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1. Introduction: history of 

probabilistic AI in medicine 



Probability in artificial intelligence 

 A.I. was “born” in 1956, at the Dartmouth Conference 

 In the first 25 or 30 years, many researchers questioned that 

probability could play a significant role in A.I. 

 First reason (cf. [Sutton and Barto, 1998]): 

Computers were already good at arithmetic operations 

but could not perform “easy” tasks (easy for a little child): 

vision (image understanding), natural language, planning… 

Those tasks could not be solved with arithmetic operations; 

they require conceptual reasoning (symbol manipulation  LISP). 

Probabilistic “reasoning” consisted mainly in number crunching, 

not in conceptual reasoning. 

 Second reason: limitations of probabilistic methods. 



11 (1978) 115-144 



Limitations of probability for AI in medicine 

“The chief disadvantages of the decision theoretic approach are the 

difficulties of obtaining reasonable estimates of probabilities and utilities for a 

particular analysis. Although techniques such as sensitivity analysis help 

greatly to indicate which potential inaccuracies are unimportant, the lack of 

adequate data often forces artificial simplifications of the problem and lowers 

confidence in the outcome of the analysis. Attempts to extend these 

techniques to large medical domains in which multiple disorders may co-occur, 

temporal progressions of findings may offer important diagnostic clues, or 

partial effects of therapy can be used to guide further diagnostic reasoning, 

have not been successful. The typical language of probability and utility 

theory is not rich enough to discuss such issues, and its extension within the 

original spirit leads to untenably large decision problems. […] 

A second difficulty for decision analysis is the relatively mysterious reasoning 

of a decision theoretic program—an explanation of the results is to he 

understood in terms of the numeric manipulations involved in expected value 

computations, which is not a natural way of thinking for most people.” 

P. Szolovits. Artificial Intelligence in Medicine. Westview Press, 1982. 



Historic evolution of probabilistic AI 

 1960s and 1970s: naïve-Bayes diagnostic systems 

 able to diagnose better than physicians in restricted problems 

 expert system Prospector (Hart and Duda, 1977) 

  used approximate Bayesian reasoning 

  found a molybdenum deposit valued in $1,000,000 

  was the first commercial success of A.I. 

 Bayesian networks (Pearl, 1982, 1986, 1988) 

  overcame the limitations of the naïve Bayes 

 Nowadays: probabilistic graphical models (PGMs) 

are used more and more in A.I. 

  tasks: diagnosis, planning, learning (incl. deep learning)… 

  fields: medicine, robotics, computer vision, e-commerce… 



2. Probabilistic diagnosis 



2.1. Basic concepts  

of probabilistic diagnosis 



Probabilistic diagnosis with one finding 

 Example: 

 Prevalence of a disease:  14% 

 Sensitivity of a test: 70% 

 Specificity of the test: 91% 

Questions: 

 What is the positive predictive value (PPV)? 

• If the test is positive, what is the probability  

that the patient has the disease? 

 What is the negative predictive value (NPV)? 

• If the test is negative, what is the probability  

that the patient does not have the disease? 

 



Basic concepts for medical diagnosis 

 Disease E, result of a test T 

 Parameters of the model 

 Prevalence:   P(+e) 

 Sensitivity:  P(+t|+e) 

 Specificity: P(¬t|¬e) 

 Predictive values: 

 Positive PV: P(+e|+t) 

 Negative PV: P(¬e|¬t) 



2.2. Bayes theorem 



Bayes theorem 
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Predictive value of a finding 

Positive predictive value:  P(+e|+h) 
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Negative predictive value:  P(¬e|+h) 



Probabilistic diagnosis with two findings 

 Example: 

 Prevalence of the disease:  14% 

 Sensitivity of test C: 70% 

 Specificity of test C: 91% 

 Sensitivity of test E: 90% 

 Specificity of test E: 93% 

Questions: 

 What is the posterior probability for each combination of findings? 



2.3. The naïve Bayes method 



 Graphical representation: 

Diagnostic D 

Finding H1 Finding Hn Finding H2 
... 

