Tesis doctoral
M. Arias Calleja.
Carmen: una herramienta de software libre para modelos gráficos probabilistas.
Dpto. Inteligencia Artificial,
UNED, Madrid, , 2009.
Director: Francisco Javier Díez Vegas.
248 páginas, versión comprimida (1.322 KB), cita tipo BibTeXversión en pdf (9.366 KB)
Resumen
En las últimas dos décadas se ha dado una proliferación de herramientas para la construcción, manual o automática de Modelos Gráficos Probabilistas (MGPs). Las herramientas disponibles están limitadas en su mantenibilidad, robustez y eficiencia. Nuestra contribución principal es una nueva herramienta, llamada Carmen, que se ha desarrollado desde cero y está basada en los principios de la ingeniería del software. Carmen tiene un diseño detallado, una documentación y un conjunto de pruebas sistemáticas para minimizar la presencia de errores.
El desarrollo de esta herramienta ha traido como consecuencia varias contribuciones secundarias: primero, un nuevo patrón de diseño llamado permiso-ejecución, que permite realizar operaciones en modelos complejos con múltiples restricciones; segundo, hemos desarrollado un nuevo diseño, que desacopla los diferentes conceptos que constituyen un MGP en partes distintas, permitiendo un mantenimiento posterior más sencillo; tercero, hemos desarrollado una librería genérica de grafos que puede ser utilizada en otras herramientas.
Nuestra segunda contribución principal es un método nuevo que mejora significativamente el rendimiento en las operaciones básicas sobre potenciales de variables discretas, tales como suma, multiplicación, marginalización y división. Hemos demostrado también, tanto teórica como empíricamente, que algunas operaciones compuestas pueden ser realizadas de un modo mucho más eficiente si se ejecutan de forma conjunta en lugar de secuencial. Esta mejora en las operaciones de bajo nivel nos lleva a una reducción en el tiempo y en el espacio necesarios en algoritmos de alto nivel, tales como eliminación de variables, propagación en árboles de cliques, etc.
Finalmente, la tercera contribución principal es un nuevo método para el análisis de coste-efectividad. Los métodos actuales no pueden tratar con problemas que involucran más de una decisión. Por este motivo, hemos desarrollado un nuevo método de coste-efectividad, que puede ser aplicado tanto en árboles de decisión como en diagramas de influencia. Nuestro método es capaz de manejar varias decisiones y devuelve la estrategia óptima como un conjunto de intervalos para lambda, un parámetro habitualmente llamado disponibilidad a pagar, que representa la cantidad de dinero equivalente a una unidad de efectividad.