. This approach made IDs a powerful tool for
knowledge elicitation at decision problems providing a compact and intuitive to understand
model. Nevertheless IDs were criticized initially from different areas of research.

IDs were not accepted immediately by decision analysis researchers, which used so far path
diagrams (Wright, 1921) to describe qualitative domain knowledge. The reason they did not
accept IDs initially was their aversion to subjective probabilities, which are represented in IDs,
because they used models learned from data so far. It was not until one decade later that learning
algorithms for IDs were proposed (Spiegelhalter & Lauritzen, 1990; Cooper & Herskovits, 1991).
From the automatic reasoning point of view, IDs were also unsatisfactory in its initial form as
they were not accompanied with a formal specification, so that a computational tool could not be
built. It was the knowledge of the independence relationship descriptions of Bayesian networks
(Pearl, 1986) which made it possible to use IDs as decision analysis tools in practice. BNs and
IDs are the first types of PGMs.

2.1.2 Definition Decision analysis formalism

Decision analysis addresses the process of decision making in a formal manner. Howard (1966)
defined first the formal procedure of decision analysis and did significant research in this field
since the early 1960’s. In the following, we present some basic concepts of modern decision
analysis, which explains the interest for research on decision analysis formalisms and the scope
under which we will discuss them in this work.

Howard (1966) defines “Decision analysis [as] a logical procedure for the balancing of the fac-
tors that influence a decision. The procedure incorporates uncertainties, values, and preferences
in a basic structure that models the decision. The essence of the procedure is the construction
of a structural model of the decision in a form suitable for computation and manipulation.“ This
definition summarizes concisely the two main desirable features of any decision analysis formal-
ism: it should allow to create models which represent the structure of the problem and can be
treated by computers.

Another interesting concept is the decision analysis process according to Howard (1988),
which is depicted in Figure 2.1. The decision analysis process describes how decision analysis is
put in practice and which phases it comprises. Starting from a real decision problem the goal of
decision analysis is to apply a sequence of steps which provide insight into the problem and allow
to understand the choice for the recommended action. This process is formed by the following
phases according to Howard (1988):

◦ Formulation: This step fits a real decision problem in a formal model, also termed decision
basis. The construction of the formal model is termed elicitation or synthesis and comprises
the definition of the decision alternatives, relevant information (relationships or probability
assignments that may for example be important in characterizing the connection between
decisions and outcomes) and the decision maker’s preferences.

◦ The evaluation consists of logical computations, which provide the best decision option.

◦ The appraisal of the analysis is intended to gain insight into why the recommended option
is logically correct.
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The appraisal may reveal some shortcomings of the analysis, requiring a refinement of the for-
mulation to assure that it is truly appropriate to the problem. At some point, the appraisal step
will show that the recommended decision option is right for the decision maker that there is no
point in continuing analysis any further.

Figure 2.1: Decision analysis process taken from Howard (1988).

This description of the decision analysis process shows how useful decision analysis is, as it
allows to gain insight into a problem and to understand the choice for the recommended action.
This process is based on the creation of a formal model of the problem, which explains the
motivation for researching on formalisms, i.e., methods and specifications, which can be used
systematically to construct a formal model of a decision problem. This model should be a formal
description of the structure of the problem, intuitive to understand for a human decision analyst,
and treatable by computers in an efficient way. During the last decades several decision analysis
formalisms have been presented. These formalisms usually have graphical models to specify and
represent the structure of the problem and different algorithms for inference or learning. Some
formalisms are suitable for the representation of symmetric problems, but have difficulties to
represent asymmetric decision problems.

The subject of this work is to analyze and compare the capabilities of a formalism for the
representation of asymmetric decision problems considering that the resulting model should be
clear and descriptive, efficient and treatable by computers. Therefore the scope of this work is
the formulation phase. The evaluation and appraisal phase are not explained in detail as it is
not the purpose of this thesis to analyze the solution process. Nevertheless the solution methods
are briefly described to give a complete view of the formalism and because it is important to
consider the representation jointly with the solution method to evaluate the efficiency of the
representational model of the formalism.

2.2 Probabilistic graphical models

In this section we introduce probabilistic graphical models (PGMs) which are nowadays one of the
most important paradigms for reasoning and decision making under uncertainty. A PGM (also
termed probabilistic network) represents probabilistic knowledge. Many real-world situations can
be modeled by a set of entities represented as random variables in a probabilistic network. These
models can then form the basis of a decision analysis system to help decision makers identify the
most beneficial decision in a given situation.

PGMs use a graph to describe the properties of independence of the joint probability distri-
bution. PGMs have two representational components: the qualitative component, which is the
graph and the quantitative component, which constitute the probabilistic, numerical part. The
qualitative component of a probabilistic network encodes visually the dependence and indepen-
dence assumptions between random variables, whereas its quantitative component specifies the
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strengths of dependence relations using probability theory and preference relations using utility
theory. While the graph of the qualitative level has expressive power to describe the structure
of the problem, which is useful for communication and human knowledge elicitation, the use
of a pure probabilistic model at the qualitative level allows for effective (Bayesian) inference.
Bayesian networks, for example, can do deductive, abductive and intercausal reasoning.

The main classes of PGMs are Bayesian networks (BNs) and influence diagrams (IDs). There
exist many different variants of PGMs such as temporal models and models specific for the
representation of asymmetry, but in this section we focus on the definition of the most basic
models, BNs and IDs (which can be considered as extension of BNs). This description of PGMs
is partially based on the work of Kjærulff & Madsen (2010).

2.2.1 Bayesian networks

Bayesian networks were proposed by Pearl (1988) and were referred to initially also as belief
networks or causal networks. At the qualitative level BNs use a directed acyclic graph (DAG) to
represent the structure of the domain knowledge. The DAG contains only random variables and
the links represent direct dependencies between variables, which are often, but not necessarily,
causal relationships. At the quantitative level BNs use a purely probabilistic model formed
by conditional probability distributions, which measure the strengths of dependence between
variables. The probabilistic model and the uncertainty calculus of BNs are based on Bayesian
probability theory.

The DAG of the BN is a description of the joint probability distribution of the probabilistic
model in graphical terms. The nodes of the graph represent the domain variables over which
the joint probability distribution is defined and the presence and absence of links represent de-
pendence and independence relationship between variables. BNs require a direct correspondence
between the probability distribution and the DAG at the graphical level, what means that the
topology of the graph must reflect the conditional independence relations of the probability dis-
tribution. A formal description of this requirement is based on the concepts of I-map, P-map,
Markov conditions and d-separation.

A DAG is said to be an I-map (independence-map) of a probability distribution if all Markov
assumptions implied by the graph are satisfied by the probability distribution. A minimal I-map
is an I-map, where removing any arc from the graph introduces (conditional) independencies that
do not hold in the probability distribution. Conditional independence is described according to
theMarkov condition (or also Markov assumption), which states that a variableXi is independent
from its non descendents (NonDesc(Xi)) conditioned on its parents (pa(Xi)), what is formally
described as:

Ind(Xi;NonDesc(Xi)|pa(Xi)) (2.1)

This definition is an adaption of the causal Markov condition, which states that a phenomena
is independent of its non-effects conditional on its direct causes. Nevertheless I-maps do not
necessarily reflect all conditional independences of the probability distribution and might not
be unique. To overcome this shortcoming the d-separation (directed-separation) criterion was
proposed by Pearl (1986), which permits to create P-maps (perfect maps), which capture all
conditional independences and are unique. Nevertheless for consistence and evaluation purposes
of PGMs the requirement for being the DAG a minimal I-map is enough, meaning that all
independence relationships captured at the graph are present at the probability distribution.

The main idea behind considering conditional independence is to take profit of information
relevance at the representation of the domain knowledge. Conditional independence permits to
“articulate the conditions under which one item of information is considered relevant to another,
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given what we already know”(Pearl et al., 1989). Taking into account the conditions under which
an information is relevant permits to organize the domain knowledge more efficiently. Based on
this assumption PGMs simplify the representation of the joint probability distribution decompos-
ing (or factorizing) it into a product of lower-dimensional conditional probability distributions.
Assuming a DAG with a set of variables {X1, ...., Xn}, where pa(Xi) denotes a configuration of
the parents of Xi, the joint probability over the variables P (X1, ..., Xn) is factorized as follows:

P (X1, ..., Xn) =

n∏
i=1

P (Xi|pa(Xi)) (2.2)

This equation is an adaption of the Chain rule, taking conditional independence relations
between variables into account, as explained below.

The conditional probability of X given Y (denoted as P (X|Y )) is the probability of X if Y
is known to occur:

P (X|Y ) =
P (X,Y )

P (Y )
(2.3)

Based on the definition of conditional probability, the joint probability of X and Y (denoted
as P (X,Y )) can be calculated with the following equation:

P (X,Y ) = P (X|Y )P (Y ) = P (Y |X)P (X) (2.4)

The independence between variables simplifies the calculation of the conditional probabilities.
A variable X is independent of another variable Y with respect to a probability distribution P
if the following rule applies:

∀ x,∀ y P (x|y) = P (x) (2.5)

Therefore if the variables X and Y are independent, the joint probability can be calculated
with the following rule:

P (X,Y ) = P (X|Y )P (Y ) = P (X)P (Y ) (2.6)

In general, if X1, ..., Xn are pairwise independent variables, their joint distribution equals the
product of marginal probabilities:

P (X1, ...., Xn) =
∏

P (Xi) (2.7)

A more complex form of independence is the case of conditional independence. A variable
X is conditionally independent of Y given Z (denoted as P (x, y|z)) if the following equation is
satisfied:

∀ x, ∀ y, ∀ z P (x, y|z) = P (x|z) (2.8)

In this case the joint probability distribution P (X,Y, Z) can be factorized in the following
manner:

P (X,Y, Z) = P (X|Y, Z)P (Y, Z)
= P (X|Y, Z)P (Y |Z)P (Z) (2.9)

= P (X|Z)P (Y |Z)P (Z)
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The foregoing assumptions leads to the Chain rule, which permits the calculation of any value
of the joint distribution of a set of random variables using only conditional probabilities.

For a probability distribution, P (X), over a set of variables X = X1, ..., Xn, the chain rule
decompose it into a product of conditional probability distributions:

P (X1, ..., Xn) = P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)

= P (X1|X2, .., Xn)P (X2|X3, .., Xn)...P (Xn−1|Xn)P (Xn) (2.10)

=

n∏
i=1

P (Xi|Xi+1, ..., Xn)

Assuming independence relationships between variables allows to simplify the calculation of
the joint probability distribution in Equation 2.10, thus leading to Equation 2.2.

2.2.2 Influence diagrams

Influence diagrams can be considered as Bayesian networks augmented with decision variables
and utility functions, and provide a representation for decision problems for a single decision
maker and a fixed order among the decisions (see Section 2.3.4 for an extensive description). At
the graphical level, decisions are represented by rectangular shaped nodes and utility functions as
diamond shaped nodes. The links between variables denote direct dependence or informational
constraints or describe the domain of a utility function. At the quantitative level the underlying
probabilistic model of BNs is augmented with utility functions, which represent the preferences
of the decision maker according to utility theory.

Figure 2.3 shows the representation of a simple diagnosis problem by means of an influence
diagram, which is based on the BN representation of Figure 2.2. The problem describes the
diagnosis for dyspnea. Dyspnea is a symptom of bronchitis and lung cancer. Bronchitis may be
caused by a respiratory virus which also causes fever. The doctor can perform a simple test by
measuring the temperature in order to decide the treatment for a viral infection or decide for
further more specific tests.

The BN describes the causal relations of the problem, while the ID representation describes
the decision problem representing the decision to measure the temperature and its cost, the deci-
sion for treatment or further tests and the quality of life influenced by the decision of treatment.

2.2.3 Decision making and reasoning

BNs and IDs are applicable in any domain, as they represent in a domain-unspecific way the
probabilistic knowledge about the problem. BNs are probabilistic models for reasoning under
uncertainty, whereas IDs are probabilistic models for decision making under uncertainty. Rea-
soning under uncertainty is the task of computing updated beliefs in (unobserved) events given
observations on other events whereas decision making under uncertainty is the task of identifying
the (optimal) decision strategy for the decision maker given observations. BN models are the
basis of performing inference and analysis about the domain.

Reasoning under uncertainty

A BN is a probabilistic model of the relevant domain variables and their interactions. Reason-
ing (inference) is performed by introducing evidence that sets variables in known states, and
subsequently computing probabilities of interest, conditioned on this evidence.
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Figure 2.2: BN representation.
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Figure 2.3: ID representation.

According to the Bayesian (subjective) interpretation of probability, probabilities represent
degrees of belief of a state of world to happen. In consequence Bayesian inference (based on the
application of the Bayes’ theorem) is a rational method for updating beliefs about (unobserved)
events given observations on other events. Equation 2.11 shows the Baye’s rule which describes
the update of beliefs for a hipotesis H having accounted an event E.

P (H|E) = P (E|H)
P (E) P (H)

posterior likelihood prior
probability probability

(2.11)

Equation 2.11 describes the derivation of the posterior probability from the prior probability
and a likelihood function:

◦ The posterior probability P (H|E) describes the degree of belief for a hipotesis H having
accounted the evidence E.

◦ The likelihood function describes the support the evidence E provides for the hipotesis H.

◦ The prior probability P (H) describes the initial degree of belief in H.

In the following we explain the different type of reasoning, which can be done by Bayesian in-
ference illustrated by means of the causal network of the diagnosis problem from Section 2.2.2.
Bayesian network permit to perform three types of reasoning: deductive , abductive and inter-
causal reasoning. Deductive reasoning, which is sometimes also referred to as causal reasoning,
follows the direction of the causal links between the variables of the model. For example, knowing
that a person has a respiratory virus let us conclude with high probability that the person has
also fever and bronchitis. Abductive reasoning, which is sometimes also referred to as diagnostic
reasoning, goes against the direction of the causal links. For example, knowing that the person
has fever provides supporting evidence that the cause is a respiratory virus. Intercausal resoning
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describes how the knowledge of an evidence that supports solely a single hypothesis automat-
ically leads to a decreasing belief in the unsupported competing hypothesis. This property is
also referred to as the explaining away effect. For example, in the diagnosis example dyspnea
has two direct competing causes. Knowing that the person has fever gives support for being the
respiratory virus the cause, while the belief of being lung cancer (the unsupported competing
hypotesis) the cause decreases.

Fever

Virus
Lung
Cancer

Bronchitis

Dyspnea

intercausal reasoning

reasoning

deductive diagnostic

abductive

Figure 2.4: Reasoning at causal networks

Decision making under uncertainty

The decision theory formalizes the underlying concepts of decision making under uncertainty by
expressing the consequences of acts/events with numerical utilities, the beliefs of ocurrence of
states of the world in terms of probabilities and the support for decisions by calculating expected
utilities. This approach assumes a rational behavior of the decision maker, so that a preference
for the alternative with maximum utility is assumed. This is called the principle of maximum
expected utility (MEU) described by the axioms of utility of von Neumann & Morgenstern (1944),
which where further extended by Savage (1954). The assignment of utility values to the different
states of world (denoted as U(x)) and the assumptions above the ocurrence of possible states in
terms of probability (denoted as P (x)) permit to calculate the expected utility of a variable X
with the following rule:

EU(X) =
∑
x

P (x)U(x) (2.12)

IDs are the standard model for decision analysis under uncertainty. Evaluating an ID amounts
to identifying the (optimal) decision strategy that maximizes the expected utility for the decision
maker. In consequence the objective of decision analysis is to identify the decision options
that produce the highest expected utility given certain observations. To identify the decision
option with the highest expected utility it is necessary to compute the expected utility of each
decision alternative. If D is a decision variable with options {d1, ..., dn}, H is a hypothesis of an
unobserved variable with states {h1, ..., hn} and E is a set of observations in the form of evidence,
then the expected utility of each action is computed with the following equation:

EU(di) =
∑
j

U(di, hj)P (hj |e) (2.13)
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According to the principle of maximum expected utility, the decision alternative with the
highest expected utility (d∗) should be chosen :

d∗ = arg maxdεDEU(d) (2.14)

2.2.4 Conclusion

We have seen that PGMs are a powerful tool for knowledge elicitation for decision problems,
providing a compact and intuitive to understand model with the possibility for inference for
decision analysis. DAGs represent the probabilistic model in a compact form as they represent
the joint probability function in a factorized form induced from the dependence and independence
relations between variables. If independence relationships are not taken into account the size of
the probabilistic model grows exponentially with the number of variables, as the joint probability
function must contain a probability for each configuration of variables. Therefore DAGs represent
efficiently complex systems with a large number of variables, which could not be presented
without describing the independence relations between variables.

Another important aspect of graphs is its descriptive power at the qualitative level. As the
graph describes visually the relationships between variables, it is an excellent communication tool
for formulating, communicating and discussing qualitative interaction models. The description
of the causal relations between variables is useful both in problem domains where the causal
or correlational mechanisms are (at least partially) known and in problem domains where such
relations are unknown, but can be revealed through learning from data.

Further PGMs are a suitable analysis framework, as they are based on a precise mathematical
theory which supports reasoning and decision making under uncertainty. PGMs allow to perform
deductive, abductive and intercausal reasoning based on the calculus of the Baye’s theorem. The
ability to perform intercausal reasoning is one of the key differences between automatic reasoning
systems based on probabilistic networks and other systems based, for example, on production
rules. Another strength of PGMs is their independence from domain specific knowledge as the
model is built upon probabilistic relationships between domain variables.
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2.3 Representation of asymmetric decision problems

This section describes the state of art of the representation of asymmetric decision problems. The
outline of this section is an overview of the different formalisms for the asymmetric decision prob-
lems in the first subsection. The second subsection presents a definition of asymmetry followed
by a description of three typical asymmetric decision problems from the literature. The following
subsections provide a detailed description of the most relevant formalisms and its solution for the
different asymmetric decision problems. In particular we analyze the strengths and weaknesses
of decision trees (DTs), influence diagrams (IDs), extended influence diagrams (EIDs), sequen-
tial valuation networks (SVNs), asymmetric influence diagrams (AIDs), unconstrained influence
diagrams (UIDs) and sequential influence diagrams (SIDs).

2.3.1 Overview asymmetric decision analysis formalisms

IDs and DTs are the two formalisms most widely used for the representation of decision problems.
IDs provide an efficient representation of the structure of the problem, i.e., the description of the
conditional independence assumptions, but there exist problems which require the description
of additional information. In particular most real-world problems are asymmetric, i.e., they
have conditioned scenarios, where the appearance of a variable depends on previous observations
or decisions (structural asymmetry) or scenarios where the order of the decisions varies (order
asymmetry). These type of problems can not be represented efficiently with common IDs as
this formalism does not describe the asymmetric aspects of a problem. On the other hand DTs
address the representation of these aspects with ease as they fully depict the scenarios of a
decision problem by showing explicitly the order of decisions and observations. However DTs
can not represent medium to large real-world problems as their size grows exponentially on the
number of variables.

As IDs were not able to represent asymmetry efficiently, different researchers focused on this
issue and several formalisms have been proposed from the early 1990’s until now. In chronological
order, the first alternative formalisms were extensions of IDs with decision-tree based models to
capture the asymmetric aspects of the problem, such as the the decision programming language
of Call & Miller (1990), the contingent IDs of Fung & Shachter (1990), the extended IDs with
distribution trees of Smith et al. (1993) and the decision graphs of Qi et al. (1994). Extended
IDs (EIDs) for example, describe asymmetry by showing the conditioning scenarios of a variable
in a tree-like structure. Short time later, Covaliu & Oliver (1995) proposed sequential decision
diagrams (SDDs), which combine the description of the uncertainty model of IDs with an explicit
description of the sequence of variables in a compact graphical structure, which can be seen as
schematic decision tree representation, where each variable appears only once.

Asymmetric valuation networks (AVNs) (Shenoy, 1996) were proposed as solution for the
representation of asymmetry based on valuation networks (VN). VNs (Shenoy, 1992) are an
alternative to IDs and DTs as they use arbitrary probability valuations for the description of the
probabilistic model, which allow to specify the joint probability with flexibility as they do not
require a factorization in a conditioned form. Some time later Demirer & Shenoy (2006) proposed
sequential valuation networks (SVNs), which combine features from SDDs and AVNs and fix
some shortcomings of each of the two formalism (Bielza & Shenoy, 1999), which are mainly the
inconsistency of the state space of variables of SDDs, the preprocessing of probabilities required
to bring a SDD to a consistent form and the inability of VNs to express the asymmetric structure
of the problem at the graphical level. The resulting formalism, the SVN takes advantage of the
relaxed requirements of the description of the probability model of VNs and the expressiveness
of the description of the sequential and asymmetric aspects of SDDs.
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Another proposal are asymmetric influence diagrams (AIDs) (Nielsen & Jensen, 1999a), which
adapt the semantics of an ID for the representation of decision problems with conditioned scenar-
ios. The original requirements of IDs enforce a sequential representation of the decisions that is
not natural for asymmetric decision problems. AIDs provide a framework where certain decision
problems can be represented with a partial order describing under which conditions an arc or a
node is possible. Unconstrained influence diagrams (UIDs) (Jensen & Vomlelová, 2002) are able
to represent decisions without a total order and are especially suitable for the representation of
test and diagnosis problems. As an improvement of the different formalisms known so far, Jensen
et al. (2006) presented the sequential influence diagrams (SIDs), which combine features from
AIDs, SVNs and UIDs and provide a solution for the representation of both order asymmetry
and structural asymmetry. A recent review of several formalisms can be found in Bielza et al.
(2011).

2.3.2 Asymmetric decision problems

As described by Smith et al. (1993) a decision problem is asymmetric when a particular act or
event leads to very different possibilities and in consequence not all decisions and variables are
considered in all circumstances. This type of asymmetry is termed structural asymmetry and
appears when the value taken on by a variable restricts the domain of other variables. Another
type of asymmetry is the order asymmetry. This happens when several orderings of the decisions
or observations are possible in the decision problem.

An alternative description of asymmetry is given by Shenoy (2000), who defines asymmetry
by means of the decision tree representation, which shows all decision scenarios explicitly. In a
decision tree a path from the root to a leaf node is called a scenario. A decision problem has
structural asymmetry if the number of scenarios in a decision tree representation is less than
the cardinality of the Cartesian product of the state spaces of all chance and decision variables.
Order asymmetry is shown in the decision tree if the decisions appear in a different order in the
branches. Thus a decision problem is symmetric only if its decision tree representation contains
all variables at every scenario and the variables appear in the same order.

Examples

In the following we describe three asymmetric decision problems: the n-test problem, the reactor
problem and the dating problem. These problems show different types of asymmetry and are
used subsequently for the illustration of the different formalisms. In particular the n-test problem
is used to illustrate order asymmetry and the reactor and dating problem are used to illustrate
structural asymmetry.

n-test problem

The n-test problem was first defined by Luque & Dı́ez (2007) and describes situations where
n tests can be performed in any order. Each test result reveals with a certain sensitivity and
specificity the state of a chance variable. In medical research the n-test pattern is often used
to describe diagnosis problems. For instance see the description of the mediastinal staging of
non-small cell lung cancer problem of Luque et al. (2009), where several tests can be performed
to discover information about the health state of the patient and then a decision about the most
suitable treatment is made. For the purpose of illustration we use in this thesis the diabetes
problem (Demirer & Shenoy, 2006), which is a specific case of the n-test problem for the diagnosis
of diabetes with two tests. Diabetes can be detected with a blood test, which indicates elevated
levels of glucose in blood for diabetic patients. An alternative test is the urine test, which
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indicates elevated levels of glucose in urine for diabetics. A doctor has to decide whether to
treat or not a patient for diabetes. Before the doctor can decide to order a second test (blood or
urine) he knows the result of the first test. The tests are not repeated and the doctor can always
observe if the patient shows the symptoms of diabetes or not. The variables involved in the
representation of the problem are explained in the next section, along with their probabilities.

◦ Chance variable Diabetes:
Values: present, absent
The prevalence of diabetes is 7%.

◦ Chance variable Symptom:
Values: present, absent
The symptom of diabetes appears with a probability of 85% if the illness is present and
with a probability of 0,1% if the illness is absent.

◦ Decision Blood Test :
Values: test, not test
The doctor decides whether to order the blood test or not.

◦ Chance variable Blood test result :
Values: positive, negative
This test has a sensitivity of 96% and a specificity of 98%.

◦ Utility Cost of the blood test :
The utility function associated to performing the blood test.
The blood test has a cost of 50 .

◦ Decision Urine Test :
Values: test, not test
The doctor decides whether to order the urine test or not.

◦ Chance variable Urine test result :
Values: positive, negative
The urine test has a sensitivity of 97% and a specificity of 99%.

◦ Utility cost of Urine Test :
The utility function associated to performing the urine test.
The urine test has a cost of 30.

◦ Decision Therapy :
Values: treat, not treat
The doctor decides whether to apply the therapy or not.

◦ Utility Quality of life:
The utility function associated to a possible diabetes patient receiving treatment.
The cost of the therapy for a patient, who has diabetes, is 3 if he does not receive treatment
and 8 if he receives treatment. If the patient does not have diabetes, the cost is 9 if he
receives the therapy and 10 if he does not receive the therapy.

The diabetes problem shows order asymmetry as the order of the tests is not specified and the
doctor can decide to arrange the blood test or urine test in any order. The diabetes problem also
shows structural asymmetry as the test result is not available if the test is not performed. This
means more formally described that the decision to not perform the test restricts the domain of
the test result variable.
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Reactor problem

The reactor problem was initially described by Covaliu & Oliver (1995), but we use here an
adaption proposed by Bielza & Shenoy (1999).

An electric utility firm has to decide (Build decision) whether to build a reactor of advanced
design (ba), conventional design (bc), or no reactor (bn) . If the reactor is successful, i.e., there
are no accidents. An advanced reactor is more profitable, but it is riskier. Experience indicates
that a conventional reactor has probability 0.98 of being successful (cs) and 0.02 of failing
(cf ). On the other hand, an advanced reactor has probability 0.66 of being successful (as),
probability 0.244 of a limited accident (al), and probability 0.096 of a major accident (am) .
If the firm builds a conventional reactor, the profits are estimated to be $8B if it is a success
and −$4B if it is a failure. If the firm builds an advanced reactor, the profits are $12B if it
is a success, −$6B if there is a limited accident, and −$10B if there is a major accident. The
firm’s utility function is linear in dollars. Before making a decision to build, the firm has an
option to conduct a test or not of the components of the advanced reactor at a cost of $1B. The
test result can be classified as bad (b), good (g), or excellent (e). If the test is performed, its
results are correlated with the success or failure of the advanced reactor. The likelihoods for the
test results are as follows: P (g|as) = 0.182 , P (e|as) = 0.818, P (b|al) = 0.288, P (g|al) = 0.565,
P (e|al) = 0.147, P (b|am) = 0.313, P (g|am) = 0.437 and P (e|am) = 0.250. If the test results are
bad, the Nuclear Regulatory Comission will not permit an advanced reactor. The firm needs to
decide (Test decision) whether to conduct the test (t), or not (nt). If the decision is nt, the test
outcome is no result (nr).

The reactor problem shows structural asymmetry as the test result influences the options
available for the decision of building the reactor. When the test result is bad, the decision to
build an advanced reactor is not available. But if the test is not performed, the decision of
building a reactor has not any constraint. This problem has another constraint between the
components of the advanced reactor and the test result. When the component of the advanced
reactor is successful, the test result cannot be bad.

Dating problem

The dating problem was first described by Nielsen & Jensen (2000), but here we explain a slightly
different version from Jensen et al. (2006).

Joe needs to decide whether to ask (Ask? ) Emily for a date for Friday evening. He is not
sure if Emily likes him or not (LikesMe). If he decides not to ask Emily or if he decides to ask
and she turns him down, he will then decide whether to go to the nightclub or watch a movie on
TV at home (NClub? ). Before making this decision, he will then consult the TV guide to see if
there are any movies he would like to see (TV ). If he decides to go to a nightclub, he will have
to pay a cover charge and pay for drinks. His overall nightclub experience (NCExp) will depend
on whether he meets his friends (MeetFr), the quality of life music, etc (Club). If Emily accepts
(Accept), then he will ask her whether she wishes to go to a restaurant or to a movie (ToDo); Joe
cannot afford to do both. If Emily decides on a movie, Joe will have to decide (Movie? ) whether
to see an action movie he likes or a romantic movie that he does not really care for, but which
may put Emily in the right mood (mMood) to enhance his post-movie experience with Emily
(mExp). If Emily decides on a restaurant, he will have to decide (Rest? ) on whether to select a
cheap restaurant or an expensive restaurant. He knows that his choice will have an impact on
his wallet and on Emily’s mood (rMood) that in turn will affect his post-restaurant experience
with Emily (rExp).

The dating problem shows both types of asymmetry. Structural asymmetry appears as the
decision to ask Emily for the date (Ask? ) and the decision of Emily to accept (Accept) leads to
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very different situations. If Joe gets the date he will decide on how to organize the date (ToDO,
Movie? or Restaurant? ), but if he does not get the date he will take decisions about organizing
the night going to a nightclub or watching TV (NClub?,TV ). In each case the decisions and
observations of the alternative option are irrelevant. The dating problem contains also several
constraints, where the value of a variable restricts the value of another. For example the decision
about whether to see a movie or go to a restaurant (ToDo? ) restricts the values of the subsequent
decisions. If the decision is to go to a restaurant, the decision regarding which type of movie
to see is irrelevant. The same happens when the decision is to see a movie regarding the choice
of restaurant. The dating problem shows also order asymmetry as the order of the observations
Club and MeetFriends, which influence the overall nightclub experience (NCExp) is unspecified.

2.3.3 Decision tree representation

Decision trees (DTs) were first proposed by Raiffa & Schlaifer (1961) and are based on Game
trees (GTs), which were defined earlier by von Neumann & Morgenstern (1944) and studied
extensively in the 1950’s. According to the generalization of Kuhn (1953), GTs are also known
as extensive-form games. GTs arose from the field of game theory for the specification of games,
where the choice of decisions, the movements and the payouts for the possible game outcomes are
represented by a tree structure. GTs in fact are capable to represent a decision problem, because
a decision problem can be viewed as a game with only one player. Shenoy (1998) studied the
representation capabilities of GTs for decision problems and attributed GTs some advantages
over DTs due to their flexibility at the representation of information constraints, but GTs were
not commonly used for decision analysis, as the decision tree formalisms was presented at the
early 1960’s for this purpose.

Definition

Decision trees use a tree-like graph, which gives an explicit description of the decision scenarios.
The graph is constituted by decision nodes (depicted as rectangles), chance nodes (depicted as
circles) and end utilities (usually depicted as triangles, but also sometimes as diamonds) and
describes explicitly the order in which the decisions are made and the variables are observed.
Each branch depicts an available scenario, where a leaf is an end scenario, i.e., where all variables
of the domain take a value. The arcs of the branches represent the occurrence of a chance variable
conditioned on the past decisions and events. The size of the DT is exponential on the number
of variables because of the explicit representation of the scenarios. Olmsted (1983) proposed a
technique called coalescence which allows to reduce the size of the tree by collapsing identical
sub trees.

Evaluation

The optimal strategy of a DT can be found using recursive dynamic programming methods:
this method is also referred to as averaging-out-and-folding-back (Raiffa, 1968). The dynamic
programming approach is quite efficient as it avoids to enumerate all possible strategies.

DT representation of the diabetes problem

Figure 2.5 shows a part of a DT for the diabetes problem. The order asymmetry is apparent as
the nodes BT (Blood Test) and UT (Urine Test) do not appear in the same order in all scenarios.
The DT shows the structural asymmetry as the test result node B (Blood Test Result) is not
included in the scenarios where the decision of a test is not to perform this test. The DT
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Figure 2.5: DT representation of the diabetes problem taken from Dı́ez & Luque (2010).

representation of the diabetes problem is very large as there are 8 variables each with 2 states,
but being some scenarios impossible. The DT has 144 scenarios, what is smaller than if the
decision problem was symmetric. In that case the DT would have 28= 256 scenarios.

DT representation of the dating problem

Figure 2.6 shows the upper branch of the DT representation of the dating problem. The DT
has the structural asymmetry because not all variables appear at all scenarios. The decision
analyst can easily observe from the model the occurrence of disjoint scenarios. The variables
ToDo, Movie, Restaurant are not observed at the scenarios containing the choice of Ask=no.
The same happens for the variables NClub, TVExp, NclubExp, which are not included in the
scenarios where Accept=yes. The description of structural constraints of the DT is explicit and
very intuitive, but the DT of the dating problem shows also the main drawback of this formalism:
the explicit representation of all the decision scenarios makes the model very large.

DT representation of the reactor problem

Figure 2.7 shows the DT representation of the reactor problem. The DT representation of the
reactor problem describes the constraint of the test result on Build decision explicitly. When the
test result is not available the Test Result node does not appear in the decision scenario. In this
case the Build decision has all decision options. If the test result is bad, the Build decision node
does not show the decision option of build advanced reactor (ba). This example shows how the
tree describes clearly structural asymmetry as it only depicts possible scenarios. The product of
the cardinality of the variables is 108, but there are only 21 possible scenarios. Using coalescence
the tree can further reduce its size to only 12 scenarios.
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Figure 2.7: A coalesced DT representation of the reactor problem.

The DT representation of the reactor problem appears often in the literature. In fact as
almost all authors use it as an example: It was first used in Covaliu & Oliver (1995) to represent
the differences to the SDD representation, but it also appears in (Bielza & Shenoy, 1999) and
(Bielza et al., 2011) for the comparison of different formalisms. Furthermore this example also
appears in (Nielsen, 2001) as part of the comparison to AIDs, in (Demirer & Shenoy, 2006) for
the comparison with SVNs and in (Jensen et al., 2006) for comparison with SIDs.

Conclusion

The main advantage of DTs are their simplicity and intuitiveness. As each branch of the tree
depicts an available scenario, DTs give a fully detailed view of decision problems, what makes
them very easy to understand for decision analysts. But this has also the drawback that DTs
can only present decision problems with a small number of variables, as the size of the tree
grows exponentially with the number of variables. Nevertheless for small problems, DTs are
very suitable. Structural asymmetry is modeled by not representing the scenarios for irrelevant
variables, what avoids unnecessary computations. Order asymmetry is modeled by adding a
node Order of decision, which has a branch for each possible ordering.

Although DTs have absolute flexibility to model asymmetric decision problems, they do not
clearly show the dependence and independence relationships among variables in the decision
problems. Another limitation is that it requires the probability distribution for each variable
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conditioned on the past decisions and events and these probabilities may not be the same as
those assessed from the decision maker. Decision analysts prefer to assess the probabilities in a
causal direction of the variables. Thus a preprocessing of probabilities is necessary to compute
the probabilities required in the tree, what is a computational expensive task. Another weakness
of DTs is that its model is not easily adaptable to changes in the decision problem. This happens
first because the representation is not separated clearly from the solution and next because the
probabilities are dependent on the variables which appear at its left. Further details regarding
the expressiveness of the graphical representation of DT for symmetric and asymmetric decision
problems can be found in (Shenoy, 1994) and (Call & Miller, 1990).

The representation of the three asymmetric decision problems has shown how the explicit
representation of the decision scenarios permits to describe asymmetry. At the representation of
the diabetes problem we have seen that DT model order asymmetry by describing with separate
branches each possible sequence of the decisions.The representation of the dating and reactor
problem has shown that structural asymmetry is modeled by not representing impossible sce-
narios for irrelevant variables, what avoids unnecessary computations. Nevertheless the main
drawback of DTs became also evident. The explicit representation of decision scenarios makes
DTs grow exponentially on the number of variables, what makes them unsuitable for the repre-
sentation of medium to large real-world problems. Only the representation of the reactor problem
remained simple because it is a very small problem.