 Two hypotheses: 

 Diagnostics are mutually exclusive 

  every patient has at most one disease 

 Findings are conditionally independent  

given the diagnostics 

The naïve Bayes method 



Succesfull applications of the naïve-Bayes 

• Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone 

tumors: A preliminary report” Radiology 80 (1963) 273-275. 

• Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid 

function” JAMA 183 (1963) 307-313.  

• Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis 

of congenital heart disease” Progress in Cardiovascular Diseases 5 (1963) 362-377. 

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer 

diagnosis of congenital heart disease” Annals New York Acad. Sciences 115 (1964) 

558-567. 

• de Dombal FT, Leaper JR, Staniland JR, et al., “Computer-aided diagnosis of acute 

abdominal pain” BMJ 2 (1972) 9-13. 

• Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for 

computer-aided management of acute renal failure” Amer. J Med 55 (1973) 473-484. 

• Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program 

that considers clinical responses to digitalis” Amer. J. Med 64 (1978) 452-460.  

 



Limitations of the naïve Bayes 

 In general the diagnostics are not mutually exclusive. 

 In general, findings are not conditionally independent. 

Bacterial infection 

Sign Organism 2  Lab. test Organism 1 



Three cases 

Test results are  

conditionally 

independent 

given the disease 

Correlation, even when 

the disease  

is present 

or absent 

Test C is conditionally 

independent of the 

disease given test E 

In the three cases the sensitivity and specificity  

of the tests (wrt the disease) are the same,  

but the posterior probabilities are different 



Impact of correlation on the posterior prob. 

 Extreme case:  

test results are conditionally independent given the disease 

 P(+d | +c, +e) = 0.9421 

 maximum increase in the posterior probability 

 Opposite extreme case: 

test C is conditionally independent of the disease given test E: 

 P(+d | +c, +e) = 0.5587 = P(+d | +e) 

 no increase in the posterior probability  no new information  

 Intermediate cases: 

correlation among findings 

 0.5587 < P(+d | +c, +e) < 0.9421 

 the bigger the correlation, the smaller the information contributed. 



Prob. diagnosis with two findings (revisited) 

 Example: 

 Prevalence of the disease:  14% 

 Sensitivity of test C: 70% 

 Specificity of test C: 91% 

 Sensitivity of test E: 90% 

 Specificity of test E: 93% 

Questions: 

 What is the posterior probability for each combination of findings? 

 The problem is ill-specified 

 The solution depends on the correlation among findings 

 



Limitations of the naïve Bayes 

 In general the diagnostics are not mutually exclusive. 

 In general, findings are not conditionally independent. 

Bacterial infection 

Sign Organism 2  Lab. test Organism 1 

 These limitations are rarely discussed in the books of  

medical decision analysis and evidence-based medicine. 

 This is the only method presented in those books. 



3. Bayesian networks 



Probabilistic graphical models 

  Elements of a PGM 

 Qualitative component (structure): a graph 

• Links usually represent causal relations 

 Quantitative components (parameters): potentials 

• A conditional probability for each chance node 

• A value function for each value node 

 Relation between the graph and the prob. distribution 

 Every node in the graph represents a variable of the prob. 

 The graph represents the dependencies of the prob. distr. 

 

 



3.1. Definition of BN 



Notions about graphs 

 Basic concepts 

 Definition: a set of nodes and links (vertices and edges) 

 Two types of links: directed / undirected 

 Open path (A-B, A-B-C-D), closed path (A-B-C-D-A),  

 In directed graphs:  

 parent, child, ancestor, descendant. 

A 

C B 

D 

A 

C B 

D 



Directed graphs: cycles and loops 

Cycles 

A 

C B 

A 

C B 

D 

 Loops 

A 

C B 

A 

C B 

D 

A 

C B 

D 



Definition of Bayesian network 
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Elements: 

 a set of variables {Xi } 

 an acyclic directed graph 

• every node in the graph represents a variable Xi 

 a conditional probability distribution (usually a table)  

for each variable: P(xi | pa(xi)) 

• for a node without parents: P(xi | pa(xi)) = P(xi ) 

