Massachusetts Institute of Technology Boston, October 13, 2015

Probabilistic graphical models in artificial intelligence and medicine

Francisco Javier Díez

Dept. Artificial Intelligence. UNED Madrid, Spain

> www.ia.uned.es/~fjdiez www.cisiad.uned.es

-		
	The MADP Toolbox 0.3.1	
	Frans A. Oliehoek University of Amsterdam, Amsterdam, The Netherlands University of Liverpool, Liverpool, United Kingdom	
	Matthijs T. J. Spaan Philipp Robbel Delft University of Technology Delft, The Netherlands Cambridge, MA, USA	
	João V. Messias University of Amsterdam, Amsterdam, The Netherlands	
	April 10, 2015	
	Abstract	
	This is the user and developer guide accompanying the version 0.3.1 release of the Multia- gent Decision Process (MADP) Toolbox. It is meant as a first introduction to the organization of the toolbox, and tries to clarify the approach taken to certain implementation details. In addition, it covers a few typical use cases and provides an installation guide. This document complements the automatically generated API reference.	
	Contents	
	1 Introduction 2	
	I User Guide 3	
	2 For the Impatient: Compiling, and Running an MADP Program 4	
	3 Theory: MADPs and Basic Notation 4 3.1 Discrete Time MASs 5 3.2 Basic MADP Components 5 3.4 Uncertainty 5	

5 Using the Toolbox: Some Examples 7	
5.1 General Options	
5.2 Solving a Dec-POMDP	
5.3 Solving a (Multiagent) POMDP with Perseus	
5.5 Planning: Solving a (Multiagent) MDP	
5.6 Learning in a (Multiagent) MDP	
6 Specifying Problems: File Formats, etc. 12	
6.1 Using the OpenMarkov Graphical Editor	
6.2 Specifying & Parsing .pomap & .apomap nies	
0.5 Spechying Problems as a Sub-Class	
1	
7 The ProbModelXML Format 12	
7.1 Using OpenMarkov to Design Factored Problems	
7.2 Designing Event-Driven Models	
II Developer Guide 18	
8 Overview of the MADP Toolbox Libraries 18	
8.1 MADP Libraries	
8.1.1 The Base Library (LibMADPBase)	

	DIAVAL
	TRODUCIR ECO
Archi	vo Datos previos <u>H</u> allazgos eco <u>D</u> iagnóstico <u>E</u> special Ayuda
	DATOS ADMINISTRATIVOS
	Eco número: 104382 Fecha: 291003 Transtorácico: SI Cinta: 512 Hora grabación: 1.23.56 Transesofágico: NO
	Nombre: MARIA Apellidos: PEREZ GARCIA
	Sexo: MUJER DNI: 123456 Edad: 51 años Peso: 58 Kg Estatura: 158 cm Sup. corporal: 1.58 m²
	🕺 Solicitante: CARDIOLOGIA Situación: INGRESADO Sector: 3 Cama: 512A
	Continuar
Int	roducir los datos del paciente.

? E 164 cm/s "+105%" "mod. aumentada" ? A cm/s ? Cociente E/A ms ? T.R.IU. ms ? T. desaceleración ms ? Grad. máx. mitral 10.8 mmHg "est. moderada" ? Grad. máx. mitral 10.8 mmHg "lev. aumentado" ? T.H.P. mitral 255 ms ? Area mitral (THP) 0.9 cm² "-76%" "esten. crítica" ? Uel. máx. tric. cm/s ? Grad. méd. tric. mHg ? Grad. med. tric. mHg		ODUCIR ECO Datos grevios Hallazgos eco Diagnóstico Especial Azuda	
? Grad. med. mitral 7.0 mmHg "lev. aumentado" ? T.H.P. mitral 255 ms "+183%" "sev. aumentado" ? Area mitral (THP) 0.9 cm² "-76%" "esten. crítica" ? Vel. máx. tric. cm/s ? Grad. máx. tric. mHg ? Grad. med. tric. mHg ? Grad. med. tric. continuar		? E 164 cm/s "+105%" "mod. ? A	aumentada" noderada"
Anterior Continuar		? Grad. med. mitral 7.0 mmHg "lev. ? T.H.P. mitral 255 ms "+183%" "sev. ? Area mitral (THP) 0.9 cm² "-76%" "esten ? Uel. máx. tric. cm/s ? Grad. máx. tric. mHg ? Grad. med. tric. mHg	aumentado" aumentado" . crítica"
Pulsar "?" para obtener más información sobre un parámetro.	Puls	Anterior Continuar	tro.