2.3.4 Influence diagram representation

Influence Diagrams (IDs) (Howard & Matheson, 1984) are one of the most common probabilistic
networks for decision problems. IDs were presented primarily as front-end of DTs to simplify
modeling and analysis of DTs, in particular to avoid any preprocessing of probabilities. Influence
diagrams are popular as they are compact and, unlike DTs clearly indicate the dependence and
independence assumptions in the model. The initial definition of IDs did not provide a concise
definition, so that IDs could not be constructed systematically and used for computations, i.e.,
it was not possible to use IDs in practice as decision analysis tool. The formal description of
the conditional independence relations by the d-separation criterion (Pearl et al., 1989; Pearl,
1986) gave the ID formalism the theoretical foundation for representing probabilistic knowledge
with graphs. The d-separation rule is a simple graphical test for detecting the conditioned
independence relations implied by the topology of a graph implemented for example at the
Bayes-ball algorithm of Shachter (1998). This contributions made it possible to create a sound
definition of the representation of probability models as DAGs (minimal I-map or P-map), to
describe algorithms for their systematical construction and to characterize the set of legitimate
graphical transformations (e.g. arc reversal, node removals, etc.). These contributions led to the
first formal description of IDs by Shachter (1986), where an ID is defined as a BN augmented
with decision and with a single utility node capable to represent and solve a sequential decision
problem for a single decision maker assuming the non-forgetting condition. In the following more
specific versions of IDs were proposed such as for example the stepwise solvable ID of Zhang et al.
(1994), the extended ID with super value nodes of Tatman & Shachter (1990) or the partial ID
of Nielsen & Jensen (1999b).
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Definition

An ID is basically a BN (see Section 2.2.1 for a detailed description) augmented with decision
nodes, which represent decision alternatives and utility nodes, which assign a utility value to
each state of the world. IDs represent a single decision maker’s beliefs and preferences about a
sequence of (ordered) decisions made under uncertainty. The following formal description of IDs
is based on the description of IDs of Zhang et al. (1994) .

An influence diagram I is defined formally as a quadrupleI = (X,G,P, U) as follows:

◦ G is a DAG (X,A) with the node set X and the arc set A, where the set X is constituted
by the set of chance nodes C, the set of decision nodes D and the set of utility nodes V :

– Chance nodes (drawn as circles) represent events that cannot be controlled by the
decision maker.

– Decision nodes (drawn as rectangles) represent actions that can be controlled by the
decision maker..

– Utility nodes (drawn as diamonds) represent the preferences of the decision maker
that can be for example a cost or a benefit estimation. Utility nodes can not have
children.

Each decision node or chance node has a set, called the frame, associated with it. The
frame of a node consists of all the possible outcomes of the (decision or chance) variable
denoted by the node. For any node xεX = {X1,..., Xn}, we use pa(x) to denote the parent
set of the node x in the graph and use Ωx to denote the frame of the node x.
The set of arcs A have a different meaning based on the type of node they point to:

– An arc into a chance node describes probabilistic dependence. These arcs describe on
which variables the conditional assignment of the chance node is conditioned and are
also referred to as dependency arcs.

– An arc into a utility node describes functional dependence. An arc to an utility node
defines the domain of the utility function of the node.

– An arc into a decision node describes temporal precedence. This means the preceding
variable or decision is known when the decision of the second node is made (i.e., it is
a direct informational predecessor). These arcs are also named information arcs.

◦ P is a set of conditional probability distributions containing one distribution P (c|pa(c))
for each chance variable c ε C = {C1,..., Cn}. For each parent configuration y ε Ωpa(c)and
each configuration of the chance variable x ε Ωc, the distribution specifies the conditional
probability of the event c = x given pa(c) = y.

◦ U is a set of local utility functions containing one utility function u(pa(v)) for each utility
node v ε V = {V1,..., Vn}, which assigns a real value to each parent configuration y εΩpa(v).
The local utility functions represent additive contributions to the total utility function
U(X).

◦ For a decision node d ε D = {D1,..., Dn}, a value y ε Ωpa(d)is called an information state
of d, and a mapping δ : Ωpa(d) → Ωd is called a decision function for d. The set of all the
decision functions for d, denoted by 4d, is called the decision function space for d.

IDs must satisfy the following two conditions in order to be an unambiguous representation of
a single decision maker’s view of the world (i.e., a proper ID) so that the representation can be
evaluated directly by an algorithm:
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◦ The no-forgetting condition states that the decision maker remembers all previous decisions
and observations (also referred to as perfect recall). This implies that the ID does not
need to specify any redundant no-forgetting arc, i.e., a chance node can be an immediate
predecessor of at most one decision node.

◦ The single decision maker condition states that there must be a directed path which con-
tains all of the decision nodes (also referred to as regularity constraint). This requires a
total order among the decision nodes and implies that the ID has to model the order of
decision if the order is unspecified.

The analysis and evaluation of an ID is based on Baye’s inference as explained in Section 2.2.3,
where information states and decision policies are taken into account. The next section describes
the different algorithms proposed in the literature for the evaluation of an ID.

Evaluation

The first evaluation method was proposed by Howard & Matheson (1984). This method trans-
forms the ID to an equivalent DT and then computes the optimal policy from the DT. Once the
graphical representation of the probabilistic model was defined formally by the description of
conditional independence (Pearl, 1986; Pearl et al., 1989), alternative algorithms were proposed
which evaluate the ID directly without a secondary representation:

◦ Olmsted (1983) and Shachter (1986) defined several graphical/numerical operations, called
reductions which can be used to transform the ID. The evaluation of the ID consists of
the sequential reduction of all its nodes using so called value-preserving reductions. These
transformations do not modify the maximum expected value and the optimal strategy
and comprise operations such as node removals and arc reversals. These algorithms were
designed for the evaluation of an ID with one utility node.

◦ Another evaluation method is the transformation of the ID into a BN (Shachter, 1988;
Shachter & Peot, 1992) by transforming decision and value nodes to probabilistic nodes
and calculating the optimal decision policy using probabilistic inference algorithms at the
BN. Inference on BN was well studied by Pearl (1988) and later improved with more
efficient algorithms (Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990; Cooper, 1988).

◦ Tatman & Shachter (1990) proposed a dynamic programming algorithm for an efficient
evaluation for IDs with super value nodes, i.e., where the value function can be decomposed
into sums and products. Luque & Dı́ez (2010) proposed an alternative evaluation algorithm
for this type of IDs based on variable elimination which outperforms the initial dynamic
programming approach.
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ID representation of the diabetes problem

Figure 2.8: ID representation of the diabetes problem.

The ID of Figure 2.8 represents the diabetes problem according to Jensen et al. (2006). The ID
representation has problems in representing order asymmetry as they have a requirement that the
decisions should be completely ordered. As the order of the tests is not completely defined, it is
necessary to include all admissible decision/observation sequences directly in the representation
model. The ID representation contains two additional nodes, which model the choice of the
tests. These nodes are the decision nodes Test 1 and Test 2, which model the decision for doing
either the blood test, the urine test or not performing any test. The state space of the test result
nodes is augmented as it is necessary to add extra (dummy) states which make the problem
symmetric. Further the test result has to contain all possible test outcomes from the two tests.
In this case the state space of the Test Result variable has a cardinality of five, having the states
Blood positive, Blood negative, Urine positive, Urine negative and no-result. Figure 2.9 shows the
CPT for the Test Result 1 node with 30 values.

Figure 2.9: CPT of the variable Test Result 1.

The diagnosis problem represented here has an additional requirement, namely that the
same test will give the same outcome. For this reason the node Test Result 1 has a probabilistic
influence on the node Test result 2 which is represented with an additional arc between Test
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Result 1 and Test Result 2. The conditioned probability distribution (CPT) of Test result 2
has 150 values being the majority of them impossible, which is described by assigning the zero
probabilities to them. Figure 2.10 shows the CPT of Test Result 2 in a compact form using the
tree representation.

Figure 2.10: CPT of the variable Test Result 2.

The ID representation of the diabetes problem has shown that IDs are unsuitable for rep-
resenting order asymmetry as they introduce artificial variables which model the sequence of
decisions. This example has also shown how inefficient IDs handle structural asymmetry as the
use of dummy states increases the space and time requirement for the representation and solution
of the problem.

The ID representation of the diabetes problem is large for a two test problem and makes
evident that the representation of the n-test problem is unfeasible with IDs. The n-test problem
is not easily representable with IDs basically due to its inability to model order asymmetry. An
ID would need n artificial test decision nodes, each test node having n+ 1 decision alternatives.
The correspondent test results would include all possible test outcomes of each of the n tests
and a dummy state. So the test result nodes would have at least 2n+ 1 states. If furthermore a
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dependence between the test result is assumed, the probability potentials of the test result nodes
are further increased.

At the literature appears another ID representation of the diabetes problem. Bielza et al.
(2011)describe an ID representation of the diabetes problem also with the possibility to repeat
the test but using auxiliary variables which mediate between the disease and the test result. The
use of these mediating variables permits that repeating the test provides the same result and
avoids the direct influence of the first test result on the second test result. This solution provides
a state space of 60 for either the first and the second test result, while the solution presented
here required 30 and 150 states respectively. Nevertheless both solutions show how inefficient
the ID representation is even for a two test problem, making it evident that the representation
of n-test problems with IDs is unfeasible.

ID representation of the dating problem

Figure 2.11: ID representation of the dating problem.

Figure 2.11 shows the ID representation of the dating problem. A similar representation of the
dating problem as ID appears in Nielsen (2001), although this representation corresponds to the
original version of the dating problem (which is slightly different from that we use here) and
represents the problem with a partial order. The presented solution here describes the view of
a single decision maker for the problem (i.e., it is a proper representation). The representation
satisfies the single decision maker’s condition as there is a directed path which contains all of
the decision nodes, although the order of the decisions NClub, Restaurant and Movie is defined
artificially. The requirement of a total order of decisions allows that the problem can be evaluated
directly with an reduction-based algorithm but has the inconvenient that the disjoint nature
of the decision scenarios is not clear at the graphical level as the decisions seems to happen
sequentially. The non-forgetting assumption implies that previous decisions and observations are
remembered at subsequent decisions. For this reason the ID of the dating problem shows not any
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redundant non-forgetting arc and each chance variable is at most direct information predecessor
of one decision. For example the information precedence of ToDo for Movie is not expressed
explicitly as the value of ToDo is known for the prior decision Movie. This implicit description of
information precedence makes the representation of information constraints more difficult, i.e.,
the fact that the a decision option is restricted by a variable or previous decision is not obvious
from the diagram.

The diagram of the ID reveals no information about the conditioned and disjoint scenarios of
the dating problem and its constraint. For example the decision analyst has no information that
the decision of Restaurant can not appear in the same scenario as Movie. The representation
of asymmetric constraints is carried out only at the quantitative level. IDs represent structural
asymmetry at the quantitative level encoding constraints by an artificial symmetrization of the
state space of the variables introducing dummy states, which represent that a variable is impos-
sible in certain scenarios. This artificial symmetrization increases the state space required for
the representation of the problem and the computational effort to solve it. Table 2.4 describes
the augmented state space of the variables due to dummy states. For each variable appears
a description of the real states and the correspondent dummy state. Table 2.5 shows the size
of the potentials (probability potentials, decision function state spaces and utility functions) of
each node taking into account the augmented state space of the variable and the number of
predecessors.

Restrictions on the outcomes of chance variables imposed by conditioning states are described
at the level of the conditioned probability distributions assigning degenerated probabilities. For
example the Table 2.1 shows how the outcomes of the variable TVExp depend on the conditioning
states. The conditioning state NClub=yes (Joe decides to go to the club) makes the outcomes of
the variable TVExp impossible. For this conditioning state zero probabilities are assigned to the
real states of the variable and the dummy state unknown takes the probability one. Also when
the conditioning state is impossible (NClub=no decision) the only possible state is the dummy
state.

NClub yes yes no no no decision no decision

TV good bad good bad good bad

yes 0 0 0.7 0.5 0 0

no 0 0 0.3 0.5 0 0

unknown 1 1 0 0 1 1

Table 2.1: CPT of the variable TVExp.

Restrictions on the legitimate decision alternatives imposed by different information states
are not that straightforward to describe as in the case of chance variables. Certain information
states can make that the legitimate decision alternatives of a decision are restricted. For example
the decision alternatives of the choice of Restaurant are restricted by the value of the previous
decision NClub and the variable ToDo. The Table 2.3 for example shows the available decision
alternatives for the choice of restaurant for each of the informational states, where the value
one denotes that the correspondent decision alternative is available and zero denotes that the
decision alternative is not available. As IDs do not implement an explicit control of the legitimate
decision alternatives given the information states, IDs model this constraint be assigning large
negative utility values to the unavailable alternatives so that these alternatives are not found to
be optimal by the solution algorithm.

At the dating problem the decision alternatives of NClub, Restaurant andMovie are restricted.
The Tables 2.2 and 2.3 show the available decision alternatives for each informational state, where
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the value 1 means that the correspondent decision option is available. Impossible decision options
are marked with the value 0. Figure 2.12 shows the assignment of the large negative values to
the utility nodes U5 and U6 in order to express the restrictions on the legitimate decision
alternatives.

The representation of the restrictions on decision via the assignment of degenerated utility
values is an approach which obscures the representation of the structure of the problem. In
principle the nodes U5, U6 and U7 are designated to describe the cost of each real decision
alternative. So for example the cost of going to a cheap restaurant is 5 and the cost of going
to an expensive is 10 (see Figure 2.12). As the utility nodes associated to the decisions are
further used to describe the admissible decision alternatives for certain informational states, the
variables which define a restriction are included in the domain of the utility node. For this reason
the utility nodes U5, U6 and U7 have additional variables in its domain.

Figure 2.12: Utility values of the node U5 and U6.
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Ask yes yes yes no no no

Accept yes no no response yes no no response

yes 0 1 1 1 1 1

no 0 1 1 1 1 1

no decision 1 0 0 0 0 0

Table 2.2: Available decision options for the decision NClub.

NClub yes yes yes no no no no dec. no dec. no dec.

ToDo movie rest no pref. mov rest no pref. movie rest no pref.

cheap 0 0 0 0 0 0 0 1 0

expensive 0 0 0 0 0 0 0 1 0

no decision 1 1 1 1 1 1 1 0 1

Table 2.3: Available decision options for the decision Restaurant.

Node Real Dummy Size Node Real Dummy Size

Ask? yes,no 2 rExp good,bad unknown 3

LikesMe yes,no 2 mExp good,bad unknown 3

Accept yes, no no response 3 NClub? yes, no no decision 3

ToDo movie, rest. no preferencce 3 TVExp good, bad unknown 3

Restaurant cheap, exp. no decision 3 TV good, bad 2

Movie rom., action no decision 3 Club good, bad unknown 3

rMood good, bad unknown 3 MeetFr yes, no unknown 3

mMood good, bad unknown 3 NCExp good, bad unknown 3

Table 2.4: Size of state spaces of the variables.

Node Predecessor ID Potential Node Predecessor ID Potential

Ask? 2 TV 2

LikesMe 2 Club NClub? 9

Accept Ask?, LikesMe 12 MeetFriend NClub? 9

ToDo Ask?, Accept, LikesMe 36 NCExp Club,MeetFr 27

Restaurant NClub,ToDo 27 rExp rMood,Restaurant 27

Movie Rest 9 mExp mMood,Movie 27

rMood Restaurant 9 U1 TvExp 3
mMood Movie 9 U2 NCExp 3
rExp rMood,Restaurant 27 U3 mExp 3
mExp mMood,Movie 27 U4 rExp 3
NClub? Ask?, Accept, TV 36 U5 NClub,Ask,Accept 18

TVExp NClub?,TV 18 U6 Rest,NClub,ToDo 27

U7 Movie,NClub,ToDo 27

Table 2.5: Size of the potential of a node.
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ID representation of the reactor problem

Figure 2.13: ID representation of the reactor problem.

Figure 2.13 shows the ID representation of the reactor problem. The asymmetric constraints
of the problem are specified at the quantitative level including dummy states and assigning
degenerated probability distributions. For example the constraint that the test result is not
available when the decision is not to do the test restricts the outcomes of the test result variable.
Figure 2.14 shows the CPT where degenerated probabilities are assigned to the states to describe
that the outcome of the test depends on the test decision.

Figure 2.14: CPT of the variable Result of test.

The reactor problem contains also a constraint on a decision. The test alternative for building
an advanced reactor is not available when the test result was bad. As IDs can not model explicitly
the restriction of the decision alternatives for different informational states, they use degenerated
utility functions to describe that a decision alternative is not available in certain conditions so
that the solution algorithm does not select these decision alternative when computing the optimal
strategy. This approach associates large negative values to the informational states which make
a decision alternative impossible. This implies that a utility node must be associated with the
test decision and that the utility node has at least the variables which define the constraints
in its domain. In the case of the reactor problem the informational states are defined by the
Test decision and the Result of test. As the restriction is only based on the Result of test it is
not necessary to include the Test decision into the domain of the utility node. Further we use
the utility node Benefit of advanced reactor, which is already associated to the Build decision
to model the constraint. Therefore the utility node represented in Figure 2.15 contains a large
negative value for all combinations which have the conditioning state Result of test=bad.
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The utility values of Figure 2.15 show also the description of the structural constraints of the
Build decision and the Benefit of advanced reactor. As the benefit of the advanced reactor is only
possible when the decision was to build this type of reactor, all utility values corresponding to
the alternative decisions have large negative values to describe that they are not possible states
of the world.

The representation of the reactor problem has shown that the solution for representing asym-
metry with IDs is an artificial symmetrization. They represent structural constraints by adding
dummy states and assigning degenerated probability functions to conditioning states to describe
that the outcomes of a variable are restricted. Further they assign large negative values to utility
nodes to describe that the decision alternatives are restricted by certain informational states.
The use of utility functions to describe constraints on test decisions can obscure the description
of the structure of the problem at the diagram as the informational predecessors which define a
restriction on a decision are linked to the utility node. For example the utility node of the Benefit
of advanced reactor only is concerned with the value of the outcome of building an advanced
reactor but in order to describe the constraint on the test decision they have also the variable
Result of test in its domain. Of course modeling the constraint with an additional utility node
associated to the Build decision would be an alternative. Another drawback of IDs is that they
do not show the occurrence of conditioned scenarios at the graphical level. The decision maker
gets no information about the constraint of the Result of test on the Build decision as constraints
are modeled at the quantitative level.

Figure 2.15: Utility values of the variable Benefit of the advanced reactor.

The ID representation of the reactor problem appears also in Bielza & Shenoy (1999) and
Bielza et al. (2011) for the comparison of several formalisms and at Demirer & Shenoy (2006) as
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part of the SDD representation of the reactor problem.

Conclusion

IDs are a powerful tool for communication, elicitation and detailed representation of human
knowledge as they are able to represent clearly the structure of a decision problem. An ID
describes the probabilistic knowledge about the problem with chance variables and dependency
arcs. Further it represent the actions of the decision maker with decision alternatives and the
knowledge about the state of world with information states (described with informational arcs)
and the preferences of the decision maker assigning utility values to each state of the world.

IDs are in principle suitable for the representation of sequential decision problems for a single
decision maker with perfect recall. As the description of the structure of the problem is modular
the ID is easily adaptable to changes at the decision problem and is very compact, i.e., the size of
the model is linear on the number of variables. IDs are suitable for the representation of decision
problems with conditional probabilities model as they encode directly conditional independence
relations at the graph. This makes IDs suitable for the representation of decision problems from
the knowledge of human experts, which prefer to assess probabilities in a cause-effect direction.

The main drawback of IDs is that they assume symmetry. IDs are only suitable for the repre-
sentation of sequential decision problems with a fixed order of decisions and without constraints
which condition the appearance of a variable. As explained with detail in Qi et al. (1994), Call
& Miller (1990) or Smith et al. (1993) IDs are inflexible and inefficient for the representation
of asymmetry. We can confirm this result from the analysis of the representation of the three
asymmetric decision problems. IDs represent asymmetry following the approach of an artificial
symmetrization, what is very inefficient. The restriction of the outcomes of a chance variable
is represented by adding artificial states to the state space and taking degenerated probability
distributions to describe that the real states are impossible for certain conditioning scenarios.
The restriction of legitimate decision alternatives by information states is achieved by assigning
large negative values to the utility states associated to the decision node so that the unavailable
decision alternatives are not chosen by the solution algorithm. The approach to use utility nodes
to model restrictions on decisions obscures the representation of the structure of the problem as
either artificial utility nodes appear which model the restrictions on the decision or the utility
node associated to the decision have more variables in its domain. Both the addition of dummy
states to the state space of the variables and the modeling of the information states on the utility
nodes obscures the structure of the problem and increases the time and space required for the
solution as we have shown at the representation of all three problems. Another shortcoming of
this approach is that the decision analyst gets no information about conditioned scenarios and
constraints from the graphical model.

IDs are also unsuitable for the representation of order asymmetry. As IDs require a total
linear order of decisions, it is necessary to include all admissible decision/observation sequences
directly in the representation model when the order of decision is undefined. From the repre-
sentation of the diabetes problem we have seen that order asymmetry is represented introducing
variables, which model artificially the order of decisions and how all possible test outcomes must
be included at the state space of the test result variable. We have concluded that for this reason
the representation of the n-test problem is unfeasible with IDs.
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2.3.5 Extended ID representation

Extended IDs (EIDs) were proposed by Smith et al. (1993) and belong to the group of the first
alternatives to standard IDs. They use a hybrid ID and DT representation. EIDs combine the
representation of the uncertainty model of IDs with the description of asymmetric constraints by
means of distribution trees of the conditioning scenarios of a variable. This representation for
the distribution enables to model asymmetry as they can make explicit the set of conditionally
possible and impossible outcomes or alternatives and make explicit the relationship between
conditioning information and the conditional distributions assigned to each state of information.

Definition

EIDs are specified at the relational level and functional level. At the relational level they use
an influence diagram as a graph to describe probabilistic relationships. At the functional level
they use a distribution tree for showing the conditioning scenarios which lead to different atomic
distributions. EIDs use a conditioning function to describe the probability distribution assigned
in each conditioning scenario. A conditioning function CX|A,B(a, b) maps the set of all possible
conditioning scenarios (outcomes from A and B) to a set of atomic distributions.

EIDs can describe structural asymmetry accurately as they can have coalesced, clipped, col-
lapsed or unspecified distributions. Coalescence happens when the same atomic distribution is
shared between different conditioning scenarios. Clipping happens when the conditioning scenar-
ios are impossible and in consequence no outcome is possible. A collapsed distribution describes
conditional independence between variables. A distribution is collapsed when for some subset of
conditioning scenarios the corresponding conditional distributions are assigned independently of
the outcome of the rest of the conditioning variables. EIDs can also describe some scenarios as
unspecified if they are unnecessary for the problem.

Evaluation

The solution method is the computation of the maximum expected utilities by arc reversals and
node elimination. The advantage of EIDs is the use of conditioned probability distributions,
which simplify the computations of the solution. Features such as clipped, coalesced or collapsed
scenarios allow to detect the presence of unnecessary information and can therefore optimize the
computations.

EID representation of the diabetes problem

At the relational level the representation of the EID formalism is a conventional ID. Figure 2.8
in Section 2.3.4 shows the ID representation of the diabetes problem. At the relational level no
information appears about the structural constraints of the problem. The constraints about the
outcomes of the test result are described at the functional level with distribution trees, which
show the special conditioning scenarios for the Test Result 1 and Test Result 2 node.

This section describes the conditional distribution of the chance variable Test Result 1, which
depends on the decision Test 1 and the observation Diabetes. The distribution tree describes the
probability distribution at the part of the atomic distributions and the factors of the probability
function at the part of the conditioning scenarios.

Figure 2.16 shows the distribution tree for PTestResult1|Test1,Diabetes(test1, diabetes). The
outcomes of this variable are restricted by the decision to perform a test and the type of test,
what leads to five distinct atomic distributions. The atomic distributions show only the possible
outcomes and describe clearly which states of the test result are available for a test decision.
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This distribution tree contains an irrelevant scenario as the test result is independent from the
variable Diabetes when the decision is not to perform the test. EIDs describe this as collapsed
distribution, where the Test result 1 node is collapsed over the node Diabetes given Test1= no
test.

Test1

Diabetes

Diabetes

Diabetes

Test
Result 1

Test
Result 1

Test
Result 1

Test
Result 1

Test
Result 1

blood test

urine test

no test

absent

present

absent

present

(present,absent)

Blood positive=0.96

Blood negative=0.04

Blood positive=0.02

Blood negative=0.98

No Result=1

Urine positive=0.97

Urine negative=0.03

Urine positive=0.01

Urine negative=0.99

Figure 2.16: Distribution tree for the variable Test Result 1.

This section describes the conditional distributions of the chance variable
Test Result 2, which depends on the decision Test 1 and the observations Diabetes and Test
Result 1. The conditioning distribution of Test Result 2 is more complex than the first test
result, as an additional constraint with the Test Result 1 exists. If the second test repeats the
first test, the outcome of this test is the same.

Figure 2.17 shows the distribution tree for the probability distribution
PTestResult2|TestResult1,Diabetes(testResult1, diabetes). This distribution tree shows the condi-
tioning scenarios which lead to nine atomic distributions, where only the possible states are
shown. The distribution contains some coalesced and collapsed distributions:

◦ The distribution tree of Test Result 2 is shared between some conditioning scenarios. In the
case the second test is different from the first, three sub trees are shared for the conditioning
scenario of Diabetes.

◦ In the case the decision is not to perform the test, the test result outcomes (Test Result 2 )
are independent from the variable Diabetes, which is described as collapsed distribution.

◦ In the case the decision is to repeat the test, the outcome of Test Result 2 is deterministic,
because a repetition of a test leads to the same test result as in the previous test. These
distributions are collapsed over the variable Diabetes as the value of Diabetes is irrelevant.
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Figure 2.17: Distribution tree for the variable Test Result 2.

The EIDs representation improves the ID representation by describing the possible outcomes
of the variables with distribution trees. IDs need a potential with 30 values to describe the
possible outcomes of Result of test 1 while EIDs represent this with five atomic distributions.
IDs describe the possible outcomes of Test Result 2 with a potential of 150 values while EIDs use
a distribution tree with nine atomic distributions. As EIDs are based on IDs, they also require
an absolute order of observations and decisions. Therefore EIDs are not suitable for representing
order asymmetry as they need to do handle the artificial variables the ID introduced to model all
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possible sequences of observations and variables at the model. As we have seen the distribution
trees are able to recognize collapsed and coalesced distributions but the underlying problem of
order asymmetry remains unresolved. In the case of the n-test problem each test result node
would include all test result outcomes from all available tests, which makes the representation
complex and untreatable for a larger number of test.

EID representation of the dating problem

At the relational level this formalism uses a conventional ID, which is identical to that of the
ID representation of the dating problem (see Figure 2.11). At the functional level EIDs use
distribution trees to describe the conditional distribution structure of the nodes. The distribution
trees are useful as they are able to represent coalesced, clipped and collapsed distributions, which
allow for more efficient computations in the solution process.

This section describes the conditional distribution of the decision NClub which depends on
the decision Ask? and the observations Accept and TV. The distribution tree describes the
set of alternatives for the decision at the part of the atomic distributions and the alternative
information states at the part of the conditioning scenarios.

Figure 2.18 shows the distribution tree for PNClub|Ask,Accept,TV (ask, accept, tv). The tree has
two atomic distributions, which describes the scenario where Joe decides to go to the nightclub
and another scenario, where he does not make any decision. The distribution tree contains a
clipped, collapsed and coalesced scenario:

◦ EIDs represent the existence of impossible conditioning scenarios by clipped distributions.
A clipped distribution omits the branches for impossible conditioning scenarios, so for
example the branches for the options yes and no are omitted for the node Accept, which
corresponds to the partial distribution P (Accept|Ask = no, TV ).

◦ The existence of irrelevant scenarios are shown with collapsed distributions. The available
decision options of NClub are independent from the states of TV. In this case the conditional
distribution of NClub can be collapsed over TV given Ask=no or given Ask=yes. At the
distribution tree the collapsed distribution is depicted by showing next to the collapsed
node all possible states.

◦ This tree contains a coalesced distribution because the atomic distribution of NClub is
shared between two distinct scenarios.

This section describes the conditional distribution of the utility TVExp which depends on the
decision NClub? and the observation TV. The distribution tree describes the expected utilities at
the part of the atomic distributions and the factors of the joint utility function at the part of the
conditioning scenarios. Figure 2.19 shows the distribution tree for PTV Exp|NClub,TV (nclub, tv),
which has three atomic distributions with different utilities. The atomic distribution with utility
zero is shared between two conditioning scenarios, which correspond to the case Joe decides to
go to the nightclub.

This section describes the conditional distribution of the probability distribution of ToDo
which depends on the decision Ask? and the observations Accept and LikesMe. The distribution
tree describes the probabilities at the part of the atomic distributions and the factor of the joint
probability function at the part of the conditioning scenarios.

Figure 2.20 shows the distribution tree for PTodo|Ask,Accept,LikesMe(ask, accept, likesMe) which
has three atomic distributions with different probability distributions. The distribution tree con-
tains also a clipped, collapsed and coalesced distribution:
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Figure 2.18: Distribution tree for the decision NClub.
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Figure 2.19: Distribution tree for the utility node TVExp.

◦ The node Accept at the lower branch only shows the option no response as the options yes
and no are impossible in this conditioning scenario.

◦ The node Accept at the lower branch is a collapsed distribution as its values are independent
of the states of LikesMe when Joe decides not to ask for the date (Ask=no). In this case
the conditional distribution of Accept is collapsed over LikesMe given Ask=no. At the
distribution tree the collapsed distribution is depicted by showing next to the collapsed
node all possible states.

◦ The node ToDo at the lower branch is a deterministic distribution as the outcome no
decision happens with certainty. This atomic distribution is shared between three different
conditioning scenarios.
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Figure 2.20: Distribution tree for chance variable ToDo.

In the previous section we have explained a conditioned distribution tree for a decision, chance
and utility variable in order to describe the semantic of the distribution tree. The dating problem
contains more cases of structural constraints than these three examples, but the approach that
EIDs follow is the same as explained before. If a variable is non-existent in a decision scenario,
the conditioning distribution tree hides the correspondent states for that variable (clipping). In
consequence the distribution tree is more compact and only depicts the possible outcomes at
the atomic distributions. For example the ID representation needed a potential with 36 values
to describe the possible outcomes of ToDo. EIDs can describe this in a more compact way
as only the possible states are shown at the atomic distributions and collapsing, clipping and
coalescence is used to reduce the structure of the conditioning scenarios (see Figure 2.20). EIDs
do not describe the existence of constraints at the graphical model. Therefore from the EID
model the decision analyst does not get any information about the existence of the conditioned
scenarios of the dating problem.

EID representation of the reactor problem

At the relational level the reactor problem is represented as ID (Figure 2.21) and at the functional
level it is described with distribution trees (Figure 2.22). The same EID representation can be
found in Bielza et al. (2011) and Nielsen (2001) .

Figure 2.22 shows the distribution trees, which describe the conditional distribution struc-
ture of the nodes Build Decision, Result of Test, U3(Benefit of the conventional reactor) and
U2(Benefit of advanced reactor). Distribution trees depict the relationship between conditioning
information and the conditional distributions assigned to each state of information and therefore
make explicit the possible outcomes and alternatives. The distribution trees of the representation
of the reactor problem (Figure 2.22) show the constraint of the problem by using coalescence,
clipping and collapsed distributions:

◦ The available decision options of Build Decision depend on the existence of the test result
and its value if available. The decision to build an advanced reactor (ba) is not allowed
when the test result was bad. The distribution tree of Build Decision shows the different
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Figure 2.21: ID representation of the reactor problem.

decision alternatives at the atomic distributions. This tree shows clearly that the decision
alternatives are restricted to the set {bn,bc} (build none, build conventional) when the test
result was bad. At the contrary all decision options are available when the test result
was good or excellent or the test was not performed. The distribution tree describes
that three different conditioning scenarios lead to a common outcome by sharing an atomic
distribution between three conditioning scenarios. This is a case of a coalesced distribution.

◦ When the test is not performed, the test results are not available. In this case the condition-
ing scenarios corresponding to the test results {b,g,e} (bad, good, excellent) are impossible.
The distribution tree omits the branches of impossible conditioning scenarios, what is called
clipping. In the case of the test result, all conditioning scenarios containing Result of Test
are clipped for the case the test is not performed.

◦ The existence of irrelevant conditioning scenarios is shown by means of collapsed distribu-
tions. The distribution tree for the chance variable Result of Test describes the conditioning
influence of the advanced reactor’s components on the test result. In the case the test is
not performed the test result is unobserved and is independent of the states of Advanced
reactor. The distribution tree describes this independence by collapsing the conditional
distribution of Result of Test across Advanced reactor given Build Decision=nt.

In the above explanation we have seen that EIDs represent the structural constraints of the
problem at the functional level using conditioning functions but not at the relational level. We
have seen that EIDs use collapsed distributions to describe irrelevant conditioning scenarios and
coalesced distributions to describe information sharing between conditioning scenarios. Both
characteristics are used at the computation of the solution to optimize the computations.

Conclusion

EIDs are an extended ID representation having the additional ability of describing conditioned
probability scenarios. For this reason EIDs have a lot of features in common with IDs: for
example they inherit the need to represent order asymmetry with artificial variables which model
the sequence of decisions. Although EIDs improve the representation of order asymmetry in
certain degree, as we showed in the representation of the diabetes problem, they do not solve
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Figure 2.22: Distribution trees of the functional level.

it efficiently as all test results of all available tests compose the state space of each test result
variable. Therefore EIDs are not suitable for representing order asymmetry as they need to do
introduce artificial variables to model all possible sequences of observations and variables.

The representation of the other problems has shown that EIDs are able to describe structural
asymmetry. EIDs use coalescence to describe information sharing, clipping to describe impossible
conditioning scenarios and collapsing to describe irrelevant conditioning scenarios. The solution
algorithm of the EIDs algorithm is able to exploit these characteristics and to optimize compu-
tations by avoiding unnecessary ones. Nevertheless for large probability models an extra effort
may be required to determine which distributions should be used in a distribution tree. From
the representation of the three problems we have seen how distribution trees make the original
ID representation more compact.

EIDs have a strong weakness regarding the description of asymmetry as they do not show the
occurrence of asymmetry constraints at the graphical level. Although the asymmetric condition-
ing scenarios are depicted with full detail at the functional level, the decision analyst does not
obtain information about the existence of constraints from the relational, i.e., graphical level.
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2.3.6 Sequential valuation network representation

Sequential valuation networks (SVNs) are a formalism for the representation of asymmetry based
on valuation networks (VNs). VNs (Shenoy, 1992) are an alternative to IDs and DTs as they
use arbitrary probability valuations for the description of the probabilistic model, which allow to
specify the joint probability with flexibility. While IDs and DTs require the specification of the
joint probability distribution in conditional probabilities, VNs use probability valuations which
represent factors of the joint probability function and are not necessarily conditioned probabili-
ties. VNs are useful as they relax the requirements for representation and avoid the preprocessing
of probabilities. As VNs did not address the representation of asymmetry, Shenoy (1996) pro-
posed a new formalism called asymmetric valuation networks (AVNs), which extends VNs with
indicator valuations for the description of asymmetric constraints. Some time later, Demirer
& Shenoy (2006) proposed sequential valuation networks (SVNs), which are a combination of
features from sequential decision diagrams (SDDs) (Covaliu & Oliver, 1995) and AVNs. This
formalism arose as an improvement of some shortcomings of these two formalisms, as described
in Bielza & Shenoy (1999), which are mainly the inconsistency of the state space of variables
of SDDs, the preprocessing of probabilities required to bring a SDD in a consistent form and
the inability of AVNs to express the asymmetric structure of the problem at the graphical level.
The resulting formalism, SVN, takes advantage of the relaxed requirements of the description
of the probability model of VNs and the expressiveness of the description of the sequential and
asymmetric aspects of SDDs.