Result: join probability for the network 



Naïve Bayes Bayesian network 



3.2. Examples of BNs 



Examples of BNs 

Medical Bayesian networks we have built 

 DIAVAL: echocardiography (valvulopathies) 

   F. J. Díez’ thesis, 1994 

 Prostanet: urology (prostate cancer) 

   Carmen Lacave’s thesis, 2003 

 Nasonet:  nasopharyngeal cancer spread 

   Severino Galán’s thesis, 2003 

 HEPAR II: liver diseases 

   Agnieszka Onisko’s thesis, 2003 

 Catarnet: Cataract surgery  

   Nuria Alonso’s thesis, 2009 

 



DIAVAL 



DIAVAL: numeric findings 



DIAVAL: qualitative findings 



DIAVAL: diagnostics 



DIAVAL:  

final report 

in a text editor 



Prostanet (for prostate diseases) 



Nasonet (nasopharyngeal cancer spread) 



Hepar II (liver diseases) 

 



Catarnet (cataract surgery) 



Input:  1. General data 



Input:  2. Ocular comorbidity 



Input:  3. Surgical complexity 



Output:  1. Expert panel’s recommendations 



Output:  2. BN recommendation 



3.3. BNs and causality 



 Example 1 

 

Two interpretations of BNs 

 Semantics of a Bayesian network: 

 As a mathematical model: probabilistic independencies 

 As a model of the real world: they usually represent causality 

 Two models are mathematically equivalent when they represent 

the same set of independencies. 

 But two different BNs can never have the same causal meaning. 

 

X Y Z X Y Z X Y Z 

X Y X Y 

 Example 2 

 



Correlation does not imply causality 

causal 

relation 

logical 

ìmplication 

conjecture 

correlation  

(statistical) 



Correlation does not imply causality (example 1) 

# storks # births 

# churches 

# inhabitants 

# storks 

# births 



Correlation does not imply causality (example 2) 

Skin spots Teracola 

Swim. pool 

Temperature Income 

Teracola 

Skin spots 



Correlation does not imply causality (example 3) 

Smoking Lung cancer 

Smoking 

Lung cancer Smoking Lung cancer 

Gene 



Several types of correlation 

B A 

C 

 Direct cause 

A 

B 

B 

A 

 Common cause 

C 

B A 

 Selection bias 

(example: Berkson bias) 

Correlation 

without 

    direct causality 





www.hsph.harvard.edu/miguel-hernan/causal-inference-book  

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book


3.4. Building BNs 



How to build a Bayesian network 

 From a database 

Data 

base 
algorithm Bayesian 

network 

 There are many algorithms, several new algorithms every year  

 Similar to statistical methods (logistic regression, neural nets...) 

 With a human expert’s help 

Causal 

knowledge 
modeling Causal 

graph 
probabilities Bayesian 

network 

 Hybrid methods:  

 experts structure;   database probabilities 

 experts initial model;   new cases refine the probabilities 



3.4.1. Building BNs  

with causal knowledge 



A portion 

of the 

real world 

Building BNs with causal knowledge 

  Observed 
frequencies 

  Causal 
mechanisms 

Prior knowledge 

Model 
Graph 

Cond. 
prob. 

BN 

Joint 

probability 

Data 



   Age 

 Heredity 

Hypercoles- 

terolemia 

  Obesity 

Diabetes 

  Sex 

   Smoking 

Race 

 Stress 

HTA 

Sodium 

intake 

Ischemia 

  Age 

 Heredity 

  Obesity 

Diabetes 

  Sex  Race 

 Stress 

Smoking 

HTA 

 Ischemia 

Sodium 

intake 

Hypercoles- 

terolemia 

PROBLEMS DUE TO  

LACK OF CAUSAL KNOWLEDGE (1) 



Where do the probabilities come from? 