ECO BIDIMENSIO	anazyos eco – giagnostico – Especial DNAL: VALVULA MITRAL	м <u>у</u> ша
Ausente Leve Moderada Severa CALC. VALVAS	Ausente Leve Moderado Severo ENGR. VALVAS MOVILIDAD	SCORE MITRAL: 9 Prolapso Válvula mixoide Engr. apillo
Ausente Leve Moderada Severa CALC. COMIS. Sin afectaci Afect. leve	Abiertas Simétrica Fus. leve Pred. ant. Fus. severa FUS. COMIS. SAM ión No vegeta Elongación cuerdas te	Ausente Leve Moderada Severa CALC. ANILLO Ausente Leve ndíneas
Afect. seven APARATO SUBV	Anterior Besto normal	reas Ir Continuar

INTRODUCTR ECO Archivo Datos previos	Lalazgos eco Djagnóstico Especial Ayuda	
	MEDICO Dr. Río Aguilar Dr. Enrique González Dra. Elena Iturralde Dr. Javier Jiménez Dr. Iñigo Lozano Dr. Javier Lozano Dra. Sonia Rodríguez Desconocido Modificar Anterior Continuar	

MIT, October 13, 2015

DECISION ANALYSIS Vol. 2, No. 4, December 2005, pp. 238–244 ISSN 1545-8490 | EISSN 1545-8504 | 05 | 0204 | 0238

The Influence of Influence Diagrams in Medicine

Stephen G. Pauker, John B. Wong

Division of Clinical Decision Making, Informatics and Telemedicine, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine, 750 Washington St., NEMC 302, Boston, Massachusetts 02111 [gaaker@tuftsneme.org.] worng@tuftsneme.org]

A lthough influence diagrams have used medical examples almost from their inception, that graphical representation of decision problems has disseminated surprisingly slowly in the medical literature and among clinicians performing decision analyses. Clinicians appear to prefer decision trees as their primary modeling metaphor. This perspective examines the use of influence diagrams in medicine and offers explanations and suggestions for accelerating their dissemination.

Key words: decision analysis; influence diagrams; clinical decision making; medicine History: Received December 12, 2005. Accepted by Eric Horvitz on January 5, 2006, after 1 revision.

Introduction

Two decades after Howard's landmark paper (Howard and Matheson 1984/2005) that introduced the concept of the influence diagram and three decades since Miller's initial report (Miller et al. 1976), *Decision Analysis* reproduced that paper in 2005 and epilizhed as the promotenian This paper modeling paradigm slowly spread from Stanford, both with courses offered at meetings of the Society for Medical Decision Making (Society for Medical Decision Making 2005) and with the development of software that could conveniently capture and evaluate such models.

- Weinstein, Fineberg. Clinical Decision Making. 1980.
- Sloan (ed.). Valuing Health Care. 1995.
- Gold et al. Cost-Effectiveness in Health and Medicine. 1996.
- Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).
- Petiti. Meta-Analysis, Decision Analysis and CEA. 2nd ed., 2000.
- Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.
- Levin and McEwan. Cost-Effectiveness Analysis. 2nd ed., 2001.
- Parmigiani. Modelling in Medical Decision Making. 2002.
- Haddix et al. Prevention Effectiveness. 2nd ed., 2003.
- Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.
- Kassirer et al. Learning Clinical Reasoning. 2nd ed., 2010.
- Mushlin and Greene. Decision Making in Medicine. 3rd ed., 2010.
- Gray et al. Applied Methods of CEA in Health Care, 2011.
- (cont'd)

Limitations of IDs

- 1. The "reasoning" of an ID is not easy to understand
- 2. The evaluation returns large policy tables
- 3. Algorithms could only evaluate unicriterion IDs
 - They cannot perform cost-effectiveness analysis
- 4. Temporal reasoning was not possible with IDs
 - Dynamic IDs are computationally unfeasible.
- 5. IDs cannot model symmetric problems
 - IDs require a total ordering of the decisions
 - IDs cannot represent incompatibilities between values
 - Non-standard versions of IDs partially solve this problem, but none of the alternatives is completely satisfactory.

diagrams (IDs) that explicitly represent cost problems that cannot be analyzed with deci-and effectiveness. We propose an algorithm sion trees. for evaluating cost-effectiveness IDs directly,

quently for this task, especially in medicine [5]. Their main drawback is that their size grows exponentially with the number of variables^b. In the medical literature, trees usually have 3 or 4 variables and between 6 and 10 leaf nodes. A tree of 5 variables typically contains around 20 leaf nodes,

Flat model	Factored model
Markov chain	Dynamic Bayesian network [Dean and Kanazawa, 1989]
Hidden Markov model	
Markov decision process (MDP)	Factored MDP [Boutilier et al., 1995, 2000]
Partially-observable MDP (POMDP)	Factored POMDP [Boutilier and Poole, 1996]