Definition

SVNs use the description of the probability model of VNs with valuation nodes in combination
with the graphical features from SDDs to represent asymmetry in a compact way. The SVN
contains a subgraph built upon the set of decision, chance and terminal nodes, which is a directed
graph with one source node and one sink node. Each directed path from the source node to the
terminal node is a possible scenario. The resulting graph is similar to a clustered decision tree,
which describes all possible scenarios and indicates constraints by the use of labels above the
directed edges.

A SVN representation consists of three part: the graphical part which describes the network
structure, the qualitative part, where indicator valuations are specified and the quantitative part,
where the numerical details of utility and probability valuations are specified.

At the graphical level SVNs use six different types of nodes, which can be classified as variables
and valuation nodes. Variables nodes can be chance or decision (with the same representation as
in IDs, with rectangles and circles) or terminal nodes. The arcs between these nodes describe the
sequencing of variables in a scenario. Valuation nodes can be classified as indicator, probability
or utility. Indicator valuations represent qualitative constraints on the joint space of decision
and chance variables and are depicted by double-triangular nodes. The set of variables directly
connected to an indicator valuation by undirected edges constitutes the domain of the indicator
valuation.

Utility valuations represent factors of the joint utility function (additive or multiplicative)
and are depicted by diamond-shape nodes. The set of variables directly connected to a util-
ity valuation constitutes the domain of the utility valuation. Probability valuations represent
multiplicative factors of the family of joint probability distributions for chance variables in the
problem and are depicted by triangular nodes. The set of all variables directly connected to a
probability valuation constitutes the domain of the probability valuation. If a probability valua-
tion is conditional then this is indicated by drawing the edges between the probability valuation
node and the variables directed towards the variable.
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At the qualitative level the indicator valuations are specified in detail. For an indicator valu-
ation ω1 with domain R,D this specification consists of listing all the allowed states in Ω1. The
use of indicator valuations improves the computational efficiency of the solution techniques as
they define the effective frame for a subset of variables, i.e., they describe explicitly the compat-
ibility of the values of a variable in certain scenarios. The increased computational efficiency of
the solution technique is partly the result of working on effective frames instead of working on
general frames. At the numerical level the details of the utility and probability valuations are
specified.

Evaluation

The solution method of a SVN is a recursive decomposition of the problem into smaller sub-
problems. The sub-problems are solved by using a special case of the fusion algorithm and these
solutions are recursively combined to generate the solution of the original problem. Inference
with VN-based systems is done using two operations called combination and marginalization
(Shenoy, 1992).

SVN representation of the diabetes problem

Test 1 Test 2 Therapy Disease

Urine
Test
Result

Blood
Test
Result

T

Cost
Test 1

Cost
Test 2

Life
Quality

β α

γ

δ

T1=ut

T1=bt

T1=no test

T2=ut

T2=bt

T1=ut

T1=bt

T2=ut

T2=bt

T2=no test

Figure 2.23: SVN representation of the diabetes problem.
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Figure 2.23 shows the SVN representation of the diabetes problem as described by Demirer
& Shenoy (2006), having the constraint that the same test can not be repeated. In Bielza
et al. (2011) appears a similar representation of the problem, but having this representation the
possibility to repeat the test.

The SVN diagram of Figure 2.23 represents the sequence of tests explicitly by adding two
nodes (Test 1 and Test 2 ), which represent the choice of the test. The SVN shows the possible
scenarios of the test sequences with a directed graph, where Test 1 is the source node and T
is the sink node. The labels above the edges indicate constraints under which a directed arc is
possible. The urine and blood test results are only available when such a test is ordered and the
test can not be repeated. If the decision is to not perform the test both test results do not appear
in the decision scenarios. SVNs model the constraints of the diabetes problem with labels and
therefore avoid dummy states.

The constraint of not repeating the test is described with the indicator valuation δ, which
specifies the admissible states (bt, nt), (bt, ut), (ut, nt), (ut, bt). The diagram shaped nodes are
utility valuations, which represent a factorization of the cost and benefit of diagnosing and
treating the patient for Diabetes. The triangular shaped nodes are the probability valuations α =
P (D), β = P (Blood TestResult |D) and γ = P (Urine TestResult |D), which are factorizations
of the joint probability distribution P (D, Urine TestResult, Blood TestResult) .

SVNs use probability valuations, which are multiplicative factors of the joint probability of the
chance variables to describe the probabilistic model. Probability valuations are not necessarily
conditional probabilities, what gives SVNs flexibility for the description of the probabilistic
model. But this may be less intuitive for humans, which are used to appraise probabilities in
the cause-effect direction. Further the models for diagnosis problems are built usually on direct
probabilities such as prevalence of the disease and the sensitivity or specificity of the test. For
this reason the alternative approach of the description of the probability model is not apparent
at the SVN representation of the diabetes diagnosis problem, which is built upon direct and
conditioned probabilities. Nevertheless, if the model for a diagnosis problem is built from data
the flexibility of probability valuations to describe the joint distribution might be a benefit.

The representation of the diabetes problem has shown that SVNs are only able to represent
order asymmetry by introducing multiple instances of the test variable and specifying constraints
with labels to model the distinct sequences. For a n-test problem the SVN diagram would become
very complex as each test result could be observed at each test decision, so that each test result
node would have n incoming arcs.
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Figure 2.24: SVN representation of the dating problem.

Figure 2.24 shows the SVN representation of the dating problem. The directed sub-graph,
which is a compact representation of the decision tree of all possible decision scenarios, describes
the sequence of decisions and observations. The labels above the solid line edges describe the
structural constraints of the variables, i.e., under which conditions the variable appears. This
decision tree based representation implies difficulties to represent unobserved chance variables.
These are variables which are not observed in any decision scenario nor appear in the domain
of a utility function. In the dating problem the variables LikesMe, mMood and rMood are
unobserved. Although these variables have a probabilistic influence on other variables, which are
observed at the decision scenario, they do not appear in the SVN representation. This happens
as this variables have been marginalized out of the probability distribution as an alternative
to representing them at the end of the decision scenario. This requires a pre-processing of
the following probabilities: P (Accept|LikesMe) to P (Accept), P (ToDo|LikesMe) to P (ToDo),
P (mExp|mMood) to P (mExp|Movie) and P (rExp|rMood) to P (rExp|Rest). Table 2.6 shows
the probability distributions described by each probability valuation.

The dating problem contains very different scenarios, which are conditioned on previous
decisions or observations. The SVN representation shows that these constraints can be described
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with labels and no indicator valuations are necessary. This happens as only two variables are
involved in the constraints of the dating problem, what can be expressed with labels.

Prob. valuation Probability distribution Prob. val. Probability distribution

α P (TV ) η P (NCExp|MeetFr)

β P (Accept) ε P (NCExp|Club)

γ P (ToDo) κ P (mExp|Movie)

δ P (TV Exp|TV ) λ P (rExp|Rest)

Table 2.6: Probability valuations of the SVN representation.
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Figure 2.25: SVN representation of the reactor problem.

Figure 2.25 shows the SVN representation for the reactor problem as it appears at Demirer &
Shenoy (2006) or Bielza et al. (2011). The SVN diagram uses a directed subgraph to express the
possible scenarios, in conjunction with labels above the solid line arcs, which express constraints.
The possible scenarios start from the source node Test decision and end in the artificial terminal
node T. This graph shows that the test result is only available when the decision is to perform
the test by indicating the label t above the arc between Test Decision and Result of Test. In
consequence the state space of Result of Test does not contain the dummy state no result.
In the same way by using labels above the arcs, the SVN diagram extdescribes that the risk
of an advanced reactor is only observed when the build decision is to construct an advanced
reactor (ba). The same happens for the decision to construct a conventional reactor (bc) or to
construct none (bn), the correspondent decision options of the Build Decision are shown above
the arcs leading into the nodes Conventional reactor and T. Labels describe therefore at the
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graphical level the sequence of observations and decisions explicitly and gives information about
constraints, namely under which condition a variable appears at a decision scenario.

The valuation nodes describe the decision problem further by specifying qualitative con-
straints, utility and probability distributions. These nodes appear at a second sub-diagram with
dashed lines. The edges of a valuation define its domain. Thus the probability valuation χ,
which describes the risk of a conventional reactor has the domain Conventional reactor and the
probability valuation α, which describes the risk of an advanced reactor has the domain Advanced
reactor. The probability distribution ρ, which describes the test result based on the properties
of the components of an advanced reactor is given as its conditioned form P(Result of Test |
Adv. Reactor) . The graph contains several utility valuations, which describe the cost of the
test (U1) and the benefit of the construction for a given type of reactor (U2,,U3, U4). As there is
a constraint between the decision to build a reactor (Build Decision) and the event of building
the reactor or not, the utility valuation of the benefit of a given type of reactor (U2,,U3, U4) are
given as a valuation fragment conditioned on the correspondent option of the Build Decision.
For example the benefit of an advanced reactor is expressed as U2|ba with the domain {Build
Decision, Adv. Reactor}. Fragments allow to specify for which combinations a valuation is al-
lowed. The utility valuation of U2|ba describes that the utility values of A are only given for the
states Build Decision =ba , because all other combinations are impossible. SVNs use indicator
valuations to express qualitative constraints. The indicator valuation δ1 with domain {Result of
Test, Build Decision} describes the constraint between the result of the test and the decision
options available at Build Decision. This indicator valuation numbers out allowed combinations
of the Result of Test and the Test decision and describes that the combination {b,ba}, which
corresponds to the decision to build an advanced reactor given a bad test result is not possible.
The indicator valuation δ2 with domain {Result of Test, Adv. Reactor} describes the constraint
between the test result and the properties of the advanced reactor’s components. As the test
result bad statistically does not happen when the components of the reactor indicate success, the
indicator valuation of δ2 omits the state {b,as}.

The SVN representation of the reactor problem has shown that this formalism has the ability
to describe structural constraints with labels and indicator valuations. Labels show graphically
under which conditions a variable appears in a decision scenario, what is useful if the decision
problem leads to very distinct decision scenarios. The SVN representation describes clearly that
the observation of the test result only happens when the test was performed and the observations
on the risk of an reactor only happens when the decision to build such a reactor was taken.
Further indicator valuations can describe qualitative constraints up to any complexity as they
can have any number of variables in its domain. The approach for specifying a constraint consists
in numbering out all possible combinations, what becomes quite difficult to manage when the
domain contains many variables.

Conclusion

In contrast to ID based models, which describe conditional probability models and represent the
order of the variables only with a partial order, SVNs combine the flexibility of VNs for the
description of arbitrary probability models and the explicit description of the order of variables
from SDDs.

SVNs are a hybrid of VNs and SDDs and show at the diagram both a model for the order of
decisions and observations and a model for the probability relationships in the same diagram. The
tree-like sub graph which presents in a compact form the sequence of decisions and observations
for all decision scenarios gives an explicit description of the information flow and is useful for
the description of conditioned scenarios. Simple constraints, which comprise only two variables
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can be described with labels above the edges, as we have seen at the representation of the
dating problem. More complex constraints, which involve more than two variables or a partial
restrictions, can be described with indicator valuations as we have seen at the representation of
the reactor problem. Valuation indicators can get quite complex because they can be associated
to several variables, but they have absolute flexibility in specifying any constraint. The approach
of indicator valuations to encode constraints is to number out all compatible states, what makes
them not easy to understand for a human decision analysts. SVNs use further valuation fragments
to model constraints. Valuation fragments are a compact form of indicating valuations only for
those values which satisfy a constraint. The use of fragments requires coherence between labels
or indicator valuations and the definition of the fragments. Fragments can be specified on
probability valuations and utility valuations.

Although SVNs as explained before do not have troubles to represent structural asymmetry,
they have difficulties to model order asymmetry. SVNs require a total ordering of the decisions
and observations and therefore must include all admissible decision and observation sequences
at the model. Further SVNs use information arcs, what makes it difficult to represent complex
problems with SVNs. The combination of the existence of information arcs and the requirement
for a total order of the decisions makes SVN unsuitable for the representation of the n-test
problem. As we have seen at the representation of the diabetes problem, even this problem with
only two tests becomes quite complex.

Another difference of SVNs with respect to ID based formalisms, is the description of the
probabilistic model. SVNs rely on valuation networks, which describe the probability model
with probability valuations, which are multiplicative factors of the joint probability. Probability
valuation are not necessarily conditional or direct probabilities as happens at the ID based
formalisms, so the requirements for building a SVN based model are weaker than those of ID
based models. While IDs might require a preprocessing of probabilities when probabilities are
not given in a direct or conditional form, SVNs can represent a probability model with arbitrary
valuations. The possibility of probability valuations to describe the model without conditional
probabilities may result convenient when no description of a causal model is available, for instance
when the probabilistic model is created from a database. But as humans analyze problems
following a cause-effect direction, the representation of non-causal probabilities is not easy to
interpret. The SVN representation of the probabilistic model is also modular so that the model
is easily adaptable to changes of the decision problem.

As SVNs rely on SDDs they inherit some drawbacks from the decision tree based representa-
tion of the decision scenarios. SVNs have difficulties to represent unobserved chance variables.
These are variables which are not observed in any decision scenario nor appear in the domain of
a utility function. As including unobserved variables in decision trees makes its structure more
complex, the alternative is to marginalize these variables out of the probability model, what
involves a pre-processing of the probability model. Therefore SVNs usually do not represent
unobserved variables, as we have seen at the representation of the dating problem.

We can conclude that SVNs are suitable for the representation of decision problems with
structural asymmetry. The approach of SVNs to represent a model for the order of decisions and
observations with the model for the probability relationships at the same diagram gives SVN a
high explanatory strength. The SVN allows to analyze the explicit sequence of decisions and
observations, while the probabilistic relations are also represented explicitly. Before SDDs only
the DT formalism gave an explicit description of the decision scenarios, while this formalism
was not able to describe probabilistic relations nor present the decision scenarios compactly.
Nevertheless the use of the explicit model of the order between variables is also a limitation of
the formalism, because for complex problems the construction of an explicit model of order can
be quite difficult for a decision analyst.
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2.3.7 Asymmetric influence diagram representation

Asymmetric influence diagrams (AIDs) are a formalism presented by Nielsen & Jensen (2000)
and are explained further at Nielsen (2001). This formalism is designed for modeling asymmet-
ric decision problems and is based on partial influence diagrams (PIDs) proposed by Nielsen &
Jensen (1999b). PIDs are a generalization of IDs which allow a non-total ordering of decisions.
The idea of relaxing the requirement of IDs for a total linear ordering of decisions to a partial
ordering comes from the observation that decision problems have decisions which are condition-
ally independent and in such a situation it is not necessary to impose a total linear temporal
ordering. Nielsen & Jensen (1999b) define a set of conditions which assure that a PID is un-
ambiguous, i.e., it is a well defined representation of a decision problem. PIDs allow a chance
node to have several decision nodes as immediate successors and no ordering is imposed on the
decisions, what makes them better suitable for the representation of decision problems where the
order of decisions is not absolutely sequential. The main contribution of AIDs nevertheless is the
adaption of the ID formalism for expressing asymmetric constraints. AIDs give to its components
a special semantic for the representation of asymmetry, which is based mainly on a description
of the conditions which make an arc or a node appear in a certain decision scenario. AIDs ad-
dress the representation of structural asymmetry also in greater detail than other formalisms, as
they distinguish further functional asymmetry. In AID terminology structural asymmetry refers
to the occurrence of a variable in different scenarios while functional asymmetry refers to the
restriction of the possible outcomes and decision options of a variable in different scenarios.

Definition

AIDs are based on PIDs and have a specification at two levels: the qualitative level with a labeled
graph and the quantitative level with potentials. Structural asymmetry, which describes the
occurrence of variables in different scenarios is specified at the qualitative level while functional
asymmetry, which refers to the restriction of the possible outcomes and decision options of a
variable is specified at the quantitative level. The formal description of an AID comprises the
specification at the qualitative and quantitative level:

At the qualitative level a AID is a labeled directed graph G = (U,E, F ), where U are the set
of nodes, E are the set of arcs and F are the set of labels. The graph of an AID has four types
of nodes U : chance, value, test-decision and action-decision nodes. Chance and value nodes
have the same meaning as with IDs. A test-decision (drawn as a triangle) is a decision to look
for more evidence, whereas an action-decision (drawn as a rectangle) is a decision to change the
state of the world.

The arcs E of an AID have the following meaning. The arcs into value nodes and chance
nodes have the same meaning as in IDs. The arcs into decision nodes, termed informational arcs,
represent a possible precedence. In asymmetric decision problems the set of variables observed
immediately before taking a decision D may depend on previous decisions and observations,
therefore the semantics of an informational arc is redefined to a possible information precedence.
An arc between a test-decision node D and a chance node C is termed as test arc. Test arcs
mean that the state of D determines whether or not the chance node C is eventually observed.
Test arcs can also exist between two decision nodes. In this case a label is used to specify if the
arc is an informational arc or a test arc.

AIDs reflect the structural asymmetry graphically by a set of restrictional arcs and by a set
of labels F . Restrictional arcs are painted with dashed lines. A restrictional arc between the
node X and D indicates that the set of legal decision options for D may vary depending on
the state of X. The labels, which are associated with a subset of nodes and informational arcs
specify conditions under which the associated node or informational arc occurs.
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At the quantitative level AIDs contain partial probability potentials to describe the uncer-
tainty associated with a chance variable, partial utility potentials to describe the utility of a
value node and restrictive decision functions to describe the legitimate decision alternatives for
a decision. AIDs specify functional asymmetry at the quantitative level using these elements.
Partial potentials for probability or utility specify that a possible outcome of an observation is
dependent on the conditioning state. A restrictive function specifies that the decision options
for a decision variable are dependent on the information state.

Evaluation

AIDs propose a method which allows to identify the parts of the decision problem which are
relevant for a particular decision variable. The variables relevant for a decision are variables
observed before the decision and also future variables, which may influence the optimal policy for
a decision. The rules for determining the relevant variables for a decision are explained in detail
by Nielsen & Jensen (1999b). Reducing the original decision problem to smaller sub problems,
each one describing the relevant scenario for a certain decision variable, is useful either for the
analysis of the decision problem and the solution method. The analysis of the problem becomes
easier because a decomposition in smaller sub-problems, where only the relevant variables for a
decision appear, contributes to a better understanding of the structure of the problem, especially
when the problem is complex.

The solution method consists of a decomposition of the original problem into sub-problems by
considering the existence of distinct informational states described by the observed variables and
the value of a restrictive variable (split variable). The decomposition into sub-problems yields a
collection of smaller symmetric PIDs, which give a complete description of the distinct decision
scenarios of the problem. The solution of the collection of smaller sub-problems is computational
less complex than solving the original problem.

AID representation of the diabetes problem

Figure 2.26 shows the AID representation of the diabetes problem at the qualitative level. The
definition of this problem requires a total ordering of the decisions as the test decisions are not
independent. According to the definition of the problem, the tests are not repeated and the
previous test result is known when taking the next decision. For this reason the AID shows
explicitly the order of the tests adding two test-decision nodes, which represent the choice of test
and a test result node for each test. The test-arcs between the test decision and its result describe
that the result is eventually observed. The labels above the Blood Test Result and Urine Test
Result node express that their states are observed when the test decision is to either perform the
blood test (bt) or the urine test (ut). The arcs between the test nodes Test 1 and Test 2 and
the decision node Therapy are informational arcs and describe precedence. This means that the
decision regarding the therapy is taken after performing Test 1 and after performing Test 2. The
test result of the first test is known when taking the second test decision. For this reason the
test result nodes have an information arc leading into the second test decision, which describe
a possible information precedence. These arcs have a label to describe a syntactical constraint
which breaks the cycle, namely the information precedence between Blood Test Result and Urine
Test Result and Test 2 does not happen when the observation of the test result corresponds to
the second test decision. In the same way the arcs from the second test decision (Test 2 ) to the
test result nodes have labels to describe that the same test can not be repeated. The arcs from
the test results into the decision node Therapy describe a possible precedence, as the test results
may not be available.
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Figure 2.26: AID representation of the diabetes problem.

AIDs have test-arcs which are in principle suitable for the representation of a test problem.
Test-arcs are a precise description of the conditioning of the test result on the test decision,
namely the evidence of the test result is only available when it is decided to look for more
evidence. This works if the test decision only includes one test option. If the test decision
considers the choice between several test alternatives AIDs need to use labels to describe to
which test decision corresponds a given test result. See the use of labels for the test results of
the diabetes problem (Figure 2.26), which is a two test problem. The combination of test-arcs
and labels allow AIDs to describe the structural constraint that the test result is not available
when the test is not performed and avoid dummy states at the test result variable.

Nevertheless the n-test problem is not easily representable with AIDs as the order of the
decisions is represented explicitly at the model and the formalism has informational arcs. Each
test decision would need n outgoing arcs to each of the n test results, describing with a label for
which test decision the test result is observable. At the same time each test decision (except the
first) would have n incoming arcs to describe the possible information precedence of the previous
test results. The example of the diabetes problem, which is a two-test problem, makes evident
the difficulties of AIDs to represent the n-test problem.
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Figure 2.27: AID representation of the dating problem.

Specification at the qualitative level

Figure 2.27 shows the AID representation for the dating problem as represented in Nielsen &
Jensen (2000). The diagram shows the representation of the problem with a partial order of
the decisions. This leads to a natural representation of the conditioned scenarios as a chance
variable can have several decisions as immediate successor and the sequential representation of
decisions in a total order is avoided. The adapted semantics of arcs or nodes and the labels at
the diagram describe concisely that a variable may be conditioned on a previous event. The
combination of the representation with partial order and the use of labels make it possible to
describe the asymmetric nature of the dating problem clearly as explained in the following.

The AID diagram shows informational arcs, which describe the possible precedence of in-
formation. For example the outgoing arcs from the node Accept to the decision nodes Movie,
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Restaurant or NClub are informational arcs, which describe that the variable Accept may be
known when taking the decision. The associated label Ask?=y specifies that the information arc
only occurs when Joe asked for the date.

The diagram shows also restrictional arcs, which are a subset of informational arcs. A re-
strictional arc appears between the node ToDo and Restaurant or Movie and denotes that the
set of legal decision options for the decision may vary depending on the state of ToDo. In this
sense, if the value of ToDo is restaurant, no decision options for the decision Movie are allowed.

The AID representation shows also test-arcs. The test-arcs between Ask? and Accept describe
that the state of Ask? determines whether the state of Accept is observed. From the specification
of the dating problem we know that the variable Accept is only observed if the decision is to ask
for the date (Ask?=y). In the same manner the test arc between Ask and NClub? describes that
NClub is decided upon eventually depending on the state of Ask?. The dating problem describes
that Joe considers to go to the nightclub if he decides to not ask for the date (Ask?=n).

Labels at nodes and information arcs describe conditions under which a node or an arc occurs,
what in AIDs is termed structural asymmetry. For example the label Ask?=n or Accept?=n of
the node NClub specifies that the node appears only if Joe did not ask for the date or Emily
declined the invitation. If a node or arc does not fulfill the conditions of its label it is removed
from the decision scenario. This is useful for modeling the decision scenarios conditioned on
some previous observations or decisions. For instance Figure 2.28 shows the decision scenario
conditioned on Ask?=n.
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TV
Exp

TV

Meet
Friends

Club

NCExp

Likes
Me

U1

U2

U5

NClub?=y

NClub?=y

NClub?=n

;

Figure 2.28: Decision scenario conditioned on Ask?=n.

Labels are also propagated to their successor nodes. For example the nodes MeetFriends,
Club and TVExp inherit the conditions specified in the labels of NClub. So neither of these
nodes appears in the decision scenario of Accept=y, which is shown in figure 2.29.
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Figure 2.29: Decision scenario conditioned on Accept=y.

Specification at the quantitative level

At the quantitative level functional asymmetry is specified by restrictive functions and partial
potentials for probabilities and utilities. A partial probability potential can specify that given a
configuration of the conditioning set for a variable X, some states of a variable X are impossible
and therefore undefined (denoted by ⊥ ). If a state of a conditioning variable restricts all values
of the variable X, the variable X does not appear in a scenario, what is a case of structural
asymmetry. This must be reflected at the qualitative level labeling the node X with the states of
the conditioning set, which are compatible. For functional asymmetry, which restricts the values
of the variable X to a subset without making a variable impossible in a scenario, no labeling at
the qualitative level is required.

Further a partial probability potential cannot contain test-decisions in its domain. Regarding
utility description a value node X is associated with a partial utility function, where undefined
utilities take on the value zero. Further the multiplication and addition of partial probabilities
is specified, whereas these operations depend on whether the partial function of the variable is
defined or not.

Figure 2.30 shows the partial probability potential associated to the node TVExp which has
the condition NClub?=n associated. This table shows that the values conditioned on NClub?=yes
are undefined.

TV good bad good bad
NClub? yes yes no no

yes ⊥ ⊥ 0.2 0.5
no ⊥ ⊥ 0.8 0.5

Figure 2.30: Partial probability potential of the variable TVExp .
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AIDs define also restrictions for decisions at the quantitative level. Each decision variableD is
associated with a set of restrictive functions. A restrictive function is associated with a restriction
arc between X and D and specifies the legitimate decision options for D given the configuration
of the node X. The dating problem contains the restrictive functions for the decision Movie and
Restaurant depicted at figure 2.31, which show that the decision options are restricted by the
values of ToDo.

γ(ToDo) Movie

restaurant {}
movie {romantic, action}

γ(ToDo) Restaurant

restaurant {cheap,expensive}
movie {}

Figure 2.31: Restrictive functions related to the decisions Movie and Restaurant.

Description of decision scenarios

AIDs provide a method for decomposing the original problem into sub-problems, which de-
scribe distinct decision scenarios. This representation is useful either for decision analysis and
computations during the solution process. The original problem is decomposed in a collection of
smaller sub-problems by taking into account the existence of different informational states, which
are defined by determining the variables actually observed before taking a particular decision.
The different informational states are treated by means of reductions of the original diagram
to smaller AIDs. The reduction is based on the value of a split variable, which forms part of
the informational state (also termed split configuration) of the new AID. The first step of the
decomposition is to determine the split variable, which is a restrictive variable and may appear
at the domain of a label. An AID is assumed to have a unique split variable. The reduction
based on the value of the split variable eliminates nodes and arcs according to the evaluation of
its labels. This reduction is then applied iteratively to the new AIDs until each AID is reduced
to a symmetric PID, which is the description of a decision scenario.

The decomposition of the AID into smaller AIDs creates a decomposition tree, where every
node corresponds to a smaller AID. Figure 2.32 shows a part of the decomposition tree of the
dating problem starting from the AID with the split configuration Ask?=n, where the distinct
decision scenarios for the variable NClub appear as leaves.
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Figure 2.32: Decision scenarios of the decision NClub.
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AID representation of the reactor problem
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Figure 2.33: AID representation of the reactor problem.

Figure 2.33 shows the AID representation of the qualitative level of the reactor problem according
to Nielsen (2001). The decision to evaluate the components of the advanced reactor are repre-
sented with the Test Decision node, which describes by means of a test-arc that the result is only
observed eventually. The arc between the Test Decision and Build Decision denotes precedence
as the decision about performing the test is taken before. The arc between the Result of Test
and the Build Decision is a restrictive arc, which is a special type of information arc. This arc
describes first the possible informational precedence of the test result and next the restrictions
of some tests results on the build decision. The labels above the arcs from the Build Decision to
the utilities nodes (Benefit of advanced reactor or Benefit of conventional reactor) describe for
which build decision the utility is observed.

At the quantitative level the restrictions are specified further as explained in the following.
Table 2.7 shows the restrictive function of the Build Decision, which describes with detail the
restrictions of the test result on the decision to build a reactor.

γ (Result of Test) Build Decision

bad {conventional, none}
good {advanced, conventional, none}
excellent {advanced, conventional, none}

Table 2.7: Restrictive function of the Build decision.

The benefit of constructing a certain type of reactor are described with partial utility poten-
tials at the quantitative level. These potentials contain zero values for impossible combinations,
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for instance the utility potential of the Benefit of advanced reactor contains zero values for the
combinations corresponding to the decision to build a conventional reactor or none. The use of
zero values to describe impossible utilities is problematic when the problem contains negative
utilities. In this case the states having a zero utility value are not the worst case and the solution
algorithm has no means to discard these states. For this reason AIDs require positive values for
the partial utility potential and a transformation of the original utility values to positive values
is required.

The restriction between the property of the advanced reactor and the test result, namely
that the test result is not bad if the properties indicate success is described with the partial
probability potential shown in Table 2.8. AIDs classify this constraint as functional constraint
as it describes a restriction on the possible outcomes of a chance variable. AIDs describe this
constraint only at the quantitative level and not at the qualitative level.

Advanced reactor success limited accident major accident

bad ⊥ 0.288 0.313

good 0.182 0.565 0.437

excellent 0.818 0.147 0.250

Table 2.8: Partial probability distribution of Result of Test.

Conclusion

AIDs are a special type of ID for the representation of asymmetric decision problems. First
AIDs take advantage of the representation of decisions without a total order based on the idea
of PIDs to represent conditional independent decisions with a partial order. This gives AIDs
the possibility to show the decisions without a complete sequence what is a more natural rep-
resentation in an asymmetric decision problem, where the occurrence of a decision may depend
on previous observations or decisions. AIDs adapt the ID formalism further by giving to its
components a special semantic for the representation of asymmetry. First AIDs use an adaption
of informational arcs, which describe a possible information precedence and allow therefore the
possibility that the variable is not available when taking the decision. Next AIDs use restric-
tional arcs to describe that the legal decision options for a decision may vary depending on the
informational state. Another component for the description of asymmetry are labels associated
with nodes or informational arcs, which describe under which conditions the node or the infor-
mational arc occur. Test-decisions and test-arcs describe the decision to look for more evidence,
what is useful for the description of information gathering patterns or diagnosis problems, where
the acquisition of information has a cost and therefore a decision to decide upon assuming this
cost must be included in the model. From the representation of the dating problem we have
seen how all these components — information arcs, test-decisions, restrictional arcs and labels
— are used to describe the conditioned scenarios and avoid the use of dummy states. AIDs are
suitable for the representation of structural asymmetry and distinguish further between the fact
that the occurrence of a variable is conditioned and the fact that the possible outcomes of a
variable or the decision options of a decision are conditioned. The first type of asymmetry is
described at the qualitative level with labels and is called structural asymmetry and the second
type of asymmetry is called functional asymmetry and is described at the quantitative level with
partial potentials (it is not represented always at the qualitative level). At the dating problem
appears only the first type of asymmetry but from the representation of the reactor problem we
have seen how functional asymmetry is expressed by means of the example of the restriction of
the test result on the test decision.
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The use of labels at the qualitative level, which describe conditions under which a variable
appears (i.e. structural asymmetry) is useful as the decision analyst can read information about
conditioned scenarios directly from the graphical model. This information about conditions at
the graphical level can be used further to break the original problem into smaller sub-problems,
so that the decision analyst can focus on a specific decision or see the different decision scenar-
ios, what improves the understanding of the decision problem, especially when the problem is
complex. But the use of labels can make the graphical model also more difficult to read when
the problem gets complex, especially when the nodes have large state spaces.

The representation of order asymmetry is described at the representation of the diabetes
problem. AIDs relax the requirement for a total ordering of decisions, which is required at IDs
to a partial order, when the decisions are independent. Therefore the representation of order
asymmetry depends on the definition of the problem and whether the problem can be repre-
sented as well-defined AID. A representation of the diabetes problem, where the test decisions
are represented directly at the model would not be a well-defined AID, because the explicit
representation of information precedence with information arcs would lead to a (unbroken) cy-
cle in the diagram. Therefore a representation with artificial nodes, which model the order of
the decisions is needed. From the representation of the diabetes problem, which is a two test
problem it became evident how complex would become the representation of the n-test problem
with AIDs. We can conclude that the representation of information precedence with information
arcs are the main reason why AIDs are unsuitable for the representation of order asymmetry.
The representation of the diabetes problem has shown also some limitations of test-decisions and
test-arcs. Test-arcs are in principle suitable to model a test problem, but they are unsatisfactory
when the decision is not binary, namely when the decision has several options a label is necessary
to specify to which decision the chance variable corresponds.

2.3.8 Unconstrained influence diagram representation

Unconstrained influence diagrams (UIDs) were first presented by Jensen & Vomlelová (2002).
UIDs are an extension of IDs designed to describe decision scenarios where the order of decisions
and observations is only partially specified. UIDs describe such problems with a partial temporal
order at the model and are therefore suitable for the representation of diagnosis or troubleshooting
problems.

UIDs were proposed because other formalisms known so far could not represent efficiently
order asymmetry. Also the PID framework was not completely satisfactory as it only allows to
represent decisions with a partial order when the representation of the problem is a well defined
PID (Nielsen & Jensen, 1999b). This means that the partial order of decisions represented in
the diagram must yield the same maximum expected utility when extended to a linear order.
Because of this limitation UIDs were proposed as they allow to represent decisions with a partial
order independent of the maximum expected utility of each of the linear extensions. It is the
solution algorithm, which is concerned with finding the optimal decision policy and the best
ordering of variables and decisions.

Definition

The specification of UIDs is similar to that of IDs. At the qualitative level a UID is a DAG
over three sets of nodes: a set of decision nodes D (represented with rectangles), a set of chance
variables C (represented with circles) and a set of utility nodes U (represented with diamond
shapes). UIDs describe explicitly when a chance node is observable (drawn with a double circle).
Non-observable chance nodes do not have decision nodes as children. A chance node becomes
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observable when all its preceding decisions are taken. The meaning of the arcs is similar to
that of IDs. An arc into a decision variable represents informational precedence, an arc into a
chance variable represents causal influence and a link into a utility variable represent functional
dependence.

The representation of the quantitative level is very similar to that of IDs. There are prob-
ability potentials associated to chance nodes and utility functions associated to utility nodes.
The local utility functions are additive factors of the total utility function. The UID represents
a partial order of the decisions and observations. The extension to different linear orders from
the partial order forms part of the solution process.

Evaluation

Although UIDs allow partial order of observations and decisions during the modeling phase, the
absolute order has to be considered during the solution phase. The solution of an UID (finding
the optimal strategy), is more complex than in the case of IDs. In UIDs the solution should
reveal the optimal decision policies but also the best ordering of variables and decisions. A
possible solution method of a UID could be to unfold it into a decision tree and compute the
optimal strategy. The authors of the formalism propose a more efficient solution based on the
construction of a S-DAG. This approach has the following steps:

◦ Define a partial temporal order from the structural specification, which is a graph repre-
senting the possible optimal temporal sequences of observations and decisions. This graph
contains a subset of all possible sequences of observations and decisions. This happens as
different orderings of cost-free observations or sequences of variables of the same type do
not influence the expected utility (EU) and therefore different sequences can be equivalent.

◦ Construct a strategy-DAG (S-DAG ), which is a directed acyclic graph representing possible
conditional orderings of the variables and calculate the set of step-policies and decision-
policies. The strategy of a S-DAG consists of a step-policy for each node and a decision
policy for each decision. A step-policy is a rule for each node that, based on the prede-
cessors of the node, specifies to which of its successors to go. The decision policy is a rule
that based on the predecessors of the node specifies which state of the decision to take.

◦ Given the S-DAG there exist two approaches to compute the optimal strategy: The first is
based on variable elimination and the second is to unfold the S-DAG into a strategy tree
and compute the expected utility from it.

Some time later two alternative solution methods for solving UIDs were proposed: the any space
algorithm of Ahlmann-Ohlsen et al. (2009) and the anytime algorithm of Luque et al. (2010).