 Epidemiological studies 

 advantage: we obtain directly the parameters we need 

 disadvantage: time and cost; biases 

 Medical literature 

 advantage: reliable, inexpensive 

 disadvantage: few qualitative data, few direct probabilities, 

different criteria, population-dependent, biases 

 Databases 

 advantage: fast, inexpensive 

 disadvantage: small databases, selection biases 

 Subjective estimates 

 advantage: relatively inexpensive 

 disadvantage: unavailability of experts, psychological biases 



3.4.1.1. Canonical models 



General model 

 Probability table:   

 P(y | x1, … , xn)  

 Factors that   

influence the prob. of X 

Obesity 

Age 

Sex 

AHT 

Smoking  Meningitis Pneumonia 

Paludism 

Fever 

Flu 

 Efficiency of each link: 

 ci 

 Causes that  

can produce X 

Noisy OR 

Canonical models 



The noisy OR (hypotheses) 

1. Each cause, by itself, is able to produce the effect, 

with a certain probability 

 which is less than 100% when there are inhibitors. 

2. The effect is absent when no cause has produced it 

 i.e., when every cause is either absent or inhibited 

3. If a cause has produced the effect, then the effect is 

present (regardless of the other causes) 

4. Independence of causal influences 

 there is no interaction between the causes (or its inhibitors) 

when producing the effect 

 the probability of the effect is the probability that the first cause 

has produced it, plus the probability that the second cause 

produces it when the first has not, plus… 



Advantages of the noisy OR 

 Easier to build, because it requires fewer parameters  

• from a database: more cases to estimate each parameter 

• from a human expert: fewer parameters and more intuitive  

 The computation of probability is more efficient (faster) 

 Possibility of explaining the reasoning: 

differencial diagnosis (explaining away) 

 Two ways to establish the noisy OR 

 From a statistical study  

 Knowing the causal mechanisms 

Application of the noisy OR 

when building BNs 





3.4.2. Learning BNs from data 



Learning BNs from data 

 Two possibilities of learning 

 automatic, interactive 

 Two main algorithms: 

 Search-and-score 

• search 

– depart from a network with no links 

– add/remove/invert a link in each iteration 

• score 

– use a metric (there are several metrics available) to quantify how well 

the model matches the data 

 PC 

• depart from a fully-connected undirected graph 

• when two variables are independent, remove the link 

– more precisely, when the correlation is not statistically significant (p < a) 

• when two variables are conditionally indep., remove the link 

• orient the remaining links to obtain a directed graph 



The role of significance in the PC algorithm 

 We set the value of the significance, a 

 For each link, when p > awe assume that the correlation in the 

database is spurious (i.e., due randomness) and remove the link 

 Low value of a  removing many links  sparse network 

 High value of a  keeping many links  dense network 

 

completely 
connected 
network sparse 

networks 



Advantages of interactive learning 

 The system proposes, the user decides 

 Very useful for tuition 

 Useful for combining data with expert knowledge 

 Useful for debugging new algorithms (workbench) 

 See www.openmarkov.org/docs/tutorial. 



A comparison of both methods for building BNs 

 Automatic learning from databases 

 Advantage: faster (graph + probabilities) 

 Limitation: medical databases are usually incomplete 

• Missing values  problem of imputation (rarely missing at random) 

• Missing variables  spurious correlations 

 Blackbox algorithm that returns non-causal models 

  Human experts are reluctant to accept their advice 

 With expert knowledge (“manual” method) 

 Only method possible when there is not a good-enough database 

 Difficulty in practice: getting the collaboration of experts 

 Building the structure of the causal is sometimes difficult 

 Obtaining the probabilities is even more difficult. 



Summary: BNs vs. the naïve Bayes 

 BNs can diagnose several diseases simultaneously. 

 BNs do not assume conditional independence of findings. 

 BNs are usually causal models 

 closer to doctors’ reasoning: explanation of reasoning 

 probabilities are in general easier to obtain 

 Three types of reasoning: abductive, deductive, inter-causal. 

 They can combine data (from databases),  

epidemiological studies (scientific literature)  

and expert knowledge (doctors). 

    

 
In spite of these advantages, 

BNs are almost unknown in medicine. 

No book for medical doctors mentions them! 

 



4. Unicriterion decision analysis 



4.1. Introductory examples 



Medical example (1) 

 Three variables 

 Chance variable: X bacterial infection;   P(+x) = 0.14 

 Decision: D give antibiotics 

 Utility (value): U effectiveness 

u (x, d)  +x   ¬x  

+d 8 9 

¬d 3 10 
 

 

 When making the decision we do not know whether  

the patient is infected with the bacteria. 