UID representation of the diabetes problem

Figure 2.34 shows the UID representation of the diabetes problem. The test options are repre-
sented directly and the observable chance nodes are represented explicitly with a double circle.
The variable symptom can be observed without any cost. The variables Blood Test Result and
Urine Test Result become observable when the preceding decision has been taken. This example
shows how the representation with a partial order of the decisions allows to represent the test
decisions directly in the model. As consequence of modeling directly the specific test decisions
also the test results are specific, i.e., the state space of the Result of Test has only the possible
outcomes of one test. But as UIDs do not describe structural constraints explicitly, they need
to use dummy states to represent the fact that no result is available when the decision is to
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Figure 2.34: UID representation of the diabetes problem.

not perform the test. Therefore the state space of the test result contains an additional dummy
state, as shown in Table 2.9.

Blood Test not test test not test test

Diabetes absent absent present present

present 0 0.02 0 0.96

absent 0 0.98 0 0.04

no-result 1 0 1 0

Table 2.9: CPT of the variable Blood Test Result .

A description for the resolution of this problem with different algorithms can be found at
Luque et al. (2010). One of the solution approaches described there consists in calculating
the set of step-policies for the nodes Symptom, Blood Test Result and Urine Test Result and the
decision-policies for the decisions Blood Test, Urine Test and Therapy and calculate the expected
utility by unfolding the strategy into a strategy-tree. The S-DAG for the diabetes problem, which
represents all possible conditional orderings of the variables is shown in figure 2.35. This graph
shows that there exist only two admissible orders. Admissible orders are the extension of the
partial order of the UID to a linear order, what yields a influence diagram.
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Figure 2.35: S-DAG of the diabetes problem representation

At the literature appear two representations of this problem: Jensen et al. (2006) has a very
similar representation and Bielza et al. (2011) shows a slightly different one. The differences
of the latter regard the use of auxiliary variables, but not the use of the UID approach for the
representation of the problem.

From the representation of the diabetes problem we have seen that UIDs are suitable for the
description of diagnosis problems as they represent clearly the relation of the decision to make
a test and the information which is revealed from this test. UIDs admit a partial order of the
decisions what makes it possible to model order asymmetry efficiently. Further UIDs do not have
information arcs as the order of the decisions is partial. For this reason UIDs are suitable to
represent the n-test problem as they can represent each test decision directly with a relation to
the respective test result.

UID representation of the dating problem

Figure 2.36 shows the UID representation of the dating problem. The dating problem contains
several structural constraints as the decision scenarios are very different depending on the state
of previous observations and decisions. As these constraints are modeled implicitly at the quanti-
tative level with dummy states and degenerated probability and utility functions, no information
about structural constraints is available at the graphical model of the UID. The state space of the
variables include the same dummy states as those described in Table 2.4 for the ID representation
(see Section 2.3.4) .

The UID representation shows explicitly which variables are observable, but this information
is not relevant for the description of the dating problem. The variable TV is observable without
any action. The variables Accept and ToDo correspond to Emily’s responses and are therefore
observable. These variables become observed when the decision about asking for the date was
taken (Ask? ). The variable LikesMe is not observable as it corresponds to a feeling of Emily.
In the same sense the variable Club may not be observable as it corresponds to Joe’s valuation
of the quality of the music, etc. .On the contrary the variable MeetFriends is observable. The
variables TVExp, NCExp, mExp and rExp are observed as they determine Joe’s satisfaction with
spending the event in a certain way.
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Figure 2.36: UID representation of the dating problem.

UID representation of the reactor problem

Figure 2.37 shows the UID representation of the reactor problem. The variable Result of Test
becomes observable when the test decision is taken. The properties of the advanced reactor and
conventional reactor are not observable, therefore the correspondent variables are not observable.
The reactor problem contains only structural constraints but not order asymmetry. As structural
constraints are not explicitly representable with UIDs, the representation of the reactor problem
includes dummy states at the state space of the variables and degenerated probabilities and
utilities. The specification of the quantitative level is identical to that of the ID representation
of this problem explained in Section 2.3.4. In consequence the UID representation has the same
troubles as the ID representation because of the use of dummy states.

Conclusion

From the representation of the diabetes problem we have seen that UIDs can represent efficiently
order asymmetry as they describe the decisions with a partial order at the model, what allows
to represent the test decisions directly. UIDs represent diagnosis problems in a compact form,
as they represent clearly the relation of the decision to make a test and the information which is
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Figure 2.37: UID representation of the reactor problem.

revealed from this test. Further UIDs admit a partial order of decisions and they use observed
variables as alternative approach to information arcs to describe information precedence. Col-
lectively its ability to represent order asymmetry and the absence of information arcs make UIDs
appropriate for the representation of the n-test problem.

UIDs are the only model seen so far that have an alternative approach to information arcs to
describe information precedence. Nevertheless this shows also a limitation of UIDs. UIDs assume
that a variable is observed only when all its parent decision have been made. Therefore they
cannot represent problems in which a variable is observed as soon as any of its parent decision
is made. This is a limitation of UIDs, because there are IDs for which an equivalent UID does
not exist. This limitation does not happen for any other formalism discussed in this chapter.

Although UIDs are suitable for the representation of order asymmetry they have troubles
to represent structural asymmetry. As UIDs have no means to describe structural constraints
explicitly, they follow the inefficient approach of IDs of an artificial symmetrization with dummy
states. For this reason UIDs are unsuitable for representing decision problems with structural
asymmetry as we have seen at the representation of the dating and reactor problem.

2.3.9 Sequential influence diagram representation

Sequential influence diagrams (SIDs) were first presented by Jensen et al. (2006). This formalism
combines features from the asymmetric influence diagrams of Nielsen & Jensen (2000), sequential
valuation networks of Demirer & Shenoy (2006) and unconstrained influence diagrams of Jensen
& Vomlelová (2002). SIDs are well suited to model structural and order asymmetry. The SID
representation improves on the SVNs representation by using influence diagrams to represent
uncertainty, allowing unspecified/partial temporal orderings, like in UIDs, and allowing chance
nodes that do not appear in any scenario, like in AIDs.
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Definition

A SID represents in the same diagram a model for the description of uncertainty and a model for
the description of information precedence and asymmetric constraints. This approach is similar
to that of SVNs, but the uncertainty model of SIDs, which is not based on VNs, represents
conditional probabilities.

The graph of a SID is composed by three type of nodes: chance nodes (drawn as ellipses),
utility nodes (drawn as diamonds) and decision nodes (drawn as rectangles). The first model de-
scribes with continuous arcs probabilistic dependence relations for chance nodes (also referred to
as conditioning arcs) and functional relations for utility nodes. The second underlying diagram
of a SID encodes informational precedence, structural and order asymmetry. This diagram is a
compact sequence diagram, which describes under which conditions the decisions and observa-
tions appear. This information is represented with dashed lines, which are called structural arcs.
Structural arcs encode the structure of the decision problem, such as information precedence and
asymmetry, by using annotations. An annotation g(x, y) of a structural arc between the node
X and Y (also termed guard) describes the condition under which the next node in the set of
scenarios is the node that the arc points to; when the condition is fulfilled the arc is said to
be open. If there are constraints on the choices at any decision node, then this is specified at
the second part of the annotation. The set of scenarios defined by a SID can be identified by
iteratively following the open arcs from a source node (node without incoming arcs) until a node
is reached with no outcoming arcs. The SID formalism distinguishes between observable and
non-observable variables. Observable variables are associated to structural arcs. A variable is
said to be observable if there is at least one decision scenario in which the state of X is observed.
SIDs use clusters to describe partial temporal orderings. Clusters are a collection of nodes where
the temporal ordering of the nodes inside the cluster is not totally specified. The cluster itself
is treated as a single node in terms of information precedence in reference to the preceding and
subsequent nodes. Clusters allow the temporal ordering of decisions to be unspecified. This
approach is the same as that of the UID representation, where the specification of the order of
the decisions is postponed to the solution phase and is not considered at the modeling phase.
This implies that the solution of the SID looks not only for an optimal strategy for the decisions
but also for an optimal conditional ordering of the decisions.

Evaluation

The solution approach for a SID is a decomposition of the asymmetric problem in smaller sym-
metric sub-problems, which can be solved recursively. The symmetric sub-problems are organized
in a decomposition graph, which is constructed by following the temporal ordering of the variables
and which is used as computational structure for organizing the sequence of variable eliminations
of the solution process.

SID representation of the diabetes problem

The diabetes problem is represented as SID in the literature in Bielza et al. (2011) and Jensen
et al. (2006). Figure 2.38 shows the SID representation of the diabetes problem according to
Jensen et al. (2006). This representation shows a cluster of nodes (depicted with a dashed circle)
which describes a part of the model with a partial temporal ordering, namely the partial ordering
of the Blood Test, Urine Test and the related test result variables. This cluster describes that
the test decisions precede the respective test results (Blood Test < Blood Test Result and Urine
Test < Urine Test Result), but that the ordering of the decisions is unspecified. The outgoing
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Figure 2.38: SID representation of the diabetes problem.

structural arc from the cluster to the decision node Therapy means that the test decisions happen
before the decision of the therapy is made.

The structural arcs between a test decision and the test result node mean that the result
is only revealed if the test is performed. This condition is described with a label above the
structural arc. In the diabetes problem the specification of the condition is very simple, because
the test node is the first node in the model, but the description for the condition formally includes
the sequence of previous decisions and observations which make the arc relevant.

SIDs follow the approach of UIDs of admitting partial temporal orders for parts of the prob-
lem, where the order of decisions is unspecified. This solution avoids to describe explicitly in
the model the possible decision sequences. This makes SIDs suitable for the representation of
order asymmetry and diagnosis problems. Regarding the representation of the n-test we can say
that SIDs can easily represent this problem, as they follow the same approach as UIDs, which
are suitable for the n-test problem. The representation of the n-test problem would be an ex-
tension of the model shown at figure 2.38, where the n-tests and their respective results would
be represented inside the cluster, with unspecified temporal order.



68 CHAPTER 2. STATE OF THE ART

SID representation of the dating problem
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Figure 2.39: SID representation of the dating problem.

Figure 2.39 shows the SID representation of the dating problem according to Jensen et al. (2006).
The structural arcs describe explicitly the very different scenarios of the dating problem. Starting
from the Ask? node, which does not have any incoming arc, the scenarios can be built by
following the open arcs. The structural asymmetry becomes very clear as the set of scenarios is
very different depending on the value of decisions and observations, which are annotated above
the arcs. For example, the set of scenarios for the decision option Accept=no is very different from
that of the decision option Accept=yes. Another example of the existence of disjoint scenarios
are the annotations of the arcs outgoing from the node ToDo, which describe a disjunction.

The graphic model also contains conditioning arcs, which denote causal influence. The node
Accept has a casual influence on ToDo and is an informational predecessor, what is described
with an conditioning arc and a structural arc. The representation of the dating problem contains
also a cluster of nodes (depicted with a dashed circle) which describe parts of the problem with
unspecified temporal order. The order of the nodes MeetFr and Club are unspecified, but their
overall position in terms of information precedence is specified as they are observed after NClub
but before NCExp. The use of both structural arcs and conditioning arcs allow the SID to describe
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the problem without merging their semantics. The cluster formed by Club and MeetFr uses both
conditioning arcs to describe the probabilistic influence on NCExp and structural arcs to describe
the informational precedence of the cluster in reference to NCExp. The representation of the
dating problem also shows variables which are neither observed at any decision scenario and are
not part of the domain of any utility function. So the variables LikesMe, mMood and rMood
appear only as they play a role for mediating the probability of mExp and rExp respectively. The
representation of these unobserved variable at SIDs are an improvement with respect to SVNs,
as explained at Section 2.3.6.

SID representation of the reactor problem
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Figure 2.40: SID representation of the reactor problem

Figure 2.40 shows the SID representation for the reactor problem according to Jensen et al.
(2006). The sequence of the decisions and observations is described explicit with structural arcs.
Starting from the decision Test Decision, which does not have any incoming arcs, the distinct
scenarios can be built following the structural arcs. The labels above the structural arcs describe
under which conditions an arc is feasible. For example the variable Result of Test does not appear
at the decision scenario when the Test Decision is not to perform the test (nt). In this case the
Build Decision is the next node in the scenario. The reactor problem contains also a more complex
case of structural asymmetry, namely the constraint of the test result on the Build Decision.
This constraint is described with a composed annotation where the decision is conditioned on
previous decisions and observations and appears at the structural arc between Build Decision
and Advanced reactor. This arc has the annotation ba|(T = nt∨(T = t∧(R = e∨R = g)) , which
means that the decision to build an advanced reactor can only be taken when the test is not
performed (T=nt) or the test result has been excellent or good. This annotation abbreviates Test
Decision as T and Result of Test as R. This description does not represent at the graphical level
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the restrictive influence of the Result of Test on the Build Decision as the annotation appears
on the outgoing arc of the Build Decision and the guard may appear abbreviated at the graph.

The scenarios end either with the event of building an advanced reactor, building a con-
ventional reactor or none according to the alternative choosen at Build Decision and indicated
above the outgoing arcs of Build Decision. The utility nodes, which represent the benefit of
constructing a certain type of reactor (U2,U3,U4) are specified as fragments, where the utility
value is only given for the relevant decision option (U2|ba, U3|bc, U4|bn). This corresponds to the
approach taken from AIDs and SVNs to describe explicit logically inconsistent configurations.
Nevertheless the constraint between the advanced reactor’s components and the Result of Test,
namely that the combination {as,b} is not possible is not described explicitly with a label as the
property of the advanced reactor is not observed before the test result. The SID representation
describes this constraint assigning a zero probability value to the incompatible combination.

Conclusion

SIDs are a very interesting formalism for representing asymmetric decision problems as they take
the best features of UIDs, SVNs and AIDs and improve other aspects related to the representation
of asymmetry.

SIDs admit that parts of the model have a partial temporal order of decisions (represented
with cluster), a feature taken from the UID formalism. This is useful for the representation of
problems where some decisions have an undefined temporal order (order asymmetry) as it avoids
to represent all possible sequences of decisions and observations at the model, what obscures
the structure of the problem. SIDs represent the parts of the problem having a partial order as
clusters, describing concisely with structural arcs the position of the cluster in reference to the
other parts of the problem. From the representation of the diabetes and dating problem we have
seen how clusters are used to describe parts of the problems with order asymmetry.

Although SIDs allow parts of the model having a partial order, the overall description of the
model is a total order of decisions and observations. SIDs use a SDD based graph which describes
in a compact form the possible decision scenarios. This graph is formed by structural arcs which
describe under which conditions a variable appears, thus giving information about the sequence
of decisions and observations and the details of structural constraints. This approach is useful for
the description of conditioned and disjoint scenarios, i.e., when a variable may be non-existent
in certain conditions, such as we have seen at the representation of the dating problem. The
decision analyst can read directly from the model under which conditions a variable appears. The
approach to base the description of the asymmetric constraints only at the model which describes
the chronological order can also be an inconvenient. If the variables which define a restriction
are not observed successively or several variables are involved, the label above the arcs (i.e. the
guard) needs to specify these conditions in the second part of the annotation. This information
does not appear at the graphical level and does not describe the cause-effect relation between the
involved variables. SIDs propose guards, which are a language for the description of conditions
under which a variable appears taking into account previous decisions and observations as an
alternative to indicator valuations and the description of constraints at the functional level of
AIDs. Although the description with guards is concise and easy to understand, it is implicit to
the model and does not represent explicit the restrictive influence of a variable on another. At
the reactor problem we have seen an example of the description of such a complex constraint
with guards, where the description of the restrictive influence of the Result of Test on the Build
Decision is not obvious from the diagram.

Another important aspect of SIDs regards the representation of the uncertainty model. SIDs
use a BN based model to represent probability relationships. This implies the implicit represen-
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tation of direct and conditional probabilities at the model, which are intuitive to understand and
to assess from humans. This is a modification of SVNs, which represent the probability model
with valuations at a separated model. Although SVNs are also able to represent conditional and
direct probabilities, the representation with valuations is not that intuitive to understand, but it
has the advantage that they describe clearly separated from the model of order the probabilistic
relationships. Although SIDs also distinguish these descriptions, by representing conditioning
arcs with solid lines and structural arcs with dashed lines, the probabilistic dependences are rep-
resented implicit in the graph. It is to see whether the combination of the model of order with the
uncertainty model or whether a valuation based representation is better when the probabilistic
relations involve variables which are not observed sequentially or when the problem involves a
large quantity of observed variables. The SID formalism nevertheless improves an important
shortcoming of the SVNs as they permit to represent unobserved variables, which are useful for
the description of probabilities, but would not appear in the corresponding SVN. This difference
is described at the respective representations of the dating problem.

From the representation of the three asymmetric decision problems we can conclude that
SIDs are suitable both for the representation of order and structural asymmetry. SIDs combine
a probabilistic model and a model for the description of information precedence and structural
constraints at the same diagram, what makes them very expressive for the description and
analysis of decision problems.

2.4 Conclusion of the review

In this chapter we have revised the state of art regarding the representation of decision problems
with PGMs. We have seen how the description of conditional independence assumptions makes
them a powerful tool for the description and analysis of decision problems. Further we have seen
that the most common decision analysis models, namely IDs and DTs, are unsuitable for the
representation of real-world problems with asymmetry. IDs resulted unsuitable as they need to
symmetrize the problem artificially, what obscures the structure of the problem and increases
the time and space requirement. DTs have almost absolute flexibility to represent order and
structural asymmetry, but due to their exponential growth with the number of variables they
are unable to represent large problems.

Several other formalisms were proposed which address specifically the representation of asym-
metry. EIDs combine the representation of the uncertainty model of IDs with tree-like structures
to capture the asymmetric aspects of a problem, but are not suitable for decision analysis in prac-
tice as the representation of a problem comprises lots of small diagrams. Another formalism we
have seen are SVNs. This formalism combines a VN based representation of the uncertainty
model with the representation of the order of decisions and observations and describes simple
constraints with labels and complex constraints with indicator valuations. When SVNs were
proposed, they were the most complete formalism for asymmetric decision problems at that
moment, although later several formalisms for treating order asymmetry more appropriately ap-
peared. The representation of order asymmetry was resolved best with UIDs, which are very
suitable for diagnosis and trouble-shooting problems, where the representation of order asym-
metry is more important than that of structural asymmetry, which is not resolved at UIDs.
Nevertheless UIDs have a major limitation: UIDs assume that a variable is observed only when
all its parent decision have been made. Therefore they cannot represent problems in which a
variable is observed as soon as any of its parent decision is made. This is a limitation of UIDs,
which does not happen for any other formalism discussed in this chapter, because there are IDs
for which an equivalent UID does not exist. Another formalism we have seen are AIDs, which
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adapt the semantics of the arcs and nodes of IDs for the representation of non-sequential de-
cisions and conditioned scenarios showing labels to describe under which condition a variable
appears. Nevertheless AIDs only represent structural asymmetry efficiently but have difficulties
to represent order asymmetry.

To date SIDs are the most complete framework for the representation of asymmetric decision
problems, because they are suitable to represent both order and structural asymmetry. We have
seen that SIDs use an ID based model to describe uncertainty combined with a compact but
explicit representation of the decision scenarios, which make visible the information precedence
and asymmetric constraints. SIDs combine the research of the two groups that have worked more
in formalisms for asymmetric decision problems: These are Prakash Shenoy and collaborators
from the School of Business of the University of Kansas (United States), which proposed SVNs,
and the Machine Intelligence Group1 of the Aalborg University (Denmark), which directed by
Finn Jensen and in collaboration with Thomas Nielsen and Marta Vomlelová proposed UIDs and
AIDs. As a result of this collaboration SIDs combine the best features of SVNs, AIDs and UIDs
and are very suitable for the representation of asymmetric decision problems.

1http://www.cs.aau.dk/research/MI



3 Decision analysis networks

This chapter introduces the decision analysis network (DAN) formalism. In the first section we
give a formal description of the formalism and in the second we describe how DANs represent
asymmetry, illustrating the solution by means of the three asymmetric decision problems studied
in the previous chapter. At the third section we present a detailed comparison of the DAN
representation to the respective solutions of the alternative formalisms (i.e., the formalisms known
so far) and at the fourth section we present the results of the comparison.

3.1 Decision Analysis network representation

Decision Analysis networks (DANs) are a new type of probabilistic graphical model for modeling
asymmetric decision problems proposed by Dı́ez & Luque (2010). This formalism is intended
to represent order and structural asymmetry more naturally than the alternative formalisms
proposed earlier.

3.1.1 Definition

Graph and variables

A DAN is an acyclic directed graph (DAG) composed of chance variables, decision variables and
utility variables, with a semantic similar to that of IDs: chance variables represent real-world
properties that are not under the control of the decision maker, decision variable represent the
alternatives a decision maker has for a decision and utilities represent the preferences of the
decision maker.

Temporal order

Unlike IDs, DANs do not require total order between decisions. Nevertheless if there exists a
directed path from decision D1 to decision D2, then D1 will be made before D2.

Restrictions

DANs have the ability to describe restrictions associated to links. A restriction expresses the
incompatibility between certain values of two variables connected by a directed link X → Y ,
where X is a decision or chance node. A link restriction limits the values of Y to a subset of
its domain and describes conditions which make a variable non-existent in a scenario or which
make the variable appear with a subset of its values. In both cases if a variable does not exist in
a given scenario it does not have any effect on other variables:

◦ A variable Y does not appear in a certain scenario (i.e., it is non-existent) if all of its values
are forbidden by a state of the conditioning variable X, i.e., the allowed values of Y are
Y ′ = Ø. This type of restriction is termed total restriction and is represented with a double
stripe crossing the link.

73



74 CHAPTER 3. DECISION ANALYSIS NETWORKS

◦ A variable Y appears with a subset of its values in a certain scenario if a state of the
conditioning variable X forbids some of its value but not all values, i.e the allowed values
of Y are Y ′ ⊂ Y and Y ′ 6= Ø. This type of restriction is termed partial restriction and is
represented with a single stripe crossing the link.

If both types of restriction occur at a link, i.e., one value of the conditioning variable X forbids all
values of Y (total restriction) and another value of X the conditioning variable forbids only some
values of Y (partial restriction), this is represented as total restriction graphically describing that
the variable Y does not appear in at least one scenario.

The restrictions associated to a link X → Y can be represented by means of a potential ψ
defined on X × Y , such that ψ(x, y) = 1 expresses compatibility and ψ(x, y) = 0 incompatibility.
The meaning of a restriction potential depends on the type of the restricted variable:

◦ A restriction on a decision describes the available options for the different scenarios of
information.

◦ A restriction on a chance variable indicates which outcomes of a variable are possible for
the different conditioning states.

◦ A restriction potential on a utility describes the possibility that a decision option or a state
of a chance variable has a utility value. Only possible states can have a utility value as
they correspond to real states of the world. Impossible states have a special value assigned,
which is an explicit description that a state never occurs.

Potentials

The probabilistic model comprises conditional probability distributions and utility distributions,
which are both represented as potentials and associated to chance variables or utility nodes
respectively.

A conditional probability distribution (CPT ) associated to each chance node denotes the
conditioning influence of the parent nodes on the chance node. In DANs the potential of a
chance node Y whose parents in the graph are X, denoted by P (y|x), is the conditional prob-
ability distribution of the node Y based on its parents, which takes into account the existence
of restrictions between the node and any of its parents. The resulting potential P (y|x) satisfies
theses three conditions:

◦ P (y|x) ε [0, 1] ∪ {−}

◦ If there is a restriction (xi, y) and x↓Xi = xi (i.e., the i-th value of the configuration x is
the same as xiin the restriction), then P (y|x)= {−}. This means that all the combinations
of the potential P (y|x), where X takes the value xi are impossible, which means that the
state y never occurs when the event X takes the value xi.

◦ For each configuration x of X, if some of the values of P (x|y) are real-numbers, then their
sum is 1.

A utility distribution is associated to each utility node, where the parent nodes define the domain
of the utility distribution. In DANs the potential of a utility node Y whose parents in the graph
are X is denoted by U(x). As in IDs, this utility distribution stores a value for each of the parent
configurations. The potential U(x) takes into account the existence of restrictions between the
node Y and any of its parents and therefore the resulting potential U(y|x) satisfies theses two
conditions:
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◦ U(x)ε R ∪ {−}

◦ If there is a restriction (xi, y), it means that certain states of xi are not possible, and
x↓Xi = xi (i.e., the i-th value of the configuration x is the same as xi in the restriction),
then U(x)= {−}. This value describes that certain states of the world are impossible and
therefore can not have a utility value.

Representing the flow of information

DANs use two mechanisms to describe the flow of information: always-observed variables and
revelation arcs.

A chance variable can be declared as always-observed, what means that its value is known
without taking any action. Always-observed variables are depicted with a dark red colored
border. Another mechanism to describe the flow of information are revelation arcs, which are
represented graphically as links with a dark red color. A revelation arc between X and Y , where
X is a chance or decision variable and Y is a chance variable, means that certain values of X
reveal the values of Y . In consequence the value of Y gets known for future decisions. The
function of revelation arcs is therefore the equivalent of information arcs in IDs: they describe
which variables are known for a decision, but with the subtle difference that revelation arcs
denote possible information precedence. A revelation arc has only effect if the variable X is
known and X takes any of the values which reveal Y .

A variable is known with certainty if it is always-observed, and it is (potentially) known if
a revelation arc points to it. In order to analyze which variables are known for a decision D,
the decision analyst must consider the variables revealed by always-observed variables and those
revealed by previous decisions. As DANs allow the temporal order of decisions be unspecified, a
previous decision can be a decision with an explicit temporal order or a decision with unspecified
temporal order in reference to the current decision. A decision with unspecified temporal order
must satisfy an additional requirement in order to reveal a variable, i.e., it must happen effectively
before the current decision.

Meaning of links

In summary the links at a DAN can express different kinds of relations. The meaning of an arc
X→Y depends on the type of variables it connects:

◦ Causal influence: If Y is a chance variable, the linkX→Y describes causal influence. When
the variable X does not exist in a scenario, i.e., when all its values are impossible, then Y
does not exist in that scenario.

◦ Functional dependence: If Y is a utility, the link X→Y describes functional dependence.
The variable Y does not make sense when the variable X does not exist.

◦ Temporal order : If both X and Y are decisions, the link X→Y describes the temporal
precedence of X in reference to Y , i.e., X is made before Y .

◦ Restriction: If X is a decision or chance node, the link X→Y describes restrictions on Y
imposed by X. When X exists and its value is known this restriction becomes effective at
the moment of doing inference, by limiting the values of Y that can be chosen.

◦ Revelation: If Y is a chance variable and X is a decision or chance, the link X→Y describes
that some values of the variable X reveal the values of the variable Y .

The first three meanings are similar to that of IDs. Revelation arcs substitute information arcs
in IDs.
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3.1.2 Evaluation

Dı́ez & Luque (2010) propose as evaluation method of a DAN the transformation to an equivalent
DT. The authors of the formalism mention the development of more efficient algorithms for future
work (see Section 5.2 regarding future work) and remark that the purpose of the conversion to
the equivalent DT is to give a clear semantics of the model.

The transformation into an equivalent DT has further the advantage that decision analysts
from other fields of research can understand the proposed model of DANs better. DTs are easy to
understand because they fully depict the decision scenarios and humans tend to analyze decision
problems by figuring out the possible scenarios (Lacave et al., 2007). In fact in medicine for
example the standard analysis tools are DTs as explained by Pauker & Wong (2005) while IDs
are almost unknown.

The construction of an equivalent DT is based on the chronological order in which observations
and decisions happen. The always observed variables are placed at the beginning of the tree
followed by the variables they reveal. Next appear in chronological order the decisions and the
variables each decision reveals. If the order between decisions is unspecified an additional node
which specifies the order is necessary. The not observed variables are placed at the end of the
tree. This approach yields a tree structure and the conditioned probabilities of the branches are
obtained from the joint probabilities of the end scenarios using normalization.

3.2 Representation of asymmetric decision problems

3.2.1 DAN representation of the diabetes problem

Figure 3.1: DAN representation of the diabetes problem.
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Figure 3.1 shows a DAN for the diabetes problem. As DANs do not require a total order of
decisions, i.e., they admit partial order, they are able to represent naturally the diabetes problem,
where the order of the tests is undefined, by representing directly the test decisions and their
correspondent test results in the model. This allows DANs to model efficiently order asymmetry
and makes them suitable for the representation of diagnosis problems as they represent clearly
the relation between the decision to make a test and the information which is revealed by this
test. The diabetes problem contains a simple case of structural asymmetry. The constraints
between the two tests and their respective results are described with link restrictions between
the test decision nodes ant the test result node. The link restrictions establish that the decision
about performing the test restricts the values of the test result. The decision of not to perform
a test make all values of the test result impossible, what is a type of total restriction represented
with a double stripe crossing the link. Figure 3.2a shows the GUI of OpenMarkov for the edition
of link restrictions. This dialog shows that the combinations of not test are incompatible with
any value of the test result. Compatible combinations appear in green color and incompatible
combinations in red color.

Due to the occurrence of incompatibility between the test decision and the test result, some
states of the test result become impossible. Figure 3.2b shows the conditioned probability table
(CPT) of the test result variable. This table shows impossible states in red color.

The test decisions establish also restrictions on the utility of the cost of the test. The variable
Cost of the Test does not make sense when the decision is not to perform the test. The GUI
for the edition of the restrictions on the utility values is shown in Figure 3.2c and the resulting
utility values are shown in Figure 3.2d, where impossible states appear in red color.

In the formalisms that have no means to model constraints, structural constraints are repre-
sented by adding dummy states to the test result variable to express that a state is not available
in certain scenarios, and negative utility values are assigned to impossible states to avoid that
those states are chosen by the solution algorithm. The use of dummy states obscures the struc-
ture of the problem and augments the space and time requirements for solving the problem. In
this aspect DANs have an advantage over other formalisms as they can describe constraints with
link restrictions and maintain the state space of the variable small. The state space of the test
result variable in DANs has a cardinality of two and makes the representation of its conditional
probability table very compact (see Figure 3.2b ).

While link restrictions express constraints between variables, revelation arcs denote the flow
of information. A revelation arc describes possible information precedence. The diabetes problem
contains two revelation arcs between each of the test decisions and the respective test results.
Figure 3.2e shows the GUI of OpenMarkov for the edition of the revealing states of the Blood
Test. This revelation arc means that the test result becomes known when the decision is to
perform the test. The test decisions are prior to the decision about the therapy (as specified
with the arc of temporal precedence). So the test results are variables which are potentially
known when taking the decision on the therapy. The fact that these variables are effectively
known depends whether the test decision reveals the value of the test result.

As the temporal order between the two test decisions is unspecified, the informational prece-
dence for the test decisions depends further on whether the other test happens before. For
example when deciding on the Blood Test the Urine Test Result is known when the decision
about the Urine Test has been made before and the decision was to perform the urine test. The
diabetes problem shows clearly how revelation arcs describe possible information precedence.
The fact whether a variable is revealed depends on the particular values the revealing variable
take and the effective order in which events and decisions happen.

Note that link restrictions must be coherent with revelation conditions. A state of a variable
cannot be a revealing condition for another variable if it restricts all values of that variable.
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(a) Edition of compatibility values for a chance variable.

(b) Edition of a CPT.

(c) Edition of compatibility values for an utility.

(d) Edition of utility values.

(e) Edition of revelation conditions.

Figure 3.2: Edition of link restrictions and revelation conditions for the diabetes problem.
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Correspondingly a state of a variable, which is a revealing condition for another variable can
not restrict all of its values. The control of these conditions is not implemented currently in
OpenMarkov, but it is a logical requirement of the model. In the case of the diabetes problem
the variables Test Decision and Test Result satisfy these conditions. The state not test of the
test decision is not a revealing condition as it restricts all values of the test result, and the state
test, which is a revealing condition, does not restrict any values of the test result.

From the description of the DAN representation of the diabetes problem we have seen how
link restrictions and revelation arcs are used to describe the relation between the test decision and
the test result. The link restrictions describe that the test result does not exist in all scenarios
and the revelation arcs describe that the test result is only known when the test is performed and
gets known for future decisions. As DANs admit an unspecified order of the decisions the test
decision can be represented directly and the states space of the test result variable only contain
the possible states of the test result. Further information precedence is expressed with revelation
arcs which are local and independent from the complexity of the problem. Collectively all these
features make the DAN formalism suitable for the representation of the n-test problem.

Construction of the equivalent decision tree

This section explains the transformation of the DAN representation of the diabetes problem
to its equivalent DT. The equivalent DT of the diabetes problem is shown in Figure 3.3. The
always-observed variable Symptom (S ) is placed in the first position, followed by the decisions.
As the order between the tests is unspecified it is necessary to add an extra node representing
the choice of order (OD) before the test decisions. Each branch contains the variable that is
revealed according to the test and test decision. Finally the unobserved variable Disease (D) is
placed at the end of the tree.

Figure 3.3: Equivalent decision tree for the DAN of the diabetes problem.

Once constructed the graphical structure it is necessary to calculate the probability of each
branch in order to evaluate each branch and find the optimal strategy. The probability of a
branch can be calculated from the probabilities of the scenarios using the theorem of conditional
probability. The probability of a scenario is the joint probability for the values of its variables.
The probability of a branch leading to a scenario is the probability of the variable of the branch
conditioned on the values of the variables on the left of the branch. The appendix A.1 explains
in detail the computations of the conditioned probabilities for the upper branch of the decision
tree shown in Figure 3.3.
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3.2.2 DAN representation of the dating problem

Figure 3.4: DAN representation of the dating problem.

The DAN representation of the dating problem is shown in Figure 3.4. This graph shows that
the chance variable TV is always-observed as its value is known without taking any action. The
arc between Ask? and NClub? denotes temporal precedence, so the decision Ask? is the first
decision to take in this decision problem.

The existence of conditioned scenarios is expressed by the use of link restrictions, which
are graphically depicted as double stripes crossing the link. Although the details about the
restrictions are not shown with labels at the graph, the decision analyst deduces information
about the existence of conditioned or even disjoint scenarios from the graph. The detailed
information about the restrictions can be accessed by selecting the link and opening the link
restriction table. The information flow is described with revelation arcs which are shown as links
with a red dark color at the graph. Revelation arcs describe under which conditions a variable
gets known. The details about which states are a revelation condition is not shown either with
labels in the graph but can be easily accessed by selecting the link and going to the edition
of revelation conditions. The next section explains how the DANs use revelation arcs and link
restrictions to describe the asymmetry of the dating problem.
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The graphical model of the DAN shows information flow by the use of revelation arcs at
different times:

◦ The revelation arc from Ask? to Accept describes that when Joe decides to ask Emily for
a date the values of the variable Accept are revealed.

◦ The revelation arc from Accept to ToDo indicates that if Emily decides to accept the date
her preferences get known (either go to a restaurant or see a movie).

◦ The revelation arc from Movie to mExp describes that the choice for a type of movie reveals
the post-movie experience of Joe

◦ The revelation arc from Restaurant to rExp describes that the choice for a type of restaurant
reveals the post-restaurant experience of Emily.

◦ The revelation arc from NClub? to TVExp denotes that the values of the TVExp are
revealed if the decision is not to go to the nightclub.

◦ The revelation arcs from NClub? to Club or MeetFr describes that these observations are
made if the decision is to go to the nightclub.

The dating problem contains very different scenarios depending on the state of different obser-
vations or decisions. DANs use link restrictions to describe constraints, which lead to situations
where a given variable does not exist. The representation of the dating problem contains link
restrictions in different situations:

◦ If Joe decides not to ask Emily for the date (Ask? ), he will never know whether she would
accept or not. The variable Accept is non-existent if the decision is not to ask for the date
(Ask?=no).

◦ If Emily does accept the date, the variable NClub is non-existent, as Joe does not consider
the option to go to the nightclub any more.

◦ If Emily does not accept the date, the variable ToDo is non-existent, as Joe will not ask
for her preferences.

◦ The decision whether to watch a movie or go to a restaurant (ToDo) restricts the values of
the subsequent decision. If Emily decides to see a movie, the choice of the restaurant does
not happen. If the decision is to go to a restaurant the decision about the type of movie
never occurs.

◦ The constraints between NClub and Club and MeetFr describe that these variables will not
exist if the decision is to stay at home. In the same way the link restriction between NClub
and TVExp denotes that the variable TVExp will not exist if the decision is to go to the
nightclub.

This section gives a detailed description of two of the link restrictions in order to illustrate how
link restrictions are used to describe conditioned scenarios. The first example is the appearance
of two disjoint scenarios as a consequence of the decision ToDo (see Figure 3.4). The decision
Movie does not happen when Emily decides to go to the restaurant (ToDo=restaurant) and the
decision of Restaurant does not happen when Emily decides to see a movie (ToDo=movie). This
is described by associating link restrictions to the outgoing arcs of ToDo, which restrict the state
space of Movie and Restaurant in each case. Figure 3.5a shows the link restriction table for the
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link between ToDo and Movie. This table shows that the variable Movie does not exist when
the decision is to go to the restaurant.

Another example is the use of a link restriction to describe the conditioning of ToDo on
Accept. The observation about Emily preferences (ToDo) only happens when she accepts the
date (Accept=yes). Figure 3.5b shows the corresponding link restriction table, which shows that
the variable ToDo does not exist when the variable Accept has the value no. As a consequence
to these incompatibility the CPT of the variable ToDo contains some impossible states (Figure
3.5c). This table depicts with red color impossible states, which have also a probability of zero.

(a) Link restriction from ToDo to Movie.

(b) Link restriction from Accept to ToDo.

(c) CPT of the variable ToDo.

Figure 3.5: Link restrictions of the dating problem.

The solution process of the DAN consists of the transformation to its equivalent decision tree.
For the construction of the tree the decision analyst needs to know the order in which chance
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variables and decisions get known. DANs use revelation arcs, temporal arcs between decisions
and always-observed variables to describe the order in which observations and decisions are made.
From the DAN representation of the dating problem (see Figure 3.4) we can see that the variable
TV is initially observable. Following the flow of information described by revelation arcs it is
possible to obtain an ordering of the rest of the variables. The resulting decision tree has the
structure which is explained below.

At the tree first appears the variable TV, which is always observed. Next appears the first
decision, which is the decision to ask for the date (Ask? ) and the variables which get observed
by it (NClub? or Accept). In the case Joe gets the date (Ask=yes and Accept=yes) the variable
ToDo gets known. At this branch the next decision is to select either the movie or the restaurant
which will make the variables mMood or rMood observed. In the case that Joe did not get the
date (Ask=no or Accept=no), the next decision is NClub. If the decision is not to go to the
nightclub the TVExp variable gets observed. If the opposite decision is taken (Nclub=yes), both
the variables Club and MeetFriends get observed, but the order of them is not specified. The
resulting decision tree is depicted in figure 2.6, where only the upper branch is shown with detail.
The tree shows the asymmetry of the problem as not all variables appear in every branch.

3.2.3 DAN representation of the reactor problem

Figure 3.6: DAN representation of the reactor problem.

Figure 3.6 shows the DAN representation for the reactor problem. The node Test decision
represents the decision to perform a test of the components of the advanced reactor. The states
of Test decision are {test, no test}. The node Cost of test shows the cost of the test. The
node Result of test represents the test results with the states {bad, good, excellent}, which are
influenced by the reliability of an advanced reactor. When the component of the advanced reactor
is success, the test result can not be bad. Additionally the test results restrict the decision on
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which type of reactor to build (Build decision). The build decision has the options to build an
advanced reactor, a conventional reactor or none. The decision to build a reactor influences the
result of a conventional reactor or the result of an advanced reactor. If the test result is bad an
advanced reactor is not allowed. If the test is not performed all types of reactors are allowed.
The utilities associated to each type of reactor show the profit of building an advanced reactor
or a conventional one for each case of success and failure. The next section explains how DANs
implement the constraints of this problem.

The decision on performing the test restricts the values of the test result. The corresponding
values of the link restriction are shown in Figure 3.7. This table shows that the test result does
not exist when the test is not performed:

Figure 3.7: Link restriction from Test decision to Result of test.

The restriction between the Reliability of the advanced reactor and the Result of test is a
partial restriction as for the value success the variable Result of test appears with a subset of its
values. In the graph this restriction is represented with a single stripe crossing the link. Figure
3.8 shows the GUI for the edition of the compatibility values, which shows that the test result
can not be bad when the component of the advanced reactor indicate success.

Figure 3.8: Link restriction from Advanced reactor reliability to Result of test.

In consequence of the occurrence of the two link restrictions described before some states of
the Result of test are impossible. The probability distribution of Result of test conditioned on
the Test decision and Advanced reactor reliability is shown in Figure 3.9. This table shows all
incompatible combinations with red color and a probability with value zero.
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Figure 3.9: CPT of the variable Result of test.

Some values of the Result of test restrict the values of the Build decision. In particular when
the test result is bad the option of building an advanced reactor is not available (see Figure 3.10).
This type of restriction is a partial restriction as the variable Build decision appears for all values
of Result of test, what is represented with a single stripe crossing the link at the graphical level.

Figure 3.10: Link restriction between Result of test and Build decision.

The Build decision has a composed constraint, which means that an advanced reactor is not
allowed if the test result is bad, but if the test is not performed any type of reactor can be built.
Although this is not a very realistic assumption, DANs allow to model this constraint in the
following way:

◦ The link restriction between Result of test and Build decision described before implements
the restriction when the test result is available.

◦ If the test is not performed the Result of test is non-existent because of the link restriction
between Test decision and Result of test described before. In this case the restrictions
imposed by Result of test on Build decision are not relevant and do not influence the
decision. This allows to build an advanced reactor independently from any test result as
this is not available.

The link between the decision to build a reactor and the result of each type of reactor means that
the event of building a given type of reactor is restricted to deciding to construct this type of
reactor. Figure 3.11 shows the link restriction of the link between Build decision and the Result
of advanced reactor, where only the values for the advanced reactor type are compatibles.
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Figure 3.11: Link restriction between Build decision and Result of advanced reactor.

When the decision to build a certain type of reactor is made, the values of the result of reactor
of the given type are observable. This is expressed by means of a revelation arc between Build
decision and each of the result of reactor nodes. For the Result of advanced reactor the state
construct advanced reactor is a revealing condition and for the Result of conventional reactor it
is the state construct conventional reactor. Figure 3.12 shows the CPT of the variable Result
of advanced reactor. The table shows that only the values related to the decision to build an
advanced are compatible.

Figure 3.12: CPT for the variable Result of advanced reactor.

Figure 3.13 shows the utility values of the Benefit of advanced reactor, where only the possible
states are shown.

Figure 3.13: Utility values of the Benefit of advanced reactor.
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3.2.4 Conclusion

From the representation of the three asymmetric decision problems we have seen how DANs
represent different types of asymmetry efficiently. DANs provide a natural representation of both
order and structural asymmetry by focusing on the representation of the underlying relations
between variables using the following features:

◦ The temporal order between decisions can be partially defined. As the model does not
require a total order, a direct representation of the decisions and the variables which are
revealed from the decision is possible.

◦ Revelation arcs describe the information flow and under which conditions the outcome of a
variable may become known. This description is natural as it represents locally which infor-
mation gets revealed from certain observations and decisions, i.e., it describes the existence
of different information states depending on the previous decisions or observations.

◦ Link restrictions represent the asymmetric nature of a problem, i.e., they describe for
which conditioning states the outcomes of a chance variable are restricted and for which
informational states the legitimate decision options are restricted. Link restriction further
describe which states of the world are impossible by establishing link restrictions on utilities.

◦ The conditional independence assumptions between the variables are described by the
graph as probabilistic dependences according to the underlying BN model.

At the representation of the three asymmetric decision problems we have seen how these features
are used to describe the asymmetric aspects of the problems.

The representation of the diabetes problem has shown how DANs address the representation
of order asymmetry. As DANs do not require a total order of decisions, i.e., they admit an
undefined order, they are able to represent naturally problems where the order of the decisions is
undefined by representing directly the decisions and its consequences at the model. This allows
DANs to model efficiently order asymmetry and makes them suitable for the representation of
diagnosis problems as they represent clearly the relation of the decision to make a test and the
information revealed by this test. Another feature which makes DANs suitable for the represen-
tation of complex problems is the approach to describe information precedence with revelation
arcs. Revelation arcs are a local and from the complexity independent description of information
flow. At the representation of the diabetes problem we have seen how revelation arcs can be
read to determine which information is known at a decision. Collectively the efficient repre-
sentation of order asymmetry and the use of revelation arcs to describe information precedence
gives DANs the ability to represent the n-test problem, which can not be represented with the
common decision analysis formalisms.

The representation of the dating and the reactor problem has shown how DANs represent
structural asymmetry. DANs describe with link restrictions the existence of structural constraints
at the graphical level. At the functional level they define whether a value restricts all values of
another variable (i.e., total restriction) or whether it restricts its values to a subset (i.e., partial
restriction). This approach gives DANs the possibility to describe the structural asymmetry of
the dating problem, which has very different scenarios depending on the previous observations
and decisions. The DAN representation of this problem has shown how all the constraints
of the dating problem can be represented with link restrictions, where the no-occurrence of
certain decision scenarios is represented with total restrictions and at the level of a link. Further
the representation of the dating problem has shown how revelation arcs are used to describe
information precedence.
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The DAN representation of the reactor problem was useful to describe some more specific
cases of the representation of structural asymmetry. First an example was shown, where a
variable restricts the decision options to a subset and how this type of asymmetry is expressed
as a partial restriction at DANs (see the description of the constraint between Result of test
and Build decision). Next the effect of link restrictions was described further as an example
was shown where a link restriction conditioned the existence of another variable and how this
affected the constraints imposed by this variable. In particular we have seen how the constraint
on the Build decision became irrelevant in the scenarios where the test result was not available.

Summarizing, we have seen that DANs are both able to describe order and structural asym-
metry. The representation of order asymmetry takes advantage of the flexibility to represent
decisions with an undefined order and the local description of information precedence with reve-
lation arcs. This makes it possible to represent the decision and the variable the decision reveals
directly at the model avoiding the explicit description of all possible order of decisions and the
explicit description of information precedence, what gives DANs a large degree of flexibility to
represent complex problems. For instance DANs are suitable to represent the n-test problem
while most of the other formalisms have difficulties to represent this problem.

Regarding the representation of structural asymmetry we have seen in the representation of
all three problems how DANs use link restrictions to describe that the outcomes of a variable
depend on different conditioning states and the legitimate decision options may vary depending
on the informational states. Link restrictions are defined at the level of a link and describe which
states of two variables are incompatible and are able to describe therefore that a variable does
not appear in certain scenarios (i.e., total restriction) or that it appears with a subset of its values
(i.e., partial restriction). On the other hand, revelation arcs describe the existence of different
informational states and their dependence on previous observations or decisions. Additionally
the description of asymmetry with DANs is local and independent of the complexity of the
problem as both link restrictions and revelation arcs are defined at the level of a link. These
elements are intuitive to use as the decision analyst only has to think about which combinations
of states between two nodes are incompatible (link restrictions) or which values of a variable
reveals the values of another variable (revelation conditions). At DANs the description of the
restrictions and information flow centers on the conditioning relation between variables and not
at the description of the scenario where a restriction becomes effective or an information state
is used, mainly because DANs do not focus on the representation of order. This characteristic
makes DANs easy to use and promising for the construction of complex problems. DANs further
implement the representation of restrictions in a consistent way. The incompatible combinations
are introduced at the restriction potential and both the graphical representation of the restrictions
and the description of incompatible combinations of probabilities and utilities are inferred from
the values of the restriction potential. This explicit description of incompatible combinations
leads to a compact representation of the state space of the variables without dummy states.
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3.3 Comparison with other formalisms

In the next sections we compare the capability of the alternative decision analysis formalisms
with the DAN formalism regarding the representation of asymmetry.

3.3.1 Comparison with DTs

Comparing the DT representation of the three asymmetric decision problems with the respective
DAN representation makes evident the main drawback of the DTs, which is the large size of the
model compared to the compact model of DANs. DT depict full explicitly all possible decision
scenarios, what allows them to describe every type of asymmetry. Structural asymmetry is
represented by not depicting impossible scenarios and order asymmetry is modeled by expressing
the different sequences of decision in separate branches. Although DT can represent asymmetry
without any problem the size of its model grows exponentially with the number of variables.
Therefore DT are not suitable to represent real-world problems. In contrast, DANs use a compact
model capable to describe asymmetry and whose size grows linearly with the number of variables.

The ID based model of DANs has also the advantage to depict clearly the dependence and
independence relationships among variables. In contrast, DTs show the variables in the order
they are observed, so the dependencies relations between variables are not revealed. In this
aspect DANs are a better communication tool for knowledge elicitation and communication as
they describe the structure of the problem at the graphical level. Another aspect related to the
representation of dependency relationships is that human experts prefer to assess probabilities in
a causal direction of the variables. In this aspect DANs outperform DTs as they present direct
and causal conditioned probabilities in a modular form. In contrast, DTs need the probabilities
according to the order in which the variables are observed, what requires a preprocessing of
probabilities for the construction and what can make it difficult to adapt the DT to changes
at the decision problem. If the structure of the decision problem changes it might be necessary
to redraw the whole DT, while DANs only need to update a part of the model, because the
representation of probability relations is local.

3.3.2 Comparison with IDs

From the representation of the asymmetric decision problems as ID in Section 2.3.4 we concluded
that IDs are not suitable for the representation of asymmetry. DANs, on the contrary are
suitable for representing both order and structural asymmetry as described in Section 3.2. In
the following section we analyze in detail the differences focusing on the respective solutions of
the three asymmetric decision problems.

Representation of order asymmetry

A comparison of the respective representations of the diabetes problem makes evident the dif-
ferent approaches IDs and DAN take for the representation of order asymmetry. DANs express
order asymmetry naturally by representing the test decisions and the relation to its test result
directly at the model. This is possible as DANs do not require a total order of the decisions.
IDs, in contrast, require a total order of the decisions, what implies that all possible decision/ob-
servations must be expressed directly at the model when the order of decisions is undefined.
Therefore IDs introduce artificial nodes which represent the order of the test decisions. The
representation of the test problem with IDs gets even more complex as the test result variables
must contain all possible test outcomes from all test results. In the example of the diabetes
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problem we have seen that with IDs the state space of the first test result has a cardinality of
five, while DANs represent the test result with two states as the test result is specific for a test.
This difference leads further to more complex probability potentials. For example the potential
of the first test result variable of the ID has a size of 30 (see Figure 2.9) whereof most states
are impossible. DANs represent each test result with a potential of four states, whereof only
two states are impossible (see Figure 3.2b). The inefficiency of the representation of the two-test
problem of IDs compared to the naturality of the DAN representation makes clear that IDs are
unsuitable for the representation of the n-test problem (even for a small number of tests), while
DANs are able to represent these kind of problems easily.

Representation of structural asymmetry

The dating and the reactor problems show how structural asymmetry is addressed by each
formalism. A comparison of the respective ID and DAN representations shows that DANs
represent the asymmetric constraints clearly and efficient, while IDs are not able to capture
the asymmetric character of the problem and represent it reasonably.

IDs are not suitable for the representation of conditioned or even disjoint scenarios as they are
designed for sequential and symmetric decision problems. The regularity condition of IDs requires
an ordered path which contains all decisions so the underlying pattern of the ID diagram is a
sequence of the decisions, what makes the representation of disjoint decision scenarios artificial.
IDs represent structural asymmetry, i.e., the restriction of the outcomes of a chance variable
by certain conditioning states and the restriction of the legitimate decision alternatives of a
decision by different information states, only at the quantitative level. The approach IDs follow
is an artificial symmetrization of the state space by introducing dummy states and assigning
degenerated probabilities and utility values to impossible states. At the representation of the
dating problem we have described how this approach increases the space and time required for the
representation and solution of the problem and complicates the diagram with additional nodes
in the domain of the utility nodes. The DAN in contrast represents structural asymmetry clearly
at the graphical level, as link restrictions describe restrictions on the outcome of chance variables
or on the legitimate decision alternatives. Additionally DANs do not not have the requirement
for a total order of the decisions, so the diagram needs not to show the decisions as sequence,
i.e., the disjoint scenarios of a problem can be described by representing the correspondent
nodes graphically at different paths. For example the DAN diagram of the dating problem
describes clearly that the variable ToDo conditions the legitimate decision alternatives of Movie
and Restaurant as there is an arc describing a total restriction leading into each of the decisions
(see Figure 3.4). A total restriction in DANs means that a variable does not appear for certain
conditioning states and, because link restrictions can be applied on chance variables, decisions
and utilities DANs are able to describe the existence of conditioned scenarios in a wide range of
situations. For example DANs represent in a simple way with link restrictions the asymmetric
constraints of the reactor problem on the Build decision and the associated utility node, which IDs
model with the assignment of large negative values to utilities of the reactor problem. The use of
link restrictions to describe that a value of a variable is not available in certain conditions makes
the DAN representation very compact. Table 3.1 shows a comparison of the state spaces of the
DAN and the ID representation. This table details for every node the states which are common
for both formalisms and the name of the additional dummy state for the ID representation. The
two last columns show the cardinality of the state space of the DAN and ID representation.
Next Table 3.2 shows a comparison of the size of the potentials associated to a node. As the
nodes of IDs have more parents and larger state spaces the potentials of the variables require
more space. The table shows for each formalism the parent nodes and the size of the potential
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of the node. For the DAN representation the table shows the number of possible states from the
total number of states of the potential because DANs are able to describe explicitly if a state is
possible. For example the variable ToDo has four possible states within a potential with eight
states what is denoted as ’4/8’ (see also Figure 3.5c). This comparison confirms that the DAN
representation for the dating problem is more compact than the ID representation, as the state
spaces and potentials of the nodes are smaller.

A comparison of the respective representations of the reactor problem confirms further that
the DAN representation is more compact and natural than the corresponding solution with
IDs. This difference comes from the inefficient approach of the artificial symmetrization by
IDs, while DANs can describe constraints concisely with link restrictions. For example DANs
represent at the graphical level that the outcomes of the Result of Test and the Build Decision
are dependent on the conditioning or informational states, while IDs do not show this information
at the diagram. DANs represent the variable Result of Test with three states while IDs need
four states. This increases also the size of the potentials of the node: for example the Result of
Test node has a potential with nine possible states (of a total of 18) at the DAN representation
(see Figure 3.9) while the ID representation needs 24 states (see Figure 2.14). Link restrictions
not only describe restrictions on chance variables, but also impossible states of the world and
restrictions of the decision alternatives. While IDs use degenerated utility functions to describe
the impossible states of the Benefit of advanced reactor and the restrictions of the decision
alternatives of the Build Decision, DANs use simply a link restriction to describe this information.
As a consequence the DAN representation has a utility potential with three states for the Benefit
of advanced reactor node (see Figure 3.13), while the ID representation has a utility potential
with 36 states (see Figure 2.15), of which 27 are impossible states.

Conclusion

The conclusion from the comparison of the three problems is that DANs are suitable to represent
both order and structural asymmetry while IDs represent them very inefficiently. Order asymme-
try is represented at IDs adding artificial nodes, which represent the order of variables, whereas
DANs express order asymmetry naturally representing the decisions directly. This difference
comes from the fact that IDs require a total order of decisions while DANs admit an undefined
order between decisions.

Next DANs also represent the structural constraints more efficiently than IDs. DANs are
able to model structural asymmetry without adding dummy states by the use of link restrictions
over chance variables, decisions and utility functions. Therefore the model of a DAN is more
compact and computationally less expensive to solve. DANs represent with link restriction
the occurrence of a restrictions at the graphical level, while IDs model constraints only at the
quantitative level. This makes DANs a better communication tool as the decision analyst can
recognize the existence of conditioned scenarios and constraints from the graph, while IDs do
not provide this information.

Another drawback of IDs versus DANs is that they use information arcs. Information arcs
make the representation of decision problems where a lot of variables are known difficult as
the information precedence (at least for the next decision) is represented explicitly. Therefore
problems where a lot of variables are known initially or where several variables get revealed from
a decision are difficult to represent with IDs as the existence of lots of information arcs can
make the diagram difficult to read. DANs use an alternative approach to describe information
precedence. They use revelation arcs which describe locally and independent from the complexity
of the problem which variables are known when taking a decision.
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Node Common states Dummy state Number of values Number of values

in the DAN in the ID

Ask? yes,no 2 2

LikesMe yes,no 2 2

Accept yes, no no response 2 3

ToDo movie, restaurant no preference 2 3

Restaurant cheap, expensive no decision 2 3

Movie romantic, action no decision 2 3

rMood/mMood good, bad unknown 2 3

rExp/mExp good,bad unknown 2 3

NClub? yes, no no decision 2 3

TVExp good, bad unknown 2 3

TV good, bad 2 2

Club good, bad unknown 2 3

MeetFriends yes, no unknown 2 3

NCExp good, bad unknown 2 3

Table 3.1: Comparison of the size of state spaces of the variables.

Node Parents in the DAN Parents in the ID Card. DAN Card. ID

Ask? 2/2 2

LikesMe 2/2 2

Accept Ask?, LikesMe Ask?, LikesMe 4/8 12

ToDo Accept, LikesMe Ask?, Accept, LikesMe 4/8 36

rMood Restaurant Restaurant 4/4 9

mMood Movie Movie 4/4 9

rExp rMood,Restaurant rMood,Restaurant 8/8 27

mExp mMood,Movie mMood,Movie 8/8 27

TVExp NClub?, TV NClub?,TV 4/8 18

TV 2/2 2

Club NClub? NClub? 2/4 9

MeetFriend NClub? NClub? 2/4 9

NCExp Club, MeetFr Club,MeetFr 8/8 27

U1 TvExp TvExp 2/2 3

U2 NCExp NCExp 2/2 3

U3 mExp mExp 2/2 3

U4 rExp rExp 2/2 3

U5 NClub? NClub,Ask,Accept 2/2 18

U6 Rest Rest,NClub,ToDo 2/2 27

U7 Movie Movie,NClub,ToDo 2/2 27

Table 3.2: Comparison of the size of the potential of a node.
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3.3.3 Comparison with EIDs

From the comparison of the three asymmetric decision problems we see that the two formalisms
take a different approach for the representation of structural asymmetry. Regarding the repre-
sentation of order asymmetry nevertheless DANs can represent this easily while EIDs inherit the
shortcomings of the underlying ID model.

Representation of order asymmetry

EIDs are an extended ID representation having the additional ability of describing conditioned
scenarios. For this reason EIDs have a lot of features in common with IDs: for example they in-
herit the representation of order asymmetry with artificial variables, which represent all possible
sequences of observations and variables and the related shortcomings of this solution. Although
the EID representation of the diabetes problem is more compact than the correspondent ID solu-
tion, the DAN representation is even more compact, because they can represent order asymmetry
without introducing artificial variables which model the sequence of observations and avoid the
use of dummy states. In the DAN representation a test result variable represents only the out-
comes of one specific test, while in the EID representation a test result variable represents all
possible outcomes from all available tests. This difference shows clearly that EIDs do not solve
the problems of IDs for the representation of order asymmetry, while DANs can represent order
asymmetry efficiently. In consequence neither IDs nor EIDs are suitable for the representation
of the n-test problem, which can be represented easily with DANs.

Representation of structural asymmetry

The representation of the dating and reactor problem has shown that EIDs are able to describe
structural asymmetry. EIDs use coalescence to describe information sharing, clipping to describe
impossible conditioning scenarios, and collapsing to describe irrelevant conditioning scenarios.
The solution algorithm of the EID algorithm is able to exploit these characteristics and to avoid
unnecessary computations and to optimize computations. Nevertheless for large probability
models an extra effort may be required to determine which distributions should be used in a
distribution tree.

A main difference between EIDs and DANs is that DANs are not able to describe and ex-
ploit coalescence, while EIDs can optimize the computations by detecting states which share
information. Additionally DANs do not describe the existence of irrelevant scenarios. EIDs
use collapsed scenarios to describe the independence between variables in certain conditioning
scenarios. Although EIDs are able to describe the existence of irrelevant scenarios and avoid
unnecessary computations, the irrelevant conditioning scenarios which are explicitly described
at EIDs often happen in consequence to the representation of irrelevant information in the di-
agram. The underlying model of EIDs are IDs, which have dummy states and have a more
complex graph than DANs as they have information arcs and additional arcs leading to utilities
to describe restrictions on decisions, what makes some conditioning scenarios more complex. See
the comparison of state space and number of predecessors between DANs and IDs in Table 3.1
and 3.2 to check that an ID representation is more complex.

DANs and EIDs are both able to describe the occurrence of impossible scenarios. DANs use
link restrictions while EIDs use clipped scenarios. The solution of DANs is more efficient as they
avoid the existence of dummy states, while EIDs still have dummy states at the functional and
numerical level, although they describe with distribution trees that these states are impossible.

An import difference between DANs and EIDs is that the latter do not show the occurrence
of asymmetry constraints at the graphical level. DANs use a visual description of the occurrence
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of constraints at the graphical level, but EIDs represent constraints only at the functional level
with conditioning functions. Although the description of the asymmetric constraints at EIDs
is fully exhaustive and more detailed than at DANs, they use a description at two levels with
a lot of small tree-like diagrams to fully describe the problem. This can make the automatic
representation of a problem difficult because several models may be involved.

3.3.4 Comparison with SVNs

SVNs are a hybrid of valuation networks and sequential decision diagrams (SDDs) and are
structurally different from DANs, which have an ID based model. Beside from the structural
difference which concerns the flexibility to represent certain types of probabilistic models, SVNs
are equally suitable to represent structural asymmetry than DANs. At the contrary and related
to the SDD-based component of SVNs, SVNs have difficulties to model order asymmetry, which
can be represented with DANs easily. A comparison of the three asymmetric decision problems
shows these differences with detail.

Representation of order asymmetry

An analysis of the respective representations of the diabetes problem shows that DANs represent
decision problems with order asymmetry more efficiently than SVNs. SVNs require a total
ordering of the decisions and observations and therefore must include all admissible decision
and observation sequences at the model, while DANs admit partial order. The consequence is
that DANs represent the test decisions directly, while SVNs introduce artificial variables which
represent the order of the tests. From the respective representations of the diabetes problem
another important difference becomes evident. SVNs use information arcs, what makes the
representation of complex decision problems with SVN difficult and the representation of the
n-test problem unfeasible. At the contrast DANs substitute information arcs with revelation
arcs, which describe locally and independent from the complexity of the problem information
precedence. Both the ability to represent order asymmetry naturally and the use of revelation
arcs instead of information arcs make DANs suitable for the representation of the n-test problem.

Representation of structural asymmetry

From the representation of the dating and reactor problem we have seen how each formalism
addresses the representation of structural asymmetry. Both formalisms avoid the use of dummy
states by describing constraints explicitly. DANs describe the existence of impossible scenarios
with link restrictions at the level of the link. The edition of link restrictions is intuitive as
the decision analyst only has to think about the states which are incompatible between two
variables or decisions. SVNs instead model constraints using labels or indicator valuations.
Labels above arcs are used to describe simple constraints involving two variables and indicator
valuations describe complex constraints, which can be partial restrictions or constraints which
involve several variables. Valuation indicators can get quite complex as they can be associated to
several variables, but they have absolute flexibility in specifying any constraint and therefore can
describe more specific constraints than DANs. The approach of indicator valuations to encode
constraints is to number out all compatible states, what makes them more difficult to understand
for a human decision analyst. DANs describe constraints following the opposite approach: they
specify the incompatible combinations between two variables at the level of a link. Additionally
the description of constraints as labels follows a different approach. Labels describe restrictions
indicating when they take effect, i.e., when the occurrence of a variable is restricted. This
can be difficult for the decision analyst when building the model of order (i.e., the SDD-based
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sub-graph) as he needs to have in mind all the previous observations and decisions which might
cause restrictions.

Another aspect related to the representation of constraints is the use of valuation fragments
in SVNs. Valuation fragments are an efficient representation of the probabilistic model as they
describe incompatible combinations explicitly. The use of fragments requires coherence between
the definition of constraints (labels or indicator valuations) and the definition of the incom-
patible combinations as fragments. DANs avoid to control coherence between the definition of
constraints and the probabilistic model as the relation between the restriction potential (defi-
nition of constraints) and the probability or utility potential is defined (see the description of
the potentials in the Section 3.1.1). Therefore the incompatible combinations are automatically
inferred from the definition of the constraints.

SVNs and DANs differ in the representation of constraints at the graphical level. SVNs
describe on one hand the conditions under which a decision scenario appears with labels at the
model of order, i.e., they describe constraints when they become effective and, on the other hand,
they use indicator valuations to describe more complex constraints, which can not be represented
with labels at the model of order. Indicator valuations describe the cause-effect relation between
the variables, which form the restrictions. In this aspect, indicator valuations are similar to link
restrictions because both describe the cause of the restriction at the graphical level, but with the
difference that link restrictions only involve two variables and indicator valuations may involve
more variables. Further indicator valuations and link restrictions only describe the existence of
the restriction, but do not show details about their values at the graphical level. DANs further
distinguish graphically whether the restriction is total or partial, an information which SVNs do
not represent at the graphical level. We have seen that the SVN representation of the dating
problem describes at the graphical level concisely under which conditions each scenario is possible
as this problem only comprises simple constraints, which can be described with labels above the
arcs. At the contrast the constraints of the reactor problem are more complex and can not be
represented with labels. We have seen how indicator valuations are used then to express these
constraints, while the DAN representation used link restrictions to describe these constraints.

Another difference between DANs and SVNs is the description of the probabilistic model.
DANs represent direct and conditioned probabilities at the probabilistic model, a representation
that is easy to understand for humans. For example in the case of the diabetes problem a rep-
resentation with conditioned probabilities is convenient as diagnosis problems are built usually
with direct probabilities such as the sensitivity and specificity of a test and the prevalence of
a disease. Nevertheless the requirement of conditioned probabilities might imply a preprocess-
ing when probabilities are not available in a direct or conditioned form. SVNs have weaker
requirements for the construction of the probability model. The probability model of SVNs is
constituted by probability valuations, which are multiplicative factors of the joint probability
distribution. These probabilities are not necessarily conditioned probabilities, what gives SVNs
more flexibility at the description of the probabilistic model, especially when the model is built
from data and the conditional form is not available. Both DANs and SVNs use a modular de-
scription of the probability model and are therefore easily adaptable to changes at the decision
problem. The representation of SVNs is even more modular as valuations are described explicitly
apart from the model of order.

When a decision problem does not have order asymmetry, the approach of SVNs to describe
explicitly the sequence of decisions and variables results useful because the decision analyst can
explore all possible scenarios. DANs only specify information flow up to a partial order as they
admit undefined order between decisions and thus an explicit representation of all sequences at
the graphical level would not make sense. A drawback of the explicit representation of sequences
at SVNs nevertheless is that unobserved chance variables might not be represented. These are
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variables which are not observed in any decision scenario nor appear in the domain of an utility
function. As including unobserved variables in a decision tree like graph makes its structure
more complex, the alternative is to marginalize these variables out of the probability model,
what involves a pre-processing of the probability model. Therefore SVNs usually do not repre-
sent unobserved variables. In contrary, DANs can represent unobserved variables without any
problem. The representation of unobserved variables in the model is useful as using auxiliary
variables makes it easier for the modeler to describe the probability model. Another drawback
of the explicit description of the order of variables is that the resulting diagram can become
complex when a lot of variables are known initially or revealed from a decision. As the model
of order represents information precedence, the order in which the chance variables are observed
between two decisions is represented explicitly, although this information is irrelevant for the
analysis of the decision problem. The diagram of a DAN in contrast remains simple as DANs
describe information precedence with revelation arcs, what is a local and from the complexity of
the problem independent description.

Conclusion

In summary, we can conclude that both SVNs and DANs are suitable to represent structural
asymmetry, although the description of constraints with DANs might be more intuitive. We
have also seen that only DANs have resulted suitable for the representation of order asymmetry.
SVN diagrams show both a model for the order of decisions and observations and a model for
the probability relationships in the same diagram, while DANs only describe the latter. This is
not a drawback of DANs as the explicit representation of the order of decisions and observations
implies unsuitability to represent order asymmetry. For this reason SVNs are suitable for the
representation of decision problems with structural asymmetry but not for order asymmetry.

3.3.5 Comparison with AIDs

AIDs are a special type of ID for the representation of asymmetric decision problems which revise
the inflexibility of IDs to model asymmetry by dropping the rigid requirement for a total order
of the decisions. They adapt the semantics of the components of the ID to describe that the
value of a variable may be conditioned on previous observations or decisions. For this reason
AIDs are similar to DANs as both are based on IDs and have elements that describe asymmetry.
From the respective representation of the three asymmetric decision problems we have seen that
both formalisms are able to represent structural asymmetry, but that order asymmetry can
only be represented efficiently with DANs. A comparison of the solutions of each formalisms
shows the differences which make AIDs not suitable for the representation of order asymmetry
and the minor differences between the two formalisms regarding the representation of structural
asymmetry.

Representation of order asymmetry

AIDs can represent decision problems with a partial order only when the decisions are totally
independent, i.e., when the decisions happen in disjoint scenarios. In the case of the diabetes
problem, a representation with partial order is not possible, because the test decisions are not
totally independent and the information precedence is described explicitly with information arcs.
AIDs therefore must represent the diabetes problem with a total order of the decisions what
implies the representation of the order of tests with artificial nodes. DANs in contrast admit the
representation of decisions with undefined order and therefore represent the order asymmetry
naturally as the test decision and the related test results are represented directly. Additionally
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the use of informational arcs of AIDs make the diagram of the diabetes more complex than
the DAN representation. DANs describe information precedence with revelation arcs, which
describe locally and independently from the complexity of the problem which variable is known
when making a decision. Therefore the DAN representation is suitable for the representation
of the diabetes and the n-test problem, while the diabetes problem representation of AIDs is
complex and the representation of the n-test problem unfeasible.

Representation of structural asymmetry

Both DANs and AIDs are suitable for the representation of structural asymmetry as we can see
at the representation of the dating and reactor problem. As both can describe constraints none
of them needs to use dummy states, although the approach to describe constraints is different.
DANs have a unique approach to represent the fact that a variable restricts the values of another
variable: they store incompatible combinations of states between the variables of a link in a
restriction potential; when the restrictions are changed by the user, the underlying probability
model is updated. AIDs represent structural and functional asymmetry at two different levels:
they represent the occurrence of a variable with labels at the qualitative level and specify the
details about the restricted values at the quantitative level. The functional asymmetry of AIDs,
where a variable restricts the values of another variable to a subset, is specified at the quantitative
level and only if this restriction is on a decision it is represented at the graphical level (with a
restrictional arc). If a functional restriction affects a chance variable, the constraint is not
represented at the graphical level. DANs in contrast describe the existence of constraints at the
graphical level with link restrictions and they depict separately if the constraint makes a variable
impossible in a scenario (total restriction) or whether it restricts its value to a subset (partial
restriction). Although DANs do not show labels at the graphical level to describe the conditions
for the occurrence of a variable, DANs describe the existence of both types of asymmetry of AIDs
and in a wider range of situations. Details about these differences will be given in the subsequent
discussion of the dating and reactor problem representation.

The first difference regards the use of labels at the graphical level. AIDs use labels at the
qualitative level to describe under which conditions a variable occurs, while DANs hide the details
of the specification of constraints. The description with labels is useful as the dating problem
contains very different conditioned scenarios and so the decision analyst can read directly form
the graphical model under which conditions a variable appears. For example the labels make
visible that the decision NClub never occurs at the same scenario with Movie or Restaurant. The
use of labels at the graphical level is subtle as it can make the model unreadable when the state
spaces of the variables are large and imply a lot of labels. This difficulty does not appear at the
representation of the dating problem because the state spaces of the variables are small.

DANs and AIDs are both able to describe constraints, but DANs can describe some con-
straints in a more straightforward way, as link restrictions are applicable in a wide range of
situations. Constraints are represented with restrictional arcs at AIDs and link restrictions at
DANs. Both have the same meaning and describe for which configuration of the parent node
some states of the second node are impossible. But restrictional arcs from the AID formalism
can only describe restrictions on decisions, while link restrictions can describe restrictions on de-
cisions, chance variables and utilities. In the situations where restrictional arcs are not sufficient
to describe the constraints, AIDs combine labels of the qualitative level with information of the
quantitative level to describe under which conditions a variable occurs. The following paragraphs
describe this difference by illustrating them with some examples.

The occurrence of a constraint between a chance variable and a decision is represented
very similar with link restrictions or a restrictional arcs. For example the constraint between
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ToDo=movie and Movie is described at AIDs with a restrictional arc and a restrictive function
(see Figure 2.31). The same constraint is described with a link restriction at the DAN formal-
ism (see Figure 3.5a). Both representations describe at the graphical level the existence of the
constraint as restrictional arcs and link restrictions have a different appearance. AIDs use a
restrictive function and DANs use a table of compatible states to describe the admissible states,
which contain in essence the same information.

On the other hand a constraint between two chance variables cannot be modeled with a
restrictional arc while DANs can represent it with a link restriction. For instance the constraint
between Accept and ToDo specifies that the event of not accepting the invitation makes the
values of ToDo impossible in some scenarios. DANs express this constraint by means of a link
restriction, where all values of ToDo are impossible for the state Accept=no. See Figure 3.5b
for the edition of the compatibility values of this constraint and figure 3.5c for the resulting
CPT of ToDo. AIDs cannot model this constraint between Accept and ToDo in such a simple
way as DANs, because the constraint appears between two chance nodes and hence restrictional
arcs cannot be used. Additionally as AIDs distinguish structural and functional asymmetry, this
constraint is represented in two levels, the qualitative and quantitative level. At the qualitative
level it is necessary to attach a label to the node ToDo, which specifies that this node only
occurs if the condition Accept=yes is satisfied. At the quantitative level it is necessary to assign
undefined values to all states of the partial probability potential, which are conditioned on the
state Accept=no. The corresponding partial probability potential is shown in Figure 2.30.

From the respective representations of the reactor problem we can see an important important
difference regarding the description of constraints. The restriction between the property of the
advanced reactor and the test result, namely that the test result can not be bad if the advanced
reactor property indicates success, is a functional constraint about a chance variable (it describes
a restriction on the possible outcomes of a chance variable). AIDs describe this constraint only
at the quantitative level (see the partial probability potential shown in Table 2.8) and not at
the qualitative level. DANs in contrast indicate clearly its occurrence at the graphical level
describing a partial restriction (see Figure 3.6).

Another difference between AIDs and DANs regards the description of incompatible combina-
tions at utility nodes. AIDs do not explicit describe incompatible combinations at utility nodes as
they assign zero values to the correspondent combinations of the partial utility potentials at the
quantitative level. For instance the utility potential of the Benefit of advanced reactor contains
zero values for the combinations corresponding to the decision to build a conventional reactor or
none. The assignment of zero values nevertheless can introduce errors when the problem contains
negative utilities, as happens at the reactor problem. Although AIDs solve this problem with an
artificial transformation of the utility values prior to the evaluation, DANs avoid this problem
as they describe explicitly incompatible combinations with link restrictions.

In reference to the specification of constraints we can summarize that DANs have a more sim-
ple and broader approach by using link restrictions. In some cases AIDs cannot use restrictional
arcs to express constraints. In these cases they must use descriptions at two different levels. They
use labels at the qualitative level, which specify conditions and introduce undefined values into
the partial probability table, which must be in concordance with the conditions of the labels at
the qualitative level. In contrast link restrictions are specified in a unique step by the definition
of incompatible combinations at the restriction potential, which are propagated automatically
to the probabilistic model (see Section 3.1.1). This avoids an additional control of consistence
between different levels of the model as the probabilistic model is updated by the values of the
restriction potential and the graphical level represents the values of the restriction potential. At
the representation of the asymmetric problems we have seen several times how the definition
of an incompatible combination at the restriction potential is propagated to the probabilistic
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model and represented graphically. In particular the probability potential of the second node is
updated to reflect impossible states with zero probability and non-editable positions.

Regarding the definition of incompatible combinations, partial potentials or functions of AIDs
are similar to the restriction potentials of DANs. Both specify undefined or impossible states,
but DANs define the link restrictions at the level of link between two variables, while AIDs only
define partial functions at the level of a link. Partial probability or utility potentials are defined
at the scope of the second variable, what may be more complex as more variables can have a
conditioning influence on the variable.

Comparing the information flow of AIDs and DANs we can state that test-arcs have a similar
meaning as revelation arcs. In AIDs a test-arc between a test-decision node X and a chance
variable Y describes that the variable X may be observed depending on the values of the decision.
DANs describe the same situation with revelation arcs. A revelation arc between node X and Y
describes that Y is observed for some values of X. DANs are more flexible as they can describe
that a decision reveals the value of a chance variable, but also that a fortuitous event — a chance
variable — reveals the state of another chance variable. The following section describes the
differences between AIDs and DANs regarding the description of information flow illustrating
them with some examples from the dating problem.

The information flow between a decision and a chance variable can be modeled with a test-arc
or revelation arc in each formalism. The meaning of both arcs is the same, the decision reveals
the state of the chance variable. For instance the test-arc between Ask? and Accept describes
that the state of Ask? determines whether or not Accept is potentially observed. The graphical
representation is also similar, as test arcs appear in combination with test-decision nodes (rep-
resented as triangles) and DANs depict revelation arcs with a different color. AIDs use labels to
describe for which decision option the chance variable gets observed, while DANs do not show
labels but store the states which are revealing conditions with the link.

Information flow can also happen between two chance variables, for example when decisions
corresponding to other persons appear at the problem. For example the flow of information in
the dating problem describes that the decision of Emily to accept the date reveals potentially the
value of the variable ToDo. This is easy to model with a revelation arc but AIDs do not describe
this flow of information. The explanation for this difference lies in the purpose of revelation
arcs. DANs use revelation arcs as substitutes of information arcs to describe which variables
are known for a decision, therefore they need to describe also information flow between chance
variables explicitly.

In general the two formalisms differ in the description of information precedence: The descrip-
tion with revelation arcs in DANs is local and independent from the complexity of the problem.
At the contrast the description with information arcs in AIDs is explicit, what can make the
diagram complex when a lot of variables are known. The dating problem shows such an example,
because the AID diagram contains an additional information arc from Accept to the decisions
Movie and Restaurant. Although these arc describe a possible precedence and have labels which
describe under which conditions they are applicable, the resulting graph is more complex than
the equivalent DAN representation.
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Conclusion

We have seen that order asymmetry can only be represented efficiently with DANs, as AIDs
represent decisions which are not completely independent with a total order. On the other hand,
both formalisms are suitable for the representation of structural asymmetry, although there are
some minor differences in the way constraints are described. First of all, both formalisms describe
structural constraints explicitly and thus avoid the use of dummy states. Nevertheless we have
seen that DANs describe the occurrence of both types of asymmetry (structural and functional)
at the graphical level and in a wider range of situations than AIDs. This happens as restrictional
arcs from the AID formalism can only describe restrictions on decisions, while DANs are able to
describe constraints on decision, chance variables and utilities. From the representation of the
dating problem we have seen that in some cases AIDs cannot use restrictional arcs to express
constraints, which are described with link restrictions in a simple way. In these cases AIDs
use descriptions at two different levels. They use labels at the qualitative level, which specify
conditions and introduce undefined values into the partial probability or utility potentials, which
must be in concordance with the conditions of the labels at the qualitative level. DANs avoid
the specification of restrictions at different levels as there is a direct correspondence between
the restriction potential, the underlying probabilistic model and the graphical representation.
Another difference regards the scope of definition of constraints. DANs specify incompatible
combinations always at the level of a link, thus involving two variables, while AIDs specify
restrictions on chance variables (partial potentials) at the level of a variable, what can be more
complex as more variables can be involved.

Comparing the information flow of AIDs and DANs we can state that test-arcs have a similar
meaning as revelation arcs. In AIDs test-decisions and test-arcs describe the decision to look for
more evidence, what is useful for the description of information gathering patterns or diagnosis
problems, where the acquirement of information has a cost and therefore a decision to decide
upon assuming this cost must be included in the model. As explained at the representation of
the diabetes problem, test-arcs are in principle suitable to model a test problem, but they are
unsatisfactory when the decision is not binary, namely when the decision has several options
a label is necessary to specify to which decision the chance variable corresponds. In contrast
revelation arcs are able to describe the eventual observation of a variable independently of the
number of decision alternatives. Additionally the description of information flow in general
is different in DANs than in AIDs. DANs use revelation arcs to describe locally and with
independence from the complexity of the problem which variables are known for a decision. A
revelation arc can describe that a decision reveals the value of a chance variable, but also that
a fortuitous event — a chance variable — reveals the state of another chance variable. The
second type of information flow is not described at AIDs as they use information arcs to describe
(possible) information precedence. This approach is not independent from the complexity of the
problem and might make the representation of larger problems complex.

An important difference between AIDs and DANs is the use of labels at the graphical level.
AIDs describe with labels under which condition a variable appears and DANs only describe
the occurrence of constraints. The approach of AIDs is useful as the decision analyst can read
information about asymmetry directly from the graphical model and break the original problem
in smaller sub-problems, so that the decision analyst can focus on a specific decision or see
the different decision scenarios, what improves the understanding of the decision problem in
particular when the problem is complex. Nevertheless the representation of labels at the graph
can make the diagram difficult ot read when the problem is complex, especially when the nodes
have large state spaces. For this type of problems DANs are more suitable, as they tell apart
the occurrence of constraints from their specification.
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3.3.6 Comparison with UIDs

From the representation of the three asymmetric decision problems we see that both UIDs and
DANs are able to represent order asymmetry while only DANs result suitable for the represen-
tation of structural asymmetry.

Representation of order asymmetry

DANs and UIDs have the common characteristic that they do not have the requirement for a
total order of decisions, so they can represent efficient decision problems with order asymmetry.
Diagnosis problems are represented in a compact form showing the test decisions directly. Both
formalism do not have informational arcs and therefore are suitable to represent diagnosis prob-
lems with several tests. Whereas the representation of the n-test problem is unfeasible with other
formalisms which require a total ordering of decisions, DANs and UIDs are capable to represent
it in a very compact form. Nevertheless the representation of a diagnosis problem with UIDs is a
little bit larger, because UIDs can not describe explicitly constraints, so they model the fact that
the test result is not available with a dummy state. DANs in contrast describe this constraint
with link restrictions and represent the test results variables with a smaller state space.

Another relevant difference is that with DANs a chance variable is observable when one of
its preceding decisions is made while with UIDs it is necessary that all of its preceding decisions
are taken. This gives an advantage to DANs over UIDs as they can represent problems where a
chance variable is revealed by any of two decisions, although at the representation of the three
asymmetric decision problems we have not seen that difference.

Representation of structural asymmetry

The main drawback of UIDs versus DANs is that UIDs can not describe structural constraints
explicitly. The existence of constraints is described with dummy states and therefore the infor-
mation of asymmetry is hidden at the specification of the state space of the variables and the
potentials. This has the inconvenient of obscuring the structure of the problem and increasing
the space and time requirement to solve the problem. For this reason UIDs are unsuitable for
representing structural asymmetry as we have described at the representation of the dating and
reactor problem.

Conclusion

DANs and UIDs use both an alternative approach to information arcs for the description of
information precedence. This gives them the ability to represent complex problems such as the
n-test problem, where the representation of order asymmetry is an issue. Nevertheless UIDs have
a limitation: they can not represent problems where a variable is revealed by one of its preceding
decisions, while DANs can represent this kind of problems. Additionally UIDs are less complete
than DANs because they do not describe structural constraints explicitly, what makes them less
appropriate for the representation of decision problems with structural asymmetry.
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3.3.7 Comparison with SIDs

SIDs provide both solutions for the representation of order and structural asymmetry as this
formalism improves features from SVNs, UIDs and AIDs. They differ from DANs as they use
informational arcs and include a model of the order of observations and decisions, but compare
equally with DANs in almost all other aspects.

Representation of order asymmetry

SIDs take the same approach as DANs and UIDs for the representation of order asymmetry. If the
order of the decisions is undefined at the problem, they represent them with partial order at the
model. SIDs admit parts of the model to have partial order, what is represented graphically as
a cluster. DANs do not describe explicitly which parts of the model have an undefined temporal
order, but this becomes evident if the temporal order between decisions is not defined. In
consequence both formalisms describe the order asymmetry of the diabetes problem representing
directly the test decisions and its respective test results. Nevertheless for complex problems,
such as the n-test problem, the representation with a cluster is more efficient than the respective
representation with DANs. The n-test problems describes that n tests can be ordered before
taking the decision about the therapy. In this case DANs need to draw a temporal arc from each
Test Decision to the node Therapy, while SIDs represent the n test decisions and the respective
test results in a cluster, having this cluster a single outgoing arc which describes the temporal
precedence of the tests in reference to the decision about the therapy. We see that in this case
the SID representation is more efficient as it represents the information precedence easier. In
general, the SID representation of the n-test problem avoids to represent n−1 arcs. We conclude
that both SIDs and DANs are suitable for the representation of diagnosis problem and that both
are able to represent the n-test problem, although the SID representation is more efficient.

Another relevant difference is related to the description of information precedence. SIDs can
either describe explicit information precedence with informational arcs or use the approach of
UIDs, when the decisions have an undefined temporal order, and represent them inside a cluster.
In the latter case, a chance variable is revealed when all its predecessor decisions are made
(such as happens at UIDs). This can be a limitation of SIDs for the representation of decision
problems, where a chance variable is revealed by any of two decisions. We think that this kind
of problem can not be represented at least with an unspecified temporal order inside a cluster
and it would be interesting to analyze how SIDs finally solve this problem. In contrast DANs
have not difficulty to represent this kind of problems because a chance variable is revealed by
any of two decisions.

Representation of structural asymmetry

The comparison of the dating and the reactor problems representation shows how each formalism
addresses structural asymmetry. Although the approach to describe structural asymmetry is
different — SIDs describe at the model of order under which conditions a variable appears, i.e.,
when the constraint becomes effective, and DANs describe the cause of the restrictions, i.e.,
the incompatibility between variables — both are able to express the constraints explicitly and
they avoid the use of dummy states. From the representation of the dating problem we can see
how DANs use link restrictions to describe the restrictions between variables, while SIDs use
annotations on the structural arcs to describe the conditions under which a variable appears.
The conditioned and disjoint scenarios of the dating problem are expressed as total restriction in
DANs and with simple labels in the SID formalism. The use of labels makes the SID diagram very
explanatory as it describes at the graphical level the possible decision scenarios and details under
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which conditions they occur. For example the decision analyst can read from the model that
the decision Movie does not appear when Joe decides not to ask for the date (Ask=no). DANs
instead describe at the graphical level the occurrence and the relation between the variables
which cause the constraint.

Another difference visible from the representation of the dating problem is that DANs only
describe the information flow up to a partial order, while SIDs have an explicit description of
the order of observations and decisions. DANs and SIDs have in common that both represent
unobserved variables and their influences on other variables in the model. For DANs the rep-
resentation of unobserved variables is not a problem, because the diagram does not comprise
an explicit representation of the sequence. In contrast SIDs improved the representation of the
model of order (a feature taken from SVNs) to include this type of variables.

A comparison of the reactor problem representations shows how SIDs use annotations on
structural arcs to describe complex constraints. SIDs provide a language (named guards) to
describe the constraints with a special syntax. This language allows to define for which value
of the current variable an arc is feasible, but also whether it depends on previous decisions and
observations. Therefore SIDs have the ability to describe complex constraints, as we can see from
the description of the composed constraint between the Result of Test and the Build Decision,
which is described with the following annotation, BD = ba|(T = nt ∨ (T = t ∧ (R = e ∨ R =
g))). Although the above mentioned constraint involves three variables (Result of test (R), Test
Decision (T ) and Build Decision (BD)) it can be expressed with a link restriction at the level
of a link. This is a special case because DANs assume that a non-existent variable does not have
an impact on another variables. This means in our example that in the case the test result is not
available it does not have any influence on Build Decision. In general DANs describe restrictions
only at the level of a link, therefore they are not able to describe composed constraints taking
into account previous decisions or observations.

Another difference between SIDs and DANs becomes evident from the restriction between
the Result of Test and the Build Decision. DANs describe restrictions between the two variables
which are involved in the restriction, therefore the model represents the cause-effect relationship
of the restrictions. SIDs describe the constraint in the moment it becomes effective. In the case
of a partial restriction, e.g. the restriction between the Result of Test and the Build Decision
or when the variables which define the restriction do not appear consecutively the restriction
can not be expressed with a simple label. In this case the second part of the guard is necessary
to describe previous observations or decisions which condition the underlying arc. This can
lead to large and complex descriptions and as guards are implicit, the model does not describe
clearly between which variables the restriction appears. For example, the restriction between
Result of Test and Build Decision is expressed at the outgoing arc of the Build Decision, while
DANs describe the existence of the restriction on the link between the variables which define the
restriction.

The reactor problem shows another special case of structural asymmetry. The constraint
between the Advanced reactor’s components and the Result of Test means that the test result
can not be bad if the components of the reactor indicate success. DANs represent this constraint
with a partial restriction, which describes that the Result of Test is restricted to a subset of
its values, namely that the combination {as,b} is not possible. In contrast SIDs describe this
constraint assigning a zero probability value to this combination, because they can not describe
constraints for variables which have a probability relation but are not observed at the decision
scenario.
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Conclusion

Both DANs and SIDs are able to represent order asymmetry efficiently as they allow parts of
the model having a partial order of the decisions. We have seen that the use of clusters gives
SIDs the ability to describe the temporal precedence for a group of decisions with unspecified
temporal order clearer than DANs. This can make SIDs more suitable for the representation
of problems such as the n-test problem. Nevertheless we have also seen that SIDs might have
difficulties to represent problems where a chance variable is revealed by any of two decisions.

Regarding the description of structural asymmetry we have seen that both DANs and SIDs are
able to describe structural constraints explicitly and avoid the use of dummy states. The approach
that SIDs take to describe structural asymmetry is different from that of DANs. SIDs describe by
means of the model of order under which conditions a variable appears, i.e., when a constraint
becomes effective, while DANs describe the causes of the restriction, i.e., the incompatibility
between two variables. Although the description of asymmetric constraints at the model of order
is fully explicative, it is also more difficult to build such a model. When building the model of
order the decision analyst must have in mind all the previous observations and decisions, that
may cause a restriction on another variable. In contrast, the local description of restrictions
focusing on the cause-effect relation between two variables is much more intuitive for human
experts. In general the description of total restrictions on variables, such as the conditioned
scenarios of the dating problem are easy to represent with a clustered decision tree and should
not cause problems to the decision analyst. In contrast the representation of partial restrictions
at a clustered decision tree is not intuitive.

In the representation of the reactor problem we have seen two types of asymmetry which
are not straightforward to represent. We have seen that SIDs have problems for describing
constraints for unobserved variables that have a probabilistic influence on other variables. SIDs
solve this by assigning a zero probability value to the incompatible combination. In contrast
DANs can describe explicit constraints for probabilistic relations using link restrictions. On the
other hand, we have seen that partial restrictions or when the variables that define the restriction
do not appear consecutively, the restriction cannot be expressed with simple labels above the
arcs. In this case the second part of the guard is necessary to describe previous observations or
decisions which condition the underlying arc, what can lead to large and complex descriptions.
Additionally guards are shown when the restriction becomes effective and not where it is caused.
For this reason the model does not show clearly which variables cause a restriction.

Another difference between DANs and SIDs is also that the model of order represents explic-
itly the information precedence. In contrast DANs describe implicitly and only up to a partial
order the information flow by means of revelation arcs. The approach of DANs to substitute
information arcs with revelation arcs is a local description of information precedence, which is
easy to define for the decision analyst.

Regarding the use of labels to describe constraints and information flow, DANs do not show
labels at the graphical level while SIDs use annotations above the structural arcs. DANs describe
the occurrence of constraints or information flow depicting revelation arcs and link restrictions,
but do not show the details about the values at the graphical level. For simple problems the
description of constraints and information flow with labels at the graphical level is an advantage,
as the model is more explanatory and easier to understand. For complex problems, where the
variables have large state spaces the representation of labels is a drawback, as the diagram
becomes complex and unreadable. In this circumstances the approach of DANs to hide the
specification of constraints and information flow may result convenient .

In summary, we can conclude that SIDs are the main competitor of DANs as both formalisms
provide efficient solutions for the representation of order asymmetry and structural asymmetry.
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Their main difference lies in the presence of the model of order in SIDs and the way restrictions
are described in this model. Although SIDs have the ability to use clusters to avoid the explicit
description of irrelevant sequences of variables, the construction of the model of order is still a
task for the decision analyst when building the model. DANs propose a local description for
information precedence and restrictions and we consider that this approach can be an advantage
of DANs for the representation of larger problems, where the construction of the model of order
might require an extra effort from the decision analyst. We think that this can be an important
difference between DANs and SIDs for building real-world applications. Nevertheless SIDs have
an important advantage of DANs: they can represent temporal precedence easier by the use of
clusters as we have seen at the comparison of the n-test problem. It would be interesting to
analyze in more detail which kind of real-world problems result easier to represent with SIDs
and DANs taking into account the above described characteristics.

3.4 Summary of the comparison

In the previous sections we have seen how DANs address the representation of asymmetric deci-
sion problems and how they compare favorably to the alternative formalisms. In this section we
will summarize the results of the comparison. First we describe our conclusion about the features
which make a formalism suitable for the representation of order and structural asymmetry. Next
we give a statement of the more suitable formalisms.

3.4.1 Representation of order asymmetry

Situations where the order of decisions and observations changes can not be represented with
the common ID formalism. From the respective representations of the diabetes problem we have
seen that the ability to represent order asymmetry depends on whether the formalism requires
a total order of the decisions. As DANs, UIDs and SIDs do not require a total order, they can
all represent order asymmetry. The solution is to represent the decision and the variable that
this decision reveals directly in the model, what is a natural representation of the structure of
a test problem. The formalisms that require a total order of decisions (IDs, EIDs, SVNs and
AIDs) need to include artificial variables which represent all the possible orders of decisions and
observations, what obscures the structure of the model and makes it impossible to represent large
diagnosis problems, such as the n-test problem. AIDs are a special case, because they relax the
requirement of a total order to a partial order only if the decisions are completely independent.
In the case of the diabetes problem the test decisions are not independent and therefore the
diabetes problem was represented with a total order.

The advantage of DANs and UIDs over the other formalisms is that they do not have in-
formation arcs. Therefore they are appropriate for representing decision problems such as the
n-test problem, because they do not need to indicate which variables are known when making
a decision. While UIDs require all parent decisions to be taken to know the state of a variable,
DANs require only one decision to be taken to know the state of a variable. So DANs can repre-
sent problems where a variable is revealed by one of two decisions, what cannot be represented
by UIDs.

3.4.2 Representation of structural asymmetry

The representation of asymmetric constraints has two objectives: conveying the asymmetric na-
ture of the problem at the graphical level to the decision analyst and creating a consistent and
efficient model of the problem that can be treated with computers. All formalisms which describe
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constraints explicitly (SVNs, AIDs, SIDs and DANs) are in principle suitable for the represen-
tation of asymmetry as they have a compact representation of the states space of the variables
and avoid dummy states. The way constraints are described is different for each formalism as
we have explained in the respective representations of the dating and the reactor problems:

◦ IDs and UIDs do not describe constraints explicitly and follow the approach of an artificial
symmetrization of the problem, what makes them unsuitable for the representation of
structural asymmetry.

◦ EIDs combine the description of the uncertainty model of an ID with distribution trees
which capture the asymmetric aspects by explicitly describing the conditioning scenarios.

◦ SVNs rely on a VN based model for the description of uncertainty and represent asymmetry
with a compact graphical representation of the decision scenarios and indicator valuations
for complex constraints.

◦ AIDs adapt the semantics of the arcs and nodes of IDs for the representation of non-
sequential decisions and conditioned scenarios, adding labels to describe under which con-
dition a variable appears.

◦ SIDs use an ID based model to describe uncertainty combined with a compact but explicit
representation of the decision scenarios which make visible the information precedence and
asymmetric constraints.

◦ DANs combine an ID based model for the description of uncertainty with an explicit repre-
sentation of restrictions between variables and a local description of information precedence
which both capture the asymmetric aspects of the problem.

The strength of a formalism depends further on more specific aspects such as the expressiveness
of the description of constraints at the graphical level, the ability to describe different types of
structural asymmetry, the scope and mechanism of the definition of constraints and the repre-
sentation of information precedence.

Regarding the description of asymmetric constraints at the graphical level the use of labels
for arcs and nodes describing conditions for its occurrence is very common, so for example AIDs,
SVNs and SIDs use labeled links to describe constraints and information flow what makes these
diagrams very expressive because the decision analyst can read directly from the diagram details
about the asymmetric constraints of the problem. Nevertheless the labels are often composed
and include the sequence of previous observations and decisions, so the description with labels
can make the diagram difficult to read for larger problems. Although EIDs have a concise and
detailed description of the asymmetric constraints at the functional level using distribution trees,
they do not represent any information about the asymmetric constraints in the main diagram.
Therefore they are not very useful as a communication tool because the decision analyst has to
analyze several diagrams to get an understanding of the structure of the problem. DANs are also
different from the other formalisms regarding the description of constraints at the graphical level.
While the labels of the above mentioned formalisms (AIDs, SVNs and SIDs) describe conditions
under which a variable occurs and are shown at the graphical model, DANs follow a different
approach as they express the occurrence of constraints at the graphical level by focusing on the
cause-effect relation of the restriction. Although DANs do not show the details of the specification
of the constraints, they represent systematically all constraints and distinguish further whether
the restriction is total (i.e., the variable is non-existent in a scenario) or if the restriction is
partial (i.e., the variable appears with a subset of its values). In this aspect DANs overcome a
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shortcoming of AIDs, which distinguish also these types of asymmetry (structural and functional
in AID terminology) but represent only the first type systematically at the graphical level.

SVNs and SIDs take a different approach to describe asymmetry as they include a model for
the description of the chronological order of observations and decisions. This model describes
under which conditions a variable is observed, what is useful for the description of conditioned
scenarios, i.e., when the variable may be non-existent in a scenario (i.e., totally restricted). In
the case of a partial restriction or when the variables which define the restriction do no ap-
pear successively at the model of order the description with a clustered decision tree is not that
straightforward as the occurrence of a variable with a subset of its values does not necessar-
ily condition the appearance of another variable, what is basically the information represented
in this model. SVNs use indicator valuations for this type of restrictions, which describes the
incompatible combinations between the variables which define the restriction. DANs represent
the restrictive influence of a variable also directly with link restrictions involving only the two
concerned variables and using a more intuitive definition than that of indicator valuations. Al-
though SIDs are able to describe this type of constraint concisely with composed guards, they
have the drawback that the model does not reveal information about the restrictive influence
between the involved variables because the guards are implicit, i.e., they are not shown between
the variables which define the restriction.

Another difference we have seen during the comparison of the formalisms is that DANs use
a different approach to describe information precedence. DANs describe locally information
precedence. This is the opposite approach of SVNs and SIDs, which have an explicit description
of the sequence of variables and AIDs, which use information arcs. This gives DANs an advantage
when describing complex problems where a lot of variables might be known initially or revealed
by a decision. An explicit representation of the information precedence for this kind of problems
would create a complex and difficult to understand representation, while the DAN representation
would remain simple. SIDs are a special case, because they provide the possibility to represent
parts of the problem with a unspecified temporal order (clusters) within the model of order, so
SIDs provide also an efficient representation of information precedence.

Table 3.3 summarizes the main features of the different formalisms explained before. This
table considers the explicit representation of the sequence of variables, the description of the
independence relationships at the model, the use of dummy states and labeled links. It is also
relevant whether the formalism requires a total order of the decisions and if it uses informational
arcs.

explicit causal dummy labeled total inform.

sequence relations states links order arcs

DT yes no no no yes yes

ID no yes yes no yes yes

EID no yes yes no yes yes

SVN yes depends no yes yes yes

AID no yes no yes yes yes

UID no yes yes no no no

SID yes yes no yes no yes

DAN no yes no yes no no

Table 3.3: Comparison of the main features of the different formalisms.
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3.4.3 Conclusion comparison

In the comparison of the formalisms we have seen that only DANs and SIDs are able to represent
both order and structural asymmetry, while UIDs only represent order asymmetry well, and
AIDs and SVNs only address structural asymmetry. Therefore it depends on the characteristics
of the decision problem, which formalism may be used. If order asymmetry is not an issue at the
problem and only structural asymmetry appears AIDs, SVNs, SIDs and DANs provide all a good
solution. Nevertheless for complex problems the local description of information precedence with
revelation arcs may be an important advantage of DANs.

3.5 Summary DANs

In this chapter we have presented the DAN formalism as a new probabilistic graphical model
for the representation of asymmetric decision problems. We have introduced the definition of
the formalism and the proposed evaluation method, which is currently the transformation into
an equivalent decision tree. Next we have represented the three asymmetric decision problems
introduced in the previous chapter to see how DANs address different types of asymmetry. We
have also compared the solutions of the alternatives formalisms to the DAN solutions explaining
the differences for the representation of order and structural asymmetry. This comparison has
shown that DANs compare equally or even better with the other formalisms in all important
aspects, being sequential influence diagrams (SIDs) their main competitors. DANs provide a
natural representation of both order and structural asymmetry by focusing on the representation
of the underlying relationships between variables instead of focusing on the sequential aspects of
observations and decisions which are part of the solution. DANs therefore are a promising model
for the representation of complex decision problems.



4 Implementation of DANs
in OpenMarkov

DANs have been implemented at OpenMarkov, an open-source software tool for the edition and
evaluation of PGMs. The choice to implement DANs at OpenMarkov was clear, as OpenMarkov
is available to a wide audience as it is freely available and already known by the research com-
munity for the probabilistic models it already implements. This part of the work gives a brief
introduction to OpenMarkov and describes the extensions that we have added for the imple-
mentation of DANs. We use UML to describe our work due to the object-oriented approach of
OpenMarkov.

4.1 OpenMarkov

OpenMarkov is an open-source software tool for the edition and evaluation of PGMs developed
by the Research Center on Intelligent Decision-Support Systems (CISIAD) of the UNED, in
Madrid, Spain. OpenMarkov is based on the project Carmen (Arias & Dı́ez, 2008; Arias, 2009)
which started at 2003 and was renamed as OpenMarkov in 2010.

OpenMarkov supports several types of networks, such as Bayesian networks (BNs), Influence
diagrams (IDs), Limited memory IDs (LIMIDs) and Markov networks. Currently OpenMarkov
can only evaluate Bayesian networks, influence diagrams and Markov processes with atemporal
decisions (MPADs). OpenMarkov implements also several types of temporal models, such as dy-
namic Bayesian networks, simple Markov Models (SMM), Markov Decision Processes (MDPs),
Partially observable MDPs (POMDPs), Dec-PoMDP and dynamic LIMIDs. A detailed descrip-
tion of the representation of real-world problems with dynamical models can be found in (Dı́ez
& van Gerven, 2011) and (Dı́ez et al., 2011).

OpenMarkov’s default format for storing probabilistic models is ProbModelXML, which was
proposed by Arias et al. (2011) as a common language for the specification of PGMs. ProbMod-
elXML uses an XML syntax and allows to specify a large set of graphical models with a wide
range of properties.

OpenMarkov has an object oriented design as it is programmed with Java and a modular
organization as Maven is used for its construction. Figure 4.1 shows the organization of Open-
Markov in sub-projects and the dependencies between the different projects:

◦ The project core implements the underlying data model for the representation of PGMs
such as graphs and network types.

◦ The project gui implements the GUI of OpenMarkov.

◦ The project io contains the code for the writing and reading of networks in ProbModelXML
format and Elviras format.

◦ The projects learning.gui, learning.algorithm and learning.metric are used for the auto-
matic construction of models from data (databases).

109
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◦ The project inference and inference.heuristic are used for the evaluation of a decision
problem represented as PGM.

Figure 4.1: OpenMarkov organization: White rounded rectangles represent OpenMarkov sub-
projects. Black links indicate static dependencies between them. Blue links denote dependencies
on external libraries, which are represented by yellow rounded rectangles. Green links denote
dynamic dependencies discovered at runtime via Java annotations; for example, the GUI will
detect dynamically the available inference algorithms, and exact inference algorithms will detect
automatically the available elimination heuristics. This way it is possible to extend OpenMarkov
by adding subprojects (artifacts, in maven’s terminology) that will behave as plug-ins.

4.2 Extensions to implement DANs

This section describes the extension of OpenMarkov to implement DANs. The extensions are
centered mainly on the establishment of a new network type and the additional features of
DANs with regard to IDs, which are in particular link restrictions, always observed variables and
revelation arcs. The following list describes briefly the new requirements of the software system
with regard to DANs. The system should provide the following possibilities:

1. Create DANs.

2. Store the configuration of a DAN in the ProbModelXML format, including link restrictions,
always-observed variables and revelation conditions.

3. Read the configuration of a DAN from a ProbModelXML file and represent the graphical
model.
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4. Represent graphically the model of a DAN:

◦ Links having a link restriction are depicted with a single/double crossing stripe.

◦ Always observed variables are depicted by painting the border with a special color.
The system uses this same color for painting the always-observed variables and reve-
lation arcs. In the future, this color might be configurable by the user.

◦ Links having revelation conditions are painted with a special color.

5. Edit link restrictions:

◦ The edition should be graphically and intuitive and the system must store them in an
appropriate data structure.

◦ The existence of link restrictions has an impact on the conditioned probability dis-
tributions of the second node of the link. The conditional probability table should
highlight the states, which are impossible in some scenarios according to the restric-
tions imposed by a link restriction. Impossible states have the probability value zero
and appear at not-editable cells, which are highlighted in a special color.

6. Configure the always observed property for a variable:

◦ The edition should be graphically, i.e., at the node properties panel. The system
should store these variables in an appropriate data structure.

7. Edit revelation conditions:

◦ The GUI should allow to edit the revelation conditions graphical in an intuitive way.
The edition for finite state and discretized variables consists of the selection of the
states and the edition for numeric variables compromises the edition of intervals. The
system should store revelation conditions in an appropriate data structure.

Due to the object-oriented approach of the project, we use UML diagrams for the description
and modeling of the software system regarding the implementation of DANs.
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4.3 Specification of the software system

Table 4.1 shows a summary of the use cases, which describe the system behavior related to DANs
and which are explained in detail in the correspondent sections.

Use case Use case name Scope Description

Id

1 Create DAN system-wide Creates a new instance of DAN

2 Store DAN system-wide Write the configuration of a DAN

in a ProbModelXML file

3 Read DAN system-wide Read the configuration of

a DAN from a ProbModelXML file

4 Represent graphical system-wide Paint graphical model

model of the DAN

5 Paint link restriction link Depict link restriction

6 Paint revelation arc link Depict revelation arc

7 Paint always observed variable Depict always observed

variable variable

8 Edit link restrictions link Set compatibility values

to a combination of variables

9 Remove link restriction link Removes the link restriction

of a link.

10 Represent incompatible prob. table Adapt the representation

states at the conditional of CPT to link restrictions

probability table (CPT)

11 Configure Always variable Edition of the always observed

Observed prop. property

12 Define Revealing link Defines the revelation conditions

conditions for a link

13 Define Revealing link Edition of revealing states

states

14 Define Revealing link Definition of revealing

intervals intervals

Table 4.1: Use case overview.

Figure 4.2 shows the use case diagram for the new feature of the software system. The
detailed description of the use cases shown in Table 4.1 can be found in the appendix A.2.
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Figure 4.2: Use cases diagram.

4.4 Analysis and design

This section focuses on the analysis and design for the requirements specified in the previous
sections. The implementation of the new features require modifications of the data model, the
GUI and the encoding of the graphical model in ProbModelXML format. Table 4.2 shows which
subprojects of OpenMarkov are modified in each case.

Modifications sub project

Data model core

GUI gui

ProbModelXML io

Table 4.2: Modification of source code.

4.4.1 DAN network type

In OpenMarkov, the properties of a network type are defined by means of constraints. The
configuration of constraints for a network type is important as the access to functionalities at
OpenMarkov is based on constraints and not on the network type. This modular approach based
on constraints gives OpenMarkov the capability to implement new network types with ease. The
Table 4.3, taken from Arias et al. (2011), shows the configuration of the constraints for the
different network types. This Table shows that DANs are similar to IDs, as they share almost all
the same constraints, but DANs have the additional capability of restrictions on links, revelation
arcs and always observed variables. Therefore the default value for the constraints NoRestriction
and NoRevelationArc is overridden for the Decision Analysis Network type so that DANs do not
have these constraints.
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NoEmptyName Y Y Y Y Y Y Y Y Y Y Y

DistinctVariableNames Y Y Y Y Y Y Y Y Y Y Y

OnlyFiniteStatesVariables O O O O O O O O O O O

OnlyNumericVariables O O O O O O O O O O O

OnlyChanceNodes Y Y N N N Y N N N N N

OnlyOneUtilityNode – – O O O – O O O O O

OnlyAtemporalVariables Y Y Y Y Y N N N N N N

OnlyTemporalVariables N N N N N Y N Y Y Y Y

OnlyOneAgent Y Y Y Y Y Y Y Y Y N Y

DistinctLinks Y Y Y Y Y Y Y Y Y Y Y

NoMultipleLinks Y Y Y Y Y Y Y Y Y Y Y

OnlyDirectedLinks Y N Y Y Y Y Y Y Y Y Y

OnlyUndirectedLinks N Y N N N N N N N N N

NoRestriction Y Y Y Y N Y Y Y Y Y Y

NoRevelationArc Y Y Y Y N Y Y Y Y Y Y

NoSelfLoop Y Y Y Y Y Y Y Y Y Y Y

NoCycle Y O Y Y Y Y Y Y Y Y Y

NoClosedPath O O O O O O O O O O O

MaxNumParents O O O O O O O O O O O

NoUtilityParent – – O O O – O O O O O

NoSupervalueNode – – O O O – O O O O O

NoMixedParents – – O O O – O O O O O

NoBackwardLink – – – – – Y Y Y Y Y Y

Table 4.3: Constraints used in the OpenMarkov tool. The letter in each cell indicates whether a
constraint is associated with a network type: Y = yes, N = no, O = optionally. A dash means
that a constraint does not make sense because of the presence of another constraint (see the text
for a more detailed explanation). Each constraint has a default behavior; a bold letter in this
table means that the default behavior has been overriden for a particular type of network.
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Arias (2009) gives a detailed description of the architecture of the constraint framework of
OpenMarkov (formerly Carmen), which is built upon constraints relative to the structure of the
graph or regarding nodes and variables. These constraints are controlled during the edition of
the probabilistic network to assure the correctness of the probabilistic network. Figure 4.3 shows
the main classes of the constraint framework, where the entity ProbNet is associated with several
PNConstraints, each responsible of the control of a certain constraint. This section provides the
specification of several new constraints proposed by Arias et al. (2011) (described as realizations
of PNConstraint in Figure 4.3), which were implemented in the context of this project in order
to make the constraint framework operative:

Constraints about links (structure of the graph)

◦ MaxNumParents: It limits the number of parents that a node may have, as specified by
its argument.

◦ NoClosedPath: It forbids both cycles and loops. In the case of undirected graphs, this
constraint implies that the graph of the model is a tree. In the case of directed graphs, it
implies that the graph is polytree.

◦ NoRevelationArc: Revelation arcs are used by DANs to indicate that a variable reveals the
value of another variable ; for example, the decision of performing a test “reveals” the result
of the test. A network that admits revelation arcs can also indicate that some variables are
always-observed. Currently DANs are the only network type that admits revelation arcs
and always-observed variables.

◦ NoRestriction: A constraint (x, y) associated with an arc X → Y means that the values x
and y are incompatible; for example, the decision of discharging a patient now (x) prevents
the performance of a test a few hours later (y). Currently all the network types have this
constraint, except decision analysis networks.

◦ NoMixedParents: This restriction establishes that all the parents of a utility node belong
to only one of these two sets of parents: (1) chance and decision nodes, or (2) utility nodes.

◦ NoMultipleLinks: This constraint makes the undirected link A−B incompatible with both
A → B and B → A; however A → B would be compatible with B → A. This restriction
will be used, for instance, when building chain graphs.

◦ NoUtilityParent: This constraint forbids that a chance or decision node has a utility node
as a parent. However, it does not forbid that a utility node be a parent of another utility
node (the latter would be called supervalue node Tatman & Shachter (1990)).

◦ DistinctLinks: The network cannot have two equal links. For example, the network cannot
have two links X → Y . A link X → Y is different from Y → X and X — Y , but the latter
is considered to be the same as Y — X.
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Figure 4.3: Class diagram constraints framework

Constraints about nodes and variables

◦ OnlyATemporalVariables: The model contains no temporal variable.

◦ OnlyFiniteStateVariables: All the chance and decision variables must be of finite-state or
discretized. However, this restriction does not affect utility variables, which in ProbMod-
elXML are assumed to be always numerical.

◦ OnlyNumericVariables: All variables must be purely numeric. Discretized variables are not
admitted, because they are treated as finite-state variables.

◦ OnlyTemporalVariables: Used by most dynamic models. In the current version of Prob-
ModelXML, the only type of dynamic model that does not have this constraint is Simple-
MarkovModel, which accept both temporal and atemporal variables.

4.4.2 Link restrictions

This section explains the modifications on the data model, GUI and the ProbModelXML relative
to link restrictions.

Definition and preconditions

A restriction expresses the incompatibility between certain values of two variables connected by
a directed link A→B. The restrictions associated to that link are represented by means of a
potential ψ defined on A × B, such that ψ(a, b) = 1 expresses compatibility and ψ(a, b) = 0
incompatibility. A link restriction can only exist if it satisfies the following conditions:

◦ Variable A must be chance or decision.
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◦ The variables A and B must be finite-states. In this master thesis we will deal only with
restrictions for finite-states variables (including discretized variables, which are treated as
if they were finite-states).

◦ The network does not have the NoRestriction constraint. The NoRestriction constraint
prevents a network from having restrictions. Currently all the network types have this
constraint, except decision analysis networks, what means that only DANs can have re-
strictions.

Modifications of the data model

The modifications of the data model comprise the data structure to store link restrictions and
the related methods for retrieving and assigning the information. Figure 4.4 shows the class
diagram for the class Link, the entity which is the container of the link restrictions.

Figure 4.4: Adaption of the class Link for storing restrictions.

The class Link has an attribute named restrictionsPotential, which is a potential ψ defined
on its variables, Var1 and Var2, for storing the compatibility values. This potential stores the
value 1 for compatible pairs of values and 0 for incompatible values. The corresponding attribute
has a null value when the link has no associated restrictions. The class Link has several methods
for assigning and retrieving information about the restrictions:

◦ hasRestrictions(): boolean This method indicates if the link has a restrictionsPotential.
The method checks whether the potential has a null value or not.

◦ hasTotalRestriction(): boolean This method indicates if the link has a restriction Potential
and if the restriction is total.

◦ initializeRestrictionsPotential(): This method associates a Potential to the link. If Var1
and Var2 are finite-states variables, this method initializes the attribute restrictionsPoten-
tial with a TablePotential whose variables are Var1 and Var2 and whose values are all 1
(compatible).

◦ resetRestrictionPotential(): This method assigns a null value to the restrictionsPotential if
all its values are compatible.
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◦ setCompatibilityValues(State state1, State state2, int compatibility): This method assigns
the value of the parameter compatibility to the combination of the variables Var1 and Var2.
The compatibility value should be 1 for compatibility and 0 for a restriction.

◦ areCompatible(State state1, State state2): boolean This method returns the compatibility
value of the combination of the variables Var1 and Var2. It returns 1 if the combination is
compatible and 0 otherwise.

◦ setRestrictionsPotential(Potential potential): This method assigns a potential to the at-
tribute restrictionsPotential.

Modifications of the GUI

The modifications of the GUI for the representation of link restrictions comprise the following
functionalities, which are described subsequently with more detail:

◦ Configure the contextual menu options of a link (Use case 8 and 9).

◦ Paint link restrictions (Use case 5).

◦ Edition of link restrictions (Use case 8).

◦ Representation of impossible states at the CPT (Use case 10).

Contextual menu options The activation of the menu options is a responsibility of the class
EditorPanel (package org.OpenMarkov.core.gui.window.edition) as described in the sequence di-
agram in Figure 4.5.

Figure 4.5: Diagram for the activation of the link restriction menu options.

This diagram shows that the process is initialized when a mouseEvent is received. The method
showContextualMenu() determines if the mouse selection corresponds to the selection of a link.
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If a link is selected the method isValid() of the class LinkRestrictionValidator is responsible for
checking whether the link can have link restrictions. This class considers the preconditions of
link restrictions explained at the definition of the link restriction (see Section 4.4.2). Depending
on whether the link has already a link restriction, the different contextual menu options are
activated. The option Edit restrictions and Remove restrictions are activated if the link has
already a link restriction: otherwise only the option Add link restrictions is activated.

Figure 4.6: Diagram for the painting of a link restriction.

Paint link restrictions The GUI of OpenMarkov uses the shape drawing features from the
Java 2D API. The nodes and links are represented basically using geometric primitives such as
point, lines and shapes, which are painted in a Graphics2D instance. The representation of a link
restrictions with stripes crossing the link comprises the painting of lines centered at the middle of
the link each one at a given distance and crossing the link perpendicular. The dynamical model
for the painting of the link restriction is described in Figure 4.6. The method paintDoubleStripe()
or paintSingleStripe() of the class VisualArrow are responsible for painting the stripes and use
the auxiliary routine getStripeShape() to get the shape object of the stripes. This method
calculates the coordinates for a stripe located at a given distance d from the middle of the start
and end point and with a perpendicular orientation. Graphics2D uses affinity transformations
to calculate transformed coordinates, which include the following geometric transformations to
calculate the transformed coordinates of a stripe.

◦ Translation to the origin of coordinates from the middle of the two points.

◦ Rotation of αcalculated as the gradient of the line according to tan(α) = ∆(y)
∆(x) .

◦ Translation to the distance d at thex-axis from the origin.
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Edition of link restrictions The edition of the compatibility values of a link restriction opens
a dialog which shows a table with the compatibility values (CVT) for the combination of states
of the link variables. The implementation of this functionality should be based on the existing
code for the representation of the conditioned probability tables (CPT). The reason for the reuse
of the code is that both functionalities represent the combination of the states of variables in
a table and that the values to represent are stored in a potential. Therefore the classes used
to represent the compatibility values table are extensions of the existing classes which adapt
certain features to the new requirements. In particular the differences are that the cells of the
compatibility values are painted with green or red color according to its value and that the cells
are not editable. The cells are sensitive to mouse events and on receiving a double click event
change the value of the cell. Further the CPTs use a list of potentials to represent the conditioned
probability, because a node can have several parents. In contrast, compatibility values exist at a
level of a link and therefore only one potential is involved. The extensions of the existing code
is described in Figure 4.7, where the relevant methods of each class are depicted.

The classes shown in Figure 4.7 override functionalities of their parent classes:

◦ LinkRestrictionCellRenderer overrides the setCellColors() method so that the cells are
painted with red and green color according to its value.

◦ LinkRestrictionPanel adapts the method setData() as each CVT corresponds to only one
potential.

◦ LinkRestrictionsValueTable overrides the method setValueAt() as the events of modifica-
tions must be handled with the specific object LinkRestrictionPotentialEdit. The methods
inherited from PNUndoableEditListener are also overridden.

◦ The TableModel class (LinkRestrictionValuesTableModel) overrides the methods isCellEd-
itable() and getColumnClass() so that cells are not editable and the CVT shows integer
values.

Figure 4.8 shows the dynamic model for the edition of a compatibility value. The sequence is
started by an mouse event received at the table. The table calls the setValueAt() method, which
creates an SimplePNEdit object (LinkRestrictionPotentialEdit) to store the modified data at the
link. The SimplePNedit object is handled by means of the PNESupport mechanism, so that that
the modifications can be undone and redone. The PNESupport class calls the doEdit() method
of the SimplePNEdit object which stores the modified compatibility value at the link.
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Figure 4.8: Diagram for the edition of a compatibility value.

Representation of impossible states at the CPT Figure 4.9 shows the class diagram of
the entities involved in the representation of the conditioned probability table (CPT). For each
class it describes the methods or attributes modified to adapt the representation of the CPT
table to indicate impossible states. The control of the graphical representation of the impossible
states is a responsibility of the TableModel, in particular of the class ValuesTableModel, which
uses a data structure with information about non-editable positions to remark the impossible
states.

Figure 4.9: Class diagram for the GUI elements of CPT table.
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Figure 4.10: Diagram for showing impossible states at the CPT.

Figure 4.10 shows the sequence of operations during the initialization of the TableModel
object. TablePotentialPanel initializes the TableModel with the content of the probability po-
tentials in the method setData(). In order to represent additionally the impossible states be-
cause of the link restrictions an additional data structure with this information is provided from
TablePotentialPanel to the TableModel. The class TablePotentialPanel uses the method get-
NotEditablePositions() to create a data structure with information about not editable positions
at the TableModel due to link restrictions. The computations regarding the impossible states
is responsibility of the auxiliary class LinkRestrictionsOperations and TablePotentialPanel con-
verts this information to a table model readable format and provides it to the TableModel. The
class ValuesTableModel uses this information about the not editable positions at its method
isCellEditable(). This information is further used at the ValuesTableCellRenderer class which
depicts non-editable cells with a special color.

<Link directed=“true ”>

<Variable name=”X”/ >

<Variable name=”Y”/ >

<Potential type=“Table” role=“Restrictions” >

<Variables >

<Variable name=“X”>

<Variable name=“Y”>

< /Variables>

<Values>1 1 1 0</Values>

</Potential>

< /Link>

Figure 4.11: ProbModelXML code for a link restriction.

Modifications of ProbModelXML

ProbModelXML encodes link restrictions as an attribute of the link element. The link element
contains a Potential with the role Restrictions to hold the link restriction’s potential. Figure
4.11 shows the XML structure of a link with a restriction potential. The modifications of Prob-
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ModelXML concern the classes PGMXReader and PGMXWriter, which should be adapted to
implement the reading and writing of a potential associated with a link in the format shown at
figure 4.11. The writing of the potential must check if the values of the restrictionsPotential are
all 1 and then this potential should not be stored with the link.

4.4.3 Always-observed variables

Definition and preconditions

A chance variable can be always-observed, which means that its value is known without taking
any action. Always-observed variables have the following preconditions:

◦ Always-observed variables can only exist when the network does not have the constraint
NoRevelationArc.

◦ The variable must be a chance variable.

Modifications of the data model

The property alwaysObserved is a new boolean attribute of the class Variable, which implements
the correspondent setter and getter method (see Figure 4.12).

Figure 4.12: Class diagram for NodeDefinitionPanel.

Modifications of the GUI

The modifications of the GUI comprise the adaption of the node properties panel to show the
always-observed property (Use case 11) and the modifications of the painting of the node (Use
case 7).

Modifications of the node properties panel Figure 4.12 shows the entities involved in
the graphical representation of the always-observed property. The class NodeDefinitionPanel
is the GUI element which shows the label and the checkbox to configure the always-observed
property. NodeDefinitionPanel uses the class AlwaysObservedPropertyValidator to validate if
a node can have the always-observed property and activate the correspondent GUI elements.
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In particular its method validate() checks if a variable satisfies the preconditions of an always-
observed variable. The modifications of this property from the GUI is carried out by the class
NodeAlwaysObservedEdit, which implements the SimplePNEdit interface.

Figure 4.13 shows the sequence of operations for the edition of the always-observed property.
The sequence is started by an action event received at the NodeDefinitonPanel. The panel checks
whether the actionEvent comes from the checkbox related to the always observed property and
calls the alwaysObservedPropertyHasChanged() method, which creates a SimplePNEdit object
(NodeAlwaysObservedEdit) to store the modified property at the variables. The SimplePNEdit
object is given to PNESupport, which calls the doEdit() method of the SimplePN object, which
stores the value of the always observed property at the variable. The use of a SimplePNEdit
object assures that the redo() and undo() functions of the GUI work properly, as the modifications
are handled with the PNESupport mechanism.

Paint always observed node The always-observed property is represented visually by draw-
ing the node with a broader border and a special color. The class VisualChanceNode
(package org.OpenMarkov.core.gui.graphic) needs to adapt its paint routine to take into account
these requirements when painting the node.

Modifications of ProbModelXML

ProbModelXML encodes the always-observed property as an attribute of the variable element.
Figure 4.14 shows the XML structure of an always-observed variable which should be imple-
mented at the PGMXReader and PGMXWriter class.

<Variable name=“Symptom” ...>

<AlwaysObserved>

Figure 4.14: ProbModelXML code for an always-observed variable.

4.4.4 Revelation arcs

Description and preconditions

A revelation arc between the node A and B is a link property and denotes that certain values
of A reveal the values of B. These values are termed revealing conditions and depending on the
type of the variable they are states or numeric intervals. In the case of discretized or finite state
variables the revelation conditions reference states of the variable A (revealing states), which
reveal the value of the variable B. In the case of numeric variables the revelation conditions are
numeric intervals, i.e. closed, open or half-bounded intervals. The variable A reveals the value of
the variable B when the value A takes on falls into any of these intervals (referred to as revealing
intervals).

Graphically the revelation arcs are painted with the same color used to draw the border of
the nodes that represent always-observed variables. A revelation arc mus fulfill the following
preconditions:

◦ A revelation arc may only exist when the network does not have the constraint NoRevela-
tionArc.

◦ A revelation arc may only exist when the first node is a chance or decision node and the
second is a chance node.
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Modifications of the data model

When a link between the nodes A and B is a revelation arc it is necessary to store the list of
revealing values of the node A. Depending on the variable type the class Link stores the revealing
values as objects of the type State or Interval. Figure 4.15 shows the class diagram of Link with
the attributes and methods related to the revelation conditions.

Figure 4.15: Adaption of the class Link to include revelation conditions.

The class Link contains the following methods to associate the revealing conditions to the
link and to assign and read the revealing values:

◦ hasRevealingConditions(): boolean This method indicates whether there are revealing con-
ditions for the link. The method returns true if the list of revealing states or revealing
intervals is not empty.

◦ addRevealingState(State) and removeRevealingState(State) These methods add and re-
move a state from the list of revealing states. These methods should be used when the
node is a finite state or discretized node.

◦ addRevealingInterval(Interval) and removeRevealingInterval(Interval) These methods add
and remove an interval from the list of revealing intervals. These methods should be used
when the node represents a numeric variable.

◦ getRevealingStates(): ArrayList<States> and setRevealingStates( ArrayList<States>).
These methods are the getter and setter method for the list of revealing states.

◦ getRevealingIntervals(): ArrayList<Interval> and setRevealingIntervals (ArrayList<Interval>).
These methods are the getter and setter method for the list of revealing intervals.

Modification of the GUI

The modifications of the GUI comprise the definition of the revealing conditions (Use case 12),
which can be depending on the domain of the variable either the definition of revealing states
(Use case 13) or the definition of revealing intervals (Use case 14) .
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Definition of revealing conditions The edition of the revelation conditions of a link is acces-
sible from a contextual menu option of a link. The option Edit revelation condition is available
when the link satisfies the preconditions of a revelation arc. This validation is implemented at the
class RevelationArcValidator at the method validate (See class diagram of figure 4.16). The class
EditorPane, which represents the graphical pane, uses this method to activate the contextual
menu option of a link.

The class RevelationArcPanel is the graphical window, which contains the GUI elements for
configuring the revealing conditions. In the case the variable has a finite state or discretized
domain, this panel uses a SelectableKeyTablePanel to represent graphically the interface for the
selection of the states of the variables. If the variable has a numeric domain the RevelationArc-
Panel shows a RevelationArcDiscretizeTablePanel, which allows to configure the intervals.

The GUI element responsible for the configuration of the revealing states (SelectableKey-
TablePanel) is an extension of the PrefixedKeyTablePanel, which is used at the domain defi-
nition of a finite state variable. This class is more specific as it uses a SelectableTableModel,
so that the user can select different states by means of a checkbox . The modifications of the
revealing states of a link are carried out at the class RevelationStateEdit, which implements
the interface SimplePNEdit. The GUI element responsible for the configuration of the revealing
intervals (RevelationArcDiscretizeTablePanel) is an extension of the the DiscretizeTablePanel,
which is used at the definition of domains for numeric variables. This class adapts the edition of
the intervals defined by the super class, so that the modifications are stored by means of a Rev-
elationIntervalEdit object at the link. The class RevelationArcDiscretizeTablePanel implements
several methods which correspond to the actions of the Add and Remove button and the edition
of the intervals of the table.

Definition of revealing states Figure 4.17 shows the sequence of operations for the edition
of the revealing states of a variable (see Section 4.4.4 for the definition). The sequence is started
when a TableModelEvent is detected. The SelectableKeyTablePanel creates a SimplePNEdit
object (RevelationStateEdit) initialized with the values according to the user selection on the
table. This SimplePNEdit object is given to the PNESupport, which starts the edition encap-
sulated at the SimplePNEdit object. The modification of the state (Add or Remove) is carried
out assigning the new value to the link.
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Specification revealing intervals Figure 4.18 shows the sequence of operations for the edi-
tion of the revealing intervals (see Section 4.4.4 for the definition). The class RevelationArcDis-
cretizeTablePanel initializes the modifications when it receives an event from the different GUI
elements of the window (buttons or table) and creates a SimplePNEdit object (RevelationInter-
valEdit), which encapsulates the values of a interval according to the modification of the user.
The SimplePNEdit object is given to the class PNESupport, which starts its edition by calling
the doEdit method of the SimplePNEdit object. The modifications of the revealing intervals are
stored at the correspondent link according to the type of modification (Add, Remove or Modify).

Figure 4.18: Diagram for the edition of revelation intervals

Paint revelation arc Revelation arcs are represented visually by drawing the link with a
special color. The class VisualLink (package org.OpenMarkov.core.gui.graphic) needs to adapt
its paint method to take into account these requirements when painting the link.
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Modifications of ProbModelXML

ProbModelXML encodes the revelation conditions as the element RevelationCondition at the
element Link. Figure 4.19 shows a link with revelation conditions for finite state or discretized
variables, where the revelation conditions are stored as states and figure 4.20 shows a link with
revelation conditions for a numeric variable. The classes PGMXReader and PGMXWriter have
been adapted to implement the writing of the revelation conditions in this format.

<Link directed=“true ”>

<Variable name=“Dec:Test” />

<Variable name=“Result of test” />

<RevelationConditions >

<State name=“do test”/>

</RevelationConditions>

</Link >

Figure 4.19: ProbModelXML code for finite state revealing conditions.

<RevelationConditions>

<Threshold value=number belongsTo=enumSide />2..2n

</RevelationConditions>

Figure 4.20: ProbModelXML code associated to numeric revealing conditions.

4.4.5 Consistence of the edition of the network

During the edition of the network the user can carry out different operations on nodes and links
which may have an impact on existing link restrictions and revelation conditions, and therefore
may require an additional adjustment. The basic operations such as the erasing of a link or
variable remove link restrictions and revelation conditions automatically as the link is deleted
from the network. Operations on the nodes of a network must be handled specifically as they
require an adjustment in certain situations. The following operations on nodes imply a reset of
the link restrictions on both incoming and outgoing links from a node and a reset of revelation
conditions only on the outgoing links

◦ The edition of the type of the variable (implemented at the class VariableTypeEdit) entails a
change of the domain, what may make the related link restrictions and revelation conditions
inconsistent.

◦ The edition of the states of a finite-state variable (implemented at the classes NodeStateEdit
and NodeReplaceStatesEdit) entails changes on the domain of a variable, which make the
related link restrictions and revelation conditions invalid.

An example is the case where the state space of a variable A is modified by erasing a state of
the variable or changing the type of the variable. In this case link restrictions and revelation
conditions on the outgoing links of the node become inconsistent as they may register that a
now non-existent state has a conditioning influence or a revealing influence on another variable.
Therefore it is necessary to reset the link restrictions and revelation conditions on all outgoing
links of the variable. Similarly the link restrictions of the incoming links of a node may reference
a now non-existent state, therefore it is necessary to reset the link restrictions on the incoming
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links. As revelation arcs do not establish an relation between the revealing state and the exact
value which is revealed, it is not necessary to reset automatically the revelation conditions on
the incoming links, because these revelation conditions do not reference the modified variable.

4.5 Codification

In this section we detail the codification of the newly implemented network constraints and the
validations of the preconditions of the specific features of DANs.

Network constraints

Network constraints are implemented as realizations of the class PNConstraint, where the con-
trol of the constraint is implemented by the methods checkProbNet(ProbNet net) and check-
Event(Edit edit) (see Figure 4.3). The underlying algorithms of each constraint according to the
specification in Section 4.4.1 can be found in appendix A.3. We explain the representation of the
codification of the constraints by means of the example of Algorithms 1 and 2. These algorithms
show the codification of the MaxNumParents constraint applied to the whole probabilistic net-
work (checkProbNet) and applied to the edition of the network (checkEvent). The constraint
MaxNumParents limits the number of parents that a node may have as specified by the argument
maxNumParents. The variable constraintSatisfied represents the state of accomplishment of the
constraint.

Algorithm 1 checkProbNet - MaxNumParents

Require: probNet instanceOf ProbNet, maxNumParents > 0
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: for all (node of graph) do
4: np⇐ node.numParents()
5: if (np > maxNumParents) then
6: constraintSatisfied⇐ False
7: end if
8: end for

Algorithm 2 checkEvent - MaxNumParents

Require: edit instanceOf PNEdit, probNet instanceOf ProbNet,
maxNumParents > 0

1: constraintSatisfied⇐ True
2: if (edit instanceOf LinkEdit) then
3: if (edit.isDirected()) then
4: node2 ⇐ edit.node2()
5: np⇐ node2.numParents()
6: if (np > maxNumParents) then
7: constraintSatisfied⇐ False
8: end if
9: end if

10: end if
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Precondition validators

The specific features of DANs, link restrictions, always observed variables and revelation arcs,
are conditioned on different preconditions, as described for each case respectively in Sections
4.4.2, 4.4.3 and 4.4.4. The details of the underlying algorithms, which implement the control
of the preconditions can be found at appendix A.3. We explain the approach of the validations
of preconditions by means of the example of Algorithm 3. This algorithm shows the details of
the implementation of the validation of the preconditions of revelation arcs, where the variable
isValid represents the state of accomplishment of the precondition.

Algorithm 3 precondition - Revelation arcs

Require: link instanceOf Link, probNet instanceOf ProbNet
1: isV alid⇐ True
2: if (not probNet.hasConstraint(NoRevelationArc)) then
3: node1 ⇐ link.node1()
4: node2 ⇐ link.node2()
5: if (not ((node1 typeOf Chance) or (node1 typeOf Decision))

and (node2 typeOf Chance)) then
6: isV alid⇐ False
7: end if
8: end if

4.6 Tests

In order to assure the quality of the software unit testing was conducted over the parts of the
code, which were modified or added to OpenMarkov. OpenMarkov uses the JUnit1 library as
testing framework, which allows to control systematically that the methods of a class behave
as expected. Table 4.4 shows the code coverage rate of the main packages modified for the
implementation of the DAN network. The code coverage rate describes the percentage of the
source code which is systematically tested with a unit test and the here presented results were
measured with the software EclEmma2, a free code coverage tool for Eclipse3, the software
development environment used for OpenMarkov.

As described with detail in appendix A.4, the implementation of link restriction and rev-
elation arcs at the class Link is thoroughly tested; this class reaches a code coverage of 88%.
Further the implementation of the new network constraints is exhaustively tested having the
package org.OpenMarkov.core.model.network.constraint an overall code coverage of 69%. The
new implemented network constraints go beyond this measure reaching a nearly complete code
coverage, as described in appendix A.4. Also the implementation of the ProbModelXML is tested
systematically having the package org.OpenMarkov.io.probmodel a coverage of 72%.

1http://www.junit.org/
2http://www.eclemma.org
3http://www.eclipse.org/
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Modifications package Coverage

Link restriction/ revelation arcs org.OpenMarkov.core.model.graph 68%

Network constraints org.OpenMarkov.core.model.network.constraint 69%

ProbModelXML org.OpenMarkov.io.probmodel 72%

Table 4.4: Code coverage source code

4.7 Results of implementation

This section presents the results of the modifications of OpenMarkov, in particular the new GUI
elements. The screen shots are taken from the representation of a modified version of the diabetes
diagnosis problem. Figure 4.21 shows the graphical model of the diabetes problem. This diagram
shows the graphical representation of link restrictions, always observed variables and revelation
arcs.

Figure 4.21: A DAN model for the diabetes problem.

Figure 4.22 shows the dialog of the edition of the link restriction. This figure shows the
compatibility value table (CVT) where incompatible states are highlighted with red color and
compatible states with green color.
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Figure 4.22: GUI for the edition of compatible states.

Figure 4.23 shows the CPT table of the Blood test result, where impossible states appear
with red color. Figure 4.24 shows the node property pane, where the user can configure the
always-observed property by means of a checkbox. Figure 4.25 shows the GUI for the configura-
tion of the revealing states of the node Bood test. Figure 4.26 shows the GUI for the edition of
the revealing intervals of the node Glucose level.

Figure 4.23: GUI for the edition of the conditioned probabilities.

Figure 4.24: GUI for the edition of the always observed property.
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Figure 4.25: GUI for the edition for revealing states.

Figure 4.26: GUI for the edition of revealing intervals.
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5 Conclusion

We end this dissertation by summarizing the main contributions and proposing some lines for
future research.

5.1 Main contributions

First of all we have reviewed the state of the art about probabilistic graphical models (PGMs)
for decision analysis in general, and the different decision analysis formalisms specific for the
representation of asymmetric decision problems. We have focused in particular on the different
solutions each formalism provides for the representation of order and structural asymmetry, either
at the theoretical level and in practice by illustrating the solution of each formalism for three
typical asymmetric decision problems often used in the literature. To our knowledge, no previous
work has compared those formalisms with such a degree of detail: in general the proponents of
a new formalism only discuss its applicability to one or two problems for which their method
outperforms some of the methods proposed previously. Secondly we have presented decision
analysis networks (DANs), which are a new graphical probabilistic model proposed by Dı́ez &
Luque (2010) intended to represent asymmetry more naturally than the previous formalisms,
which were not used in practice for any real-world problem.

Another contribution is the detailed comparison of DANs with the previous formalisms, which
provides a description of the strengths and weaknesses of the different formalisms. This com-
parison was further key to evaluate the capabilities of DANs and to assure that DANs address
all types of asymmetry. For this purpose we built a DAN for each of the three sample problems
used for illustration and compared the representation to the respective solutions of the alter-
native formalisms. During the comparison we have detected loose ends of the DAN formalism,
which in close collaboration with Profs. Diez and Luque, has led to a redefinition of some of its
features. In particular some aspects of the main features of DANs, restrictions and revelation
arcs, were initially ambiguous or not satisfactory; they have been improved as follows:

◦ Restrictions have been defined in more detail, distinguishing partial and total restrictions.

◦ The scope of restrictions has been extended to include utility nodes, as it is useful to specify
restrictions on utilities.

◦ The conditions under which restrictions apply have been redefined to take into account
that a variable can impose a restriction only in the scenarios in which it exists.

◦ The conditions under which revelation arcs apply have been redefined to take into account
that a chance variable can reveal other variables only when it is known, either because it
was always observed or because it has been revealed in turn by other variables.

These modifications of the DAN formalism were applied in the representation of the sample
problems. In consequence the revised DAN formalism now compares equally or even favorably
in all important aspects with the alternative formalisms. As we have discussed in Section 3.3, all
those alternative formalisms have difficulties to represent at least one of the problems introduced
in chapter 2: only sequential influence diagrams (SIDs) are able to represent both order and
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structural asymmetry, although asymmetric influence diagrams (AIDs) and sequential valuation
networks (SVNs) resulted useful for the representation of structural asymmetry. As a result
of the comparison, we have confirmed that DANs are a suitable decision analysis tool, first
because DANs provide a natural representation of both order and structural asymmetry and
second because DANs represent problems with local descriptions, which are independent from the
complexity of the problem, what makes DANs suitable for the representation of many problems
that cannot be represented efficiently with almost all of the alternative formalisms.

Finally another important contributions of this work was the implementation of DANs in
OpenMarkov, an open-source software tool for the edition and evaluation of PGMs with the
objective that DANs can be used in practice for decision analysis. The details of the software
implementation are explained in chapter 4.

5.2 Future work

There are some open lines for future research, one regarding the development of the formalism
and the second regarding the practical application.

With respect to the development and implementation of DANs, the only evaluation method
proposed so far is the evaluation of the equivalent decision tree, which is not implemented yet.
Dı́ez & Luque (2010) mention that it would be desirable to implement a more efficient evaluation
method for DANs. For example one line of research would be to adapt the algorithm by Demirer
& Shenoy (2006), which decomposes a sequential valuation network (SVN) into a set of completely
ordered sub-problems. Another possibility would be to adapt the algorithm for unconstrained
influence diagrams (UIDs), which is based on the construction of S-DAGs (Ahlmann-Ohlsen
et al., 2009; Luque et al., 2010).

With respect to decision analysis it would be interesting to build a DAN for several real-
world problems in order to evaluate its suitability. One possibility would be to build DANs
for some medical problems that have been analyzed previously with influence diagrams, such as
IctNeo (Bielza et al., 1999) for neonated jaundice, Mediastinet (Luque 2009) for the mediastinal
staging of non-small cell lung cancer, and ArthroNet (León 2011) for total knee arthroplasty.
The comparison between these IDs and the corresponding DAN would bring new light on the
advantages and shortcomings of each formalism. Another line for future work would be to ex-
tend this comparison also to sequential influence diagrams (SIDs), which are the most important
competitors of DANs at the present. Both formalisms are able to represent structural and order
asymmetry efficiently, although their approaches to represent asymmetry are different. It would
be interesting to investigate which kind of problems are better representable with DANs or SIDs.
In this work we have described at the theoretical level briefly some characteristics of decision
problem we consider responsible for making a problem better representable with one formalism
than another. It would be interesting to check this theory at the practice analyzing different
real-world problems to see if they are better representable with DANs or SIDs.



A Appendices

A.1 Probability computations for the equivalent decision
tree

This section describes the computations of the conditioned probabilities for the upper branch
of the equivalent decision tree for the diabetes problem shown in chapter 3.3. The conditional
probabilities are calculated from the joint probabilities of the scenarios using marginalization.

1. Resolve scenarios ( (+s,+bt,+b,+ut,+u,+d) and (+s,+bt,+b,+ut,+u,¬d) :

(a) Determine joint probabilities for the scenarios:

P (+s, bt,+bt,+b,+ut,+u,+tr,+d) = P (+s|+ d) · P (+b|+ d,+bt) · P (+u|+ d,+ut) ·
P (+d)

P (+s, bt,+bt,+b,+ut,+u,+tr,¬d) = P (+s|¬d)·P (+b|¬d,+bt)·P (+u|¬d,+ut)·P (¬d)
P (+s, bt,+bt,+b,+ut,+u,+tr) = 0, 0554 + 1, 86 · 10−7

The probability distributions P (s|d), P (b|bt, d), P (u|ut, d) and P (d) are available from
the DAN and used to calculate the probabilities of the final scenarios.

(b) Determine the conditioned probability of the branches:

P (+d|+ s, bt,+bt,+b,+ut,+u,+tr) = P (+s,bt,+bt,+b,+ut,+u,+tr,+d)
P (+s,bt,+bt,+b,+ut,+u,+tr) = 0, 99

P (¬d|+s, bt,+bt,+b,+ut,+u,+tr) = P (+s,bt+bt,+b,+ut,+u,+tr¬d)
P (+s,bt,+bt,+b,+ut,+u,+tr) = 1,86·10−7

0,0554 = 3, 357 ·
10−6

2. Resolve scenarios (+s, bt,+bt,+b,+u) and (+s, bt,+bt,+b,¬u) :

(a) Determine joint probabilities for the scenarios:

P (+s, bt+ bt,+b,+ut,+u) = P (+s) · P (+b|+ bt) · P (+u|+ ut) = 0, 0004

P (+s, bt,+bt,+b,+ut,¬u) = P (+s) · P (+b|+ bt) · P (¬u|+ ut) = 0, 00474

The probability distributions P (s), P (b|bt) and P (u|ut) used to calculate the probabil-
ities of the scenarios are not directly available from the DAN. It is necessary to obtain
these new probability distributions by marginalizing the now irrelevant variable d:

P (s) =
∑

d P (s|d) · P (d)
P (b|bt) =

∑
d P (b|bt, d) · P (d)

P (u|ut) =
∑

d P (u|ut, d) · P (d)
(b) Determine the conditioned probability of the branches:

P (+u|+ s, bt,+bt,+b,+ut) = P (+s,bt,+bt,+b,+ut,+u)
P (+s,bt,+bt,+b,+ut) = 0,0004

0,00514 = 0, 077

P (¬u|+ s, bt,+bt,+b,+ut) = P (+s,bt,+bt,+b,+ut,¬u)
P (+s,bt,+bt,+b,+ut) = 0, 922

3. Resolve scenarios (+s, bt,+bt,+b)) and (+s, bt,+bt,¬b))

141
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(a) Determine joint probabilities for the scenarios:

P (+s, bt,+bt,+b) = P (s) · P (+b|+ bt) = 0, 00514

P (+s, bt,+bt,¬b) = P (s) · P (¬b|+ bt) = 0, 05523

(b) Determine the conditioned probability of the branches:

P (+b|+ s, bt,+bt) = P (+s,+bt,+b)
P (+s,+bt) = 0, 085

P (¬b|+ s, bt,+bt) = P (+s,+bt,¬b)
P (+s,+bt) = 0, 915

4. Resolve scenarios (+s) and (¬s)
The probability distribution of S is P (+s) =0,064 and P (¬s) =0,94.
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A.2 Use case description

This appendix contains the detailed description of the use cases shown in Table 4.1.

Use Case 1 Create Decision Analysis Network

Primary Actor: End-user

Description: Creates a new decision analysis network.

Preconditions:

Postconditions: A new instance of a DAN exists.

Related Use Cases:

Main Success Scenario:

1. The user selects the option ’New network’ from the menu.

2. The system opens a dialog showing the available network types.

3. The user selects the network type ’Decision analysis Network’ and confirms click-
ing the ’Accept’ button.

4. The system hides the dialog, creates a new instance of a decision analysis network
and activates at the GUI of Openmarkov the correspondent options for the edition
of a decision analysis network.

Extensions:
Step 3: The user selects the button ’Cancel’ and the system hides the dialog
without creating a new network.
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Use Case 2 Store DAN

Primary Actor: End-user

Description: Stores the DAN in a pgmx file.

Preconditions: The current network is a DAN.

Postconditions: The configuration of the DAN is stored in a pgmx file.

Related Use Cases:

Main Success Scenario:

1. The user selects the option ’Save as’ from the menu.

2. The system opens a file chooser dialog, where the user can introduce the file name
and location.

3. After intoducing the file name and the location, the user selects the option ’Save’.

4. The system hides the file chooser dialog and stores the configuration of the DAN
in a file in format ProbModelXML and having the extension ’pgmx’.

Extensions:
Step 3: The user selects the ’Cancel’ button and the system hides the dialog
without storing the file.
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Use Case 3 Read DAN

Primary Actor: End-user

Description: Reads a DAN from a pgmx file and represents it
graphically.

Preconditions:

Postconditions: The GUI of Openmarkov shows the graphical model of the
DAN

Related Use Cases: Use case 4: Represent graphical model

Main Success Scenario:

1. The user selects the option ’Open’ from the menu.

2. The system opens a file chooser dialog where the user can select the pgmx file of
the DAN.

3. After selecting a pgmx file, the user confirms clicking the button ’Open’ of the
dialog.

4. The system hides the file chooser dialog and reads the configuration of the DAN
from the pgmx file.

5. The system shows the graphical model of the DAN at the GUI (Use case 4
’Represent graphical model).

Extensions:
Step 3: The user clicks the button ’Cancel’ and the system hides the file chooser
dialog whithout reading a file.

Step 5: The configuration of the DAN of the pgmx is incorrect and the system
shows an error message.
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Use Case 4 Represent graphical model

Primary Actor: GUI

Description: Represent the graphical model of a DAN including special
features such as link restrictions, revelation arcs and always
observed variables.

Preconditions: The network is a DAN.

Postconditions: The GUI of Openmarkov shows the graphical model of the
DAN.

Related Use Cases: ◦ Use case 5: Paint link restriction.

◦ Use case 6: Paint revelation arc.

◦ Use case 7: Paint always observed variable.

Main Success Scenario:

1. The GUI paints the graphical model of a DAN.

2. For each link having a link restriction it starts the Use case 5: Paint link restric-
tion.

3. For each link having revelation conditions it starts the Use case 6: Paint revelation
arc.

4. For each variable, which is always observed it starts the Use case 7: Paint always
observed variable.

Extensions:
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Use Case 5 Paint link restriction

Primary Actor: End-user,GUI

Description: Represents graphically a link restriction.

Preconditions: The network is a DAN and a link restriction exists.

Postconditions: The GUI of Openmarkov shows the link restriction
explicitly.

Related Use Cases: Use case 4: Represent graphical model

Main Success Scenario:

1. The GUI paints the graphical model of a DAN.

2. The GUI paints all links with a link restriction with a double stripe crossing the
link if the link restriction is total and with a single stripe if the link restriction is
partial (See Figure A.1).

3. If the user selects the link, the link and the double stripe are highlighted painting
broader lines.

Extensions:

Figure A.1: Graphical representation of a link restriction.
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Use Case 6 Paint revelation arc

Primary Actor: End-user,GUI

Description: Represents graphically a revelation arc.

Preconditions: The network is a DAN and a revelation arc exists.

Postconditions: The GUI of Openmarkov shows revelation arcs explicitly.

Related Use Cases: Use case 4: Represent graphical model

Main Success Scenario:

1. The GUI paints the graphical model of a DAN.

2. The GUI paints all links with revelation conditions with a special color.

3. If the user selects a link with a revelation condition, the link is highlighted paint-
ing it with a broader line.

Extensions:



A.2. USE CASE DESCRIPTION 149

Use Case 7 Paint always observed variables

Primary Actor: End-user,GUI

Description: Represents graphically an always observed variable.

Preconditions: The network is a DAN and an always observed variables
exists.

Postconditions: The GUI of Openmarkov shows always observed variables
explicitly.

Related Use Cases: Use case 4: Represent graphical model

Main Success Scenario:

1. The GUI paints the graphical model of a DAN.

2. The GUI paints with a special color the border of all variable, which are always
observed.

3. If the user selects an always observed node, its boarder is painted wider.

Extensions:
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Use Case 8 Edition link restrictions

Primary Actor: End-user

Description: Assign compatibility values to the states of the variables
of a link.

Preconditions: ◦ The network is a DAN and a link is selected.

◦ The first node of the link is a decision or chance vari-
able.

Postconditions: The system stores the compatibility values set by the user
as link restrictions related to the link.

Related Use Cases:

Main Success Scenario:

1. The user selects the option ’Edit link restrictions’ or ’Add link restrictions’ from
the contextual menu of a link.

2. The system shows a dialog for the edition of the compatibility values of the link
restriction, which is similar to the scheme shown at Figure A.2 for a directed link
between A and B. This dialog lets the user add or remove restrictions between the
values of variables A and B. By default the restrictions do not exist and the table
contains the value 1 for every pair of values (a,b). The user can pick a cell of the
table and by a double mouse click change its value. The admitted values are 1 and
0, which represent compatibility and incompatibility, respectively. Compatible
combinations are depicted with a clear green color and incompatible values are
depicted with a dark red color.

3. After adding or removing the restrictions, the user confirms the edition by clicking
the ‘Accept’ button .

4. The system stores the compatibility values of the states according to the changes
made by the user in a link restriction, which is related to the link.

Extensions:
Step 3: The user clicks the ’Cancel’ button. The system hides the dialog without
storing the edited values.
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Figure A.2: Scheme of the GUI for the edition of link restrictions.

Use Case 9 Remove link restriction

Primary Actor: End-user

Description: Removes the link restriction from the selected link.

Preconditions: ◦ The network is a DAN.

◦ A link with a link restriction is selected.

Postconditions: The link has no link restriction.

Related Use Cases:

Main Success Scenario:

1. The user selects the option ’Remove link restriction’ from the contextual menu
of the link.

2. The system removes the link restriction from the link.

Extensions:
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Use Case 10 Represent incompatible states at CTP

Primary Actor: End-user

Description: Depict visually incompatible states at the CPT.

Preconditions: ◦ The network is a DAN and a link is selected.

◦ A chance node has a link restriction on an incoming
link.

Postconditions:

Related Use Cases:

Main Success Scenario:

1. The user opens the dialog for the edition of the CPT of the chance node.

2. The system shows the conditioned probability table and the states which are
impossible because of a link restriction are highlighted with a special color. These
cells are not-editable and have probability zero.

Extensions:



A.2. USE CASE DESCRIPTION 153

Use Case 11 Configure always observed property

Primary Actor: End-user

Description: Configuration of the always observed property.

Preconditions: ◦ The network is a DAN.

◦ A chance node is selected.

Postconditions: The system stores the always observed property according
to the configuration of the user

Related Use Cases:

Main Success Scenario:

1. The user opens the node property dialog of the selected node.

2. The system shows a checkbox for the always observed property at the ’Definition’
tab.

3. After setting or unsetting this property, the user confirms the edition clicking the
’Accept’ button.

4. The system closes the node properties dialog and stores the property for the node.

Extensions:
Step 3: The user clicks the ’Cancel’ button and the system hides the dialog
without storing the property.
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Use Case 12 Define revealing conditions

Primary Actor: End-user

Description: Defines the set of revealing conditions for a link.

Preconditions: ◦ The network is a DAN.

◦ A link is selected and the first node is chance or de-
cision and the second node is chance.

Postconditions: The system stores the revelation conditions of the link.

Related Use Cases: ◦ Use case 13: Define revealing states

◦ Use case 14: Define revealing conditions

Main Success Scenario:

1. The end-user selects the option ’Edit revelation conditions’ from the contextual
menu of the link.

2. Depending on the domain of the first node, the edition of the revealing values is
accomplished in two different ways:

Assignment of revealing values for finite state or discretized variables (Use case
13 ’Define revealing states’).

Assignment of revealing values of numeric variables (Use case 14 ’Define revealing
intervals’).

Figure A.3: Edition of revealing
states.

Figure A.4: Edition of revealing intervals.
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Use Case 13 Define revealing states

Primary Actor: End-user

Description: Defines the states which reveal the value of a node.

Preconditions: ◦ The network is a DAN.

◦ A link is selected and the first node of the link is a
finite state or discretized variable.

Postconditions: The system stores the revelation states of the link.

Related Use Cases: Use case 12: Define revealing conditions

Main Success Scenario:

1. The system shows a dialog for the configuration of the revealing states, which
is similar to the scheme shown in Figure A.3. This window lets the user select
from a list the states of the variable A which reveal the value of B. Beside each
state appears a checkbox for adding that state to the list of revealing states or
removing it from the list.

2. After assigning the revealing conditions of the variable A, the user confirms the
configuration by clicking the ‘Accept’ button.

3. The revealing conditions dialog disappears and the revealing states are stored at
the system.

Extensions:
Step 2: The uer clicks the ’Cancel’ button and the dialog disappears without
saving the current configuration of the revelation states.
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Use Case 14 Define revealing intervals

Primary Actor: End-user

Description: Defines the intervals which reveal the value of a node.

Preconditions: ◦ The network is a DAN

◦ A link is selected and the first node is a variable with
numeric domain

Postconditions: The system stores the revelation states of the link.

Related Use Cases: Use case 12: Define revealing conditions

Main Success Scenario:

1. The system shows the graphical window for the configuration of the revealing
intervals, which is similar to the scheme shown in Figure A.4, where the user can
specify the intervals of A, which reveal the values of B. The user can add and
delete intervals by using the ‘Add’ and ‘Delete’ button or modify the existing
intervals clicking at the cell of the interval and editing the values of the interval.

2. After assigning the revealing intervals of the variable , the user confirms the
configuration by clicking the ‘Accept’ button.

3. The revealing conditions dialog disappears and the revealing intervals are stored
at the system.

Extensions:
Step 2: The uer clicks the ’Cancel’ button and the dialog disappears without
saving the current configuration of the revelation intervals.
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A.3 Detailed description of the algorithms

In the following we detail the underlying algorithms of the network constraints according to their
specification at section4.4.1. The constraints NoRevelationArc and NoRestriction are not shown
as they have no algorithmic content:

Algorithm 4 checkProbNet - NoClosedPath

Require: probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: noLoops⇐ NoLoopsConstraint.checkProbnet(probNet)
4: noCycles⇐ NoCyclesConstraint.checkProbnet(probNet)
5: if not (noLoops and noCycles) then
6: constraintSatisfied⇐ False
7: end if

Algorithm 5 checkEvent - NoClosedPath

Require: edit instanceOf PNEdit, probNet instanceOf ProbNet
1: constraintSatisfied⇐ True
2: noLoops⇐ NoLoopsConstraint.checkEdit(probNet, edit)
3: noCycles⇐ NoCyclesConstraint.checkEdit(probNet, edit)
4: if not (noLoops and noCycles) then
5: constraintSatisfied⇐ False
6: end if

Algorithm 6 checkProbNet - NoMixedParents

Require: probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: for all (node of graph) do
4: if (node typeOf Utility) then
5: utilityParent⇐ False
6: chanceDecisionParent⇐ False
7: for all (parentNode of node.parents()) do
8: if (parent typeOf Utility) then
9: utilityParent⇐ True

10: end if
11: if ((parent typeOf Chance) or (parent typeOf Decision)) then
12: chanceDecisionParent⇐ True
13: end if
14: if (utilityParent and chanceDecisionParent) then
15: constraintSatisfied⇐ False
16: end if
17: end for
18: end if
19: end for
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The codification of the NoMixedParents constraint at the routine checkEvent() is based on
the code of line 4-18 of algorithm 6.

Algorithm 7 checkProbNet - NoMultipleLinks

Require: probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: for all (node of graph) do
4: for all (link of node.links()) do
5: node1 ⇐ link.node1()
6: node2 ⇐ link.node2()
7: directed⇐ link.isDirected()
8: if directed then
9: if (graph.existsLink(node1, node2, undirected)) then

10: constraintSatisfied⇐ False
11: end if
12: else
13: if (graph.existsLink(node1, node2, directed)) or

(graph.existsLink(node2, node1, directed)) then
14: constraintSatisfied⇐ False
15: end if
16: end if
17: end for
18: end for

The codification of the NoMultipleLinks constraint at the routine checkEvent() is based on
the code of line 5-16 of algorithm 7.

Algorithm 8 checkProbNet - NoUtilityParent

Require: probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: for all (node of graph) do
4: if (node typeOf Utility) then
5: for all (childNode of node.children()) do
6: if (childNode not typeOf Utility) then
7: constraintSatisfied⇐ False
8: end if
9: end for

10: end if
11: end for

The codification of the NoUtilityParent constraint at the routine checkEvent() is based on
the code of line 4-10 of algorithm 8.
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Algorithm 9 checkProbNet - DistinctLinks

Require: probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: for all (node of graph) do
4: nl ⇐ node.numLinks()
5: np⇐ node.numParents()
6: nc⇐ node.numChildren()
7: ns⇐ node.numSiblings()
8: if nl > (nc+ np+ ns) then
9: constraintSatisfied⇐ False

10: end if
11: end for

Algorithm 10 checkEvent - DistinctLinks

Require: edit instanceOf PNEdit, probNet instanceOf ProbNet
1: graph⇐ probNet.graph()
2: constraintSatisfied⇐ True
3: if (edit instanceOf LinkEdit) then
4: node1 ⇐ edit.node1()
5: node2 ⇐ edit.node2()
6: link ⇐ edit.link()
7: directed⇐ link.isDirected()
8: if directed then
9: if (graph.existsLink(node1, node2, directed)) then

10: constraintSatisfied⇐ False
11: end if
12: else
13: if (graph.existsLink(node1, node2, undirected)) or

(graph.existsLink(node2, node1, undirected)) then
14: constraintSatisfied⇐ False
15: end if
16: end if
17: end if

Algorithm 11 checkProbNet - OnlyAtemporalVariables

Require: probNet instanceOf ProbNet
1: constraintSatisfied⇐ True
2: for all (variable of probNet) do
3: if (variable typeOf Temporal) then
4: constraintSatisfied⇐ False
5: end if
6: end for
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Algorithm 12 checkEvent - OnlyAtemporalVariables

Require: edit instanceOf PNEdit
constraintSatisfied⇐ True
if (edit instanceOf ProbNodeEdit) then
variable⇐ edit.variable()
if (variable typeOf Temporal) then
constraintSatisfied⇐ False

end if
end if

Algorithm 13 checkProbNet - OnlyFiniteStateVariables

Require: probNet instanceOf ProbNet
1: constraintSatisfied⇐ True
2: for all (variable of probNet) do
3: node⇐ variable.getNode()
4: if (node typeOf Chance )or (node typeOf Decision ) then
5: if ((variable not typeOf FiniteState) or

(variable not typeOf Discretized)) then
6: constraintSatisfied⇐ False
7: end if
8: end if
9: end for

The codification of the OnlyFiniteStateVariable constraint at the routine checkEvent() is
based on the code of line 3-8 of algorithm 13.

Algorithm 14 checkProbNet - OnlyNumericVariables

Require: probNet instanceOf ProbNet
1: constraintSatisfied⇐ True
2: for all (variable of probNet) do
3: if (variable not typeOf Numeric) then
4: constraintSatisfied⇐ False
5: end if
6: end for

The codification of the OnlyNumericVariable constraint at the routine checkEvent() is based
on the code of line 3-5 of algorithm 14.

Algorithm 15 checkProbNet - OnlyTemporalVariables

Require: probNet instanceOf ProbNet
1: constraintSatisfied⇐ True
2: for all (variable of probNet) do
3: if (variable not typeOf Temporal) then
4: constraintSatisfied⇐ False
5: end if
6: end for
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The codification of the OnlyTemporalVariable constraint at the routine checkEvent() is based
on the code of line 3-5 of algorithm 15.

Validators

In the following we detail the algorithms of the control of the preconditions of link restrictions and
always observed variables according to their specification at section 4.4.2 and 4.4.3 respectively:

Algorithm 16 precondition - Link restrictions

Require: link instanceOf Link, probNet instanceOf ProbNet
1: isV alid⇐ True
2: if (not probNet.hasConstraint(NoRestriction)) then
3: node1 ⇐ link.node1()
4: node2 ⇐ link.node2()
5: if ( (node1 typeOf Chance) or (node1 typeOf Decision)) then
6: var1 ⇐ node1.variable()
7: var2 ⇐ node2.variable()
8: if ( (var1 not typeOf FiniteStates) or

(((node2 not typeOf Utility) and (var2 not typeOf FiniteState)) then
9: isV alid⇐ False

10: end if
11: else
12: isV alid⇐ False
13: end if
14: else
15: isV alid⇐ False
16: end if

Algorithm 17 precondition - Always observed variable

Require: node instanceOf Node, probNet instanceOf ProbNet
1: isV alid⇐ True
2: if (not probNet.hasConstraint(NoRevelationArc)) then
3: if (not ((node typeOf Chance)) then
4: isV alid⇐ False
5: end if
6: end if
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A.4 Detailed description of the code coverage

This appendix shows the code coverage obtained from unit testing related to the implementations
of the new network constraints, the modifications of the data model and ProbModelXML. These
results have been measured with the software EclEmma1, a free code coverage tool for Eclipse2,
the software development environment used for OpenMarkov. Figure A.5 shows that the class
Link, where link restrictions and revelation arcs are implemented, has a code coverage of 88,1%.
Figure A.6 shows the results of unit testing of the network constraints. Although the overall code
coverage of the package is only 69%, the new implemented network constraints have a nearly
complete code coverage. Figure A.7 shows the details of unit testing for the implementation of
ProbModelXML. This package has a code coverage of 72% by testing the reading and writing in
format ProbModelXML systematically.

Figure A.5: Code coverage rates of the class Link.

1http://www.eclemma.org
2http://www.eclipse.org/
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Figure A.6: Code coverage rates of the network constraints.

Figure A.7: Code coverage rate of the package ProbModelXML.
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A.5 Resumen en español (Summary in spanish)

A.5.1 Motivación

La construcción de sistemas inteligentes para la toma de decisiones con incertidumbre es uno de
los objetivos principales de la Inteligencia Artificial (IA), que ha sido abordada por diferentes
paradigmas. Desde los inicios de la IA hasta los años 1990 gran expectativas han sido puestos en
sistemas experto basados en reglas, pero debido a su especificidad para un dominio y la ineficiencia
de cálculos distribuidos durante la inferencia, estos sistemas son ahora menos relevante. En
cambio, modelos probabilistas gráficos (MPGs), en particular redes bayesianas y diagramas de
influencia, están ganando cada vez más importancia desde sus inicios a principios de los años
1980. MPGs tratan la incertidumbre aplicando la teoŕıa de probabilidad bayesiana, lo que les
permite realizar inferencia de una forma eficiente y resolver problemas con una complejidad que
no han podido ser abordados con otras técnicas conocidas hasta este momento. Además MPGs
tienen un modelo gráfico que codifica las relaciones de dependencia directamente en un grafo
creando aśı una descripción cualitativa y fácil de entender del problema de decisión.

Aunque los diagramas de influencia proporcionan una solución eficiente para la representación
del conocimiento y razonamiento, estos modelos tienen dificultades para representar problemas
de decisiones asimétricos, es decir, situaciones donde el valor de una variable o las opciones
de decisión son restringidos por observaciones o decisiones previas (asimetŕıa estructural) o el
orden de las decisiones no está definido (asimetŕıa de orden). Dado que los problemas reales
suelen ser muchas veces asimétricos, existe una necesidad de encontrar formalismos de análisis
de decisiones que son capaces de representar asimetŕıa. Varios formalismos espećıficos han sido
propuestos en las últimas décadas, pero ninguno de ellos ha sido utilizado para construir una
aplicación de un problema real, lo que puede significar que no son lo suficientemente simple para
facilitar la construcción del modelo o la comunicación con el experto. Este último aspecto es muy
importante en campos como la medicina, donde el experto necesita entender el razonamiento del
sistema para aceptar el sistema experto. Por estas razones Dı́ez & Luque (2010) han propuesto
un formalismo nuevo, los redes de análisis de decisiones (RADs), que representan asimetŕıa más
natural. Hasta esta tesis de máster, los RADs han sido presentados como un nuevo formalismo
con una definición teórica del modelo y un método de evaluación, ambos ilustrados mediante
un ejemplo simple y comparado brevemente con las soluciones alternativas propuestas hasta el
momento.

La motivación principal de este trabajo ha sido ampliar la investigación de Dı́ez & Luque
(2010) sobre RADs. Primero era necesario realizar una comparación más detallada de RADs
con los formalismos alternativos para asegurar que los RADs abordan todos los aspectos de la
representación de asimetŕıa. Esta tesis se centra en analizar las capacidades de modelación de los
RADs mediante la representación de tres problemas de decisión asimétricos que aparecen en la
literatura y que contienen todos los tipos de asimetŕıa. La representación de los RADs es compa-
rada con las soluciones de los alternativos formalismos y esta comparación debeŕıa hacer visible
los puntos fuertes o débiles de los RADs y permitir mejorar el formalismo si fuera necesario. En
segundo lugar, era necesario implementar los RADs en una herramienta de ayuda a la toma de
decisiones para que el nuevo formalismo puede ser utilizado en la práctica. Hemos implementa-
do los RADs en OpenMarkov, una herramienta de software libre para la edición y evaluación
de modelos gráficos probabilistas desarrollado por el CISIAD 3 en la Universidad Nacional de
Educación a Distancia. Esta herramienta implementa ya diferentes redes probabilistas para el
análisis de decisiones y es disponible para cualquier persona, dado que es un proyecto libre y de
código abierto que se distribuye gratuitamente.

3CISIAD significa Centro de Investigación sobre Sistemas Inteligentes de Ayuda a la Decisión
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A.5.2 Objetivos

Debido a las necesidades descritas en la sección previa, los objetivos de esta investigación pueden
resumirse en:

1. Analizar el formalismo de los RADs para asegurar que desde el punto de vista de sintaxis y
semántica los RADs resuelven todos los aspectos relevantes de la representación de asimetŕıa
correctamente:

(a) Comparar la capacidad de los RADs en referencia a la representación de todos los
tipos de asimetŕıa con la de otros formalismos de análisis de decisiones.

(b) Revisar el uso de las propiedades principales de los RADs, como el orden temporal
parcial, restricciones y arcos de revelación en la representación de problemas de deci-
sión para refinar su especificación. Esta tarea incluye la revisión del significado de las
restricciones, el alcance y condiciones bajo las que restricciones y arcos de revelación
son efectivos y el análisis del uso de arcos de revelación para describir precedencia de
información.

2. Implementar RADs en OpenMarkov para que sea posible usarlos en la práctica para repre-
sentar problemas de decisiones.

A.5.3 Metodoloǵıa

El trabajo presentado en esta tesis es de carácter anaĺıtico. El objetivo es asegurar que el for-
malismo de los RADs represente asimetŕıa de una forma completa y correcta. La metodoloǵıa
seguida para alcanzar estos objetivos se basa en un análisis de las capacidades de los RADs para
la representación de aspectos asimétricos y una comparación critica de la solución de los RADs
con otros formalismos. Esta metodoloǵıa es un proceso iterativo, que involucra cuatro fases tal
como está descrita en la Figura A.8:

1. Definición de las caracteŕısticas del formalismo.

2. Implementación de los RADs en OpenMarkov.

3. Representación de problemas de decisión asimétricos con RADs.

4. Comparación de la representación de problemas asimétricos con RADs respecto a la de
otros formalismos.

A partir de la definición inicial de los RADs de Dı́ez & Luque (2010), la primera fase es la
definición de las caracteŕısticas del formalismo de los RADs. La segunda fase es la implementación
de esta definición en OpenMarkov, lo que posibilita la representación de diferentes problemas
asimétricos con RADs en la tercera fase. En esta fase utilizamos diferentes problemas de decisión
asimétricos que aparece en la literatura. La representación con RADs de cada problema de
decisión es comparada en la siguiente fase con la correspondiente solución de cada uno de los
otros formalismos. Esta fase incluye eventualmente la revisión de soluciones ya publicadas en la
literatura. Como esta comparación puede revelar puntos fuertes y débiles de los RADs, el proceso
es iniciado otra vez para mejorar el formalismo de los RADs.
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Figura A.8: Fases en el desarrollo del análisis.

A.5.4 Organización de la tesis

Esta tesis del máster está estructurada en cinco caṕıtulos. El capitulo 1 presenta la motivación,
los objetivos y la metodoloǵıa seguida para este trabajo de investigación. El capitulo 2 revisa el
estado de conocimiento de los formalismos de análisis de decisiones en general y en especifico para
la representación de problemas de decisiones asimétricos. Esta parte presenta una introducción
a los formalismos de análisis de decisiones, una descripción de los fundamentos de MGPs y una
discusión sobre el estado de varios formalismos alternativos conocidos hasta el momento para la
representación de problemas de decisión asimétricos. Los alternativos formalismos analizados son
árboles de decisión, diagramas de influencia, diagramas de influencia extendidos, redes de valua-
ción secuenciales, diagramas de influencia asimétricos, diagramas de influencia sin restricciones y
diagramas de influencia secuenciales. El capitulo 3 presenta los RADs y explica sus propiedades
para la representación de asimetŕıa. La representación de los problemas de decisión asimétricos
es utilizada para una comparación de las ventajas e limitaciones de los RADs respecto a los
formalismos alternativos. El capitulo 4 explica la implementación de los RADs en OpenMarkov
describiendo las nuevas propiedades del sistema informático. El Capitulo 5 presenta la conclusión
y algunas ĺıneas de investigación para el futuro.

A.5.5 Principales contribuciones

A principio de este trabajo hemos revisado el estado de arte de los modelos probabilistas gráficos
(MPGs) para el análisis de decisiones en general, y los diferentes formalismos espećıficos para
la representación de problemas de decisión asimétricos. Nos hemos centrado en particular en los
diferentes soluciones que cada formalismo proporciona para la representación de la asimetŕıa de
orden y estructural, tanto a nivel teórico y en práctica ilustrando las correspondientes soluciones
de cada formalismo con la representación de tres problemas asimétricos que aparecen en la
literatura. Según que sepamos, ningún trabajo anterior ha comparado estos formalismos con tanto
detalle: en general los proponentes de un nuevo formalismo solamente discutan su aplicabilidad
para uno o dos problemas para las cuales su método resulta superior a los métodos propuestos
anteriormente. En segundo lugar hemos presentado los redes de análisis de decisiones (RADs),
que son un nuevo modelo probabilista gráfico propuesto por Dı́ez & Luque (2010) con la intención
de representar asimetŕıa con más naturalidad que los formalismos previos, que además no han
sido utilizados en la practica para ningún problema real.

Otra contribución es una comparación detallada de los RADs con los formalismos previos,
que proporcionan una descripción de las ventajas e limitaciones de los diferentes formalismos.
Esta comparación ha sido además clave para evaluar la capacidad de los RADs y asegurar que los
RADs abordan la representación de todos los tipos de asimetŕıa. Para este fin hemos construido
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una RAD para cada una de las tres ejemplos ilustrativos y hemos comparado esta representación
con las respectivas soluciones de los formalismos alternativos. Durante esta comparación hemos
detectado algunos cabos sueltos del formalismo de los RADs, lo que ha llevado, en colaboración
con los profesores Diez y Luque, a una redefinición de algunas de las propiedades de los RADs.
En concreto algunos aspectos de las propiedades principales de los RADs, restricciones y arcos
de revelación, han sido inicialmente ambiguos o no satisfactorios; estas propiedades han sido
mejoradas de la siguiente forma:

◦ Las restricciones han sido definidos en más detalle, distinguiendo restricciones parciales y
totales.

◦ El alcance de las restricciones ha sido ampliado para incluir nodos de utilidad, porque es
conveniente especificar restricciones sobre utilidades.

◦ Las condiciones bajo las cuales restricciones son efectivas han sido redefinidas para consi-
derar que una variable puede imponer restricciones solamente si existe en un escenario.

◦ Las condiciones bajo las cuales arcos de revelación son efectivas han sido redefinidas para
considerar que una variable aleatoria puede revelar otras variables solamente cuando es
conocida, bien porque es siempre observada o porque ha sido revelada a su vez por otras
variables.

Estas modificaciones de los RADs ha sido aplicada en la representación de los problemas de
ejemplo. En consecuencia el formalismo de los RADs revisado es ahora equiparable o incluso
mejor que los otros formalismos en todos los aspectos importantes. Tal como hemos comentado
en la Sección 3.3, todos estos formalismos alternativos tienen dificultades para representar como
mı́nimo uno de los problemas introducidos en el capitulo 2: sólo diagramas de influencia secuen-
ciales son capaces de representar a la vez asimetŕıa de orden y estructura, aunque diagramas de
influencia asimétricas y redes de valoración secuenciales han resultado útiles para la representa-
ción de asimetŕıa estructural. Como resultado de la comparación podemos confirmar que RADs
como herramienta de análisis de decisiones son útiles, primero porque RADs proporcionan una
representación natural de la asimetŕıa de orden y estructural y en segundo lugar porque RADs
representan problemas con una descripción local, que es independiente de la complejidad del
problema, lo que hace RADs apropiadas para la representación de muchos problemas que no
pueden ser representados eficientemente con la gran mayoŕıa de los formalismos alternativos.

Finalmente otra contribución importante de este trabajo ha sido la implementación de RADs
en OpenMarkov, un programa libre para la edición y evaluación de MPGs, con el objetivo
que RADs puedan ser utilizados en práctica para el análisis de decisiones. Los detalles de la
implementación están explicados en el capitulo 4.

A.5.6 Futuro trabajo

Existen diferentes ĺıneas para futuro trabajo - una relacionada con el desarrollo del formalismo
y una segunda acerca de la aplicación practica de los RADs. Con respecto al desarrollo y la
implementación de los RADs, el único método de evaluación propuesto hasta el momento es
la evaluación del árbol de decisión equivalente, lo que no esta implementado todav́ıa. Dı́ez &
Luque (2010) mencionan que seria interesante implementar un método de evaluación más efi-
ciente para los RADs. Por ejemplo una linea de trabajo seria la adaptación del algoritmo de
Demirer & Shenoy (2006), que descompone una red de valuación secuencial en un conjunto com-
pletamente ordenado de subproblemas. Otra posibilidad podŕıa ser la adaptación del algoritmo
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para diagramas de influencia sin restricciones, que esta basado en la construcción de S-DAGs
(Ahlmann-Ohlsen et al., 2009; Luque et al., 2010).

En referencia al análisis de decisiones seria interesante construir una RAD para varios proble-
mas reales con el fin de evaluar su aptitud. Una posibilidad seria construir RADs para problemas
médicos que han sido analizados anteriormente con diagramas de influencia, como por ejemplo
IctNeo (Bielza et al., 1999) para la icteria del recién nacido, Mediastinet (Luque 2009) para la
estadificación mediastinal de cáncer de pulmón, y ArthroNet (León 2011) para la artroplastia
total de rodilla. La comparación entre estos diagramas de influencia y la correspondiente RAD
aportaŕıa nuevo conocimiento sobre las ventajas y limitaciones de cada formalismo. Otra linea
de trabajo futuro seria la extensión de esta comparación también a diagramas de influencia se-
cuenciales, que son los competidores más importantes de los RADs en la actualidad. Ambos
formalismos pueden representar tanto asimetŕıa de orden y estructural eficientemente, aunque
los métodos de representación de asimetŕıa son diferentes. Seria interesante investigar que tipos
de problemas pueden ser representados mejor con RADs o con SIDs. En este trabajo hemos des-
crito a un nivel teórico brevemente algunas caracteŕısticas de problemas de decisión que creemos
que hacen que sean mejor representados por un formalismo que otro. Seria interesante contras-
tar esta teoŕıa en la practica analizando diferentes problemas reales para averiguar si son mejor
representables con RADs o con SIDs.
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