 Question:  Should we give antibiotics? 



Decision tree (1) 

no antibiotics 

D 

antibiotics 

infection 
u (+x, +d) = 8 

u (¬x, +d) = 9 
no infection 

P(+x) = 0.14 

u (¬x, ¬d) = 10 

u (+x, ¬d) = 3 

X 

X 

P(¬x) = 0.86 

infection 

P(+x) = 0.14 

no infection 

P(¬x) = 0.86 

U(+d) = 8.86 

U(¬d) = 9.02 

Optimal decision: Dopt = ¬d    do not give antibiotics 

Prognosis: U = max (U(+d), U(¬d)) = max (8.86, 9.02) = 9.02 

Dopt = ¬d 



Influence diagram DAN 
(decision analysis network) 

 Both models are identical. 

 They generate the same decision tree. 



Utility as a function of prevalence 

U d u x d P x
x

( ) ( , ) ( ) 

P(+x)  U(+d)   U(¬d)   Dopt   U  

0’00 9’00 10’00 ¬d 10’00 

0’05 8’95 9’65 ¬d 9’79 

0’14 8’86 9’02 ¬d 9’02 

0’17 8’83 8’81 +d 8’83 

0’40 8’60 7’20 +d 8’60 

0’75 8’25 4’75 +d 8’25 

1’00 8’00 3’00 +d 8’00 
 

 

U U d U d  max( ( ), ( ))

D U d U dopt   arg ( ( ), ( ))max

decision 
threshold 



Utility as a function of prevalence 



Medical example (2) 

 In the previous scenario, what should we do if we knew 

with certainty whether the patient has the disease? 

 Question 1: What to do when infection is present? 

 Question 2: What to do when infection is absent? 

 What is the average utility in this sub-population? 

 



Decision tree (2) 

Optimal decision: infection (+x)  give antibiotics (+d)   

 no infection (¬x)   do not give antibiotics (¬d) 

Expected utility: U = 8  0.14 + 10  0.86 = 9.72 

no infection 

infection 

 

antibiotics 
u (+x, +d) = 8 

u (+x, ¬d) = 3 
no antibiotics 

u (¬x, ¬d) = 10 

u (¬x, +d) = 9 

X 

antibiotics 

no antibiotics 

P(+x) = 0.14 

Dopt (+x)= +d 

U(+x) = 8 

P(¬x) = 0.86 

Dopt (¬x) = ¬d 

U(¬x) = 10 

D 

D 

U = 9.72 



Influence diagram DAN 

 

We have added an 

information link. 

We have marked Disease as 

always-observed. 

 Two different ways of saying that the value of Disease is known 

when making the decision Therapy. 

 Both models are equivalent: they generate the same decision tree. 



Medical example (3): 

The value of information 

Test Y for detecting X 

 sensitivity: P(+y|+x) = 0.91  

 specificity: P(¬y|¬x) = 0.97 

 cost:   utest(x, d) = uno test(x, d) – 0.2  

u (x, d)  +x   ¬x  

+d 7’8 8’8 

¬d 2’8 9’8 
 

 

 When making the decision we do know the result  

of the test. 

 Question:  Should we give antibiotics? 



D 

antibiotics 

infection 
u (+x, +d) = 7.8 

u (¬x, +d) = 8.8 

P(+x|+y) = 0.832 

X 
U(+d |+y) = 7.97 no infection 

P(¬x|+y) = 0.168 

no antibiotics 

U(¬d|+y) = 3.98 

infection 
u (+x, ¬d) = 2.8 

u (¬x, ¬d) = 9.8 

P(+x|+y) = 0.832 

X 

no infection 

P(¬x|+y) = 0.168 

D 

antibiotics 

infection 
u (+x, +d) = 7.8 

u (¬x, +d) = 8.8 

P(+x|¬y) = 0.015 

X 
U(+d |¬y) = 8.79 no infection 

P(¬x|¬y) = 0.985 

no antibiotics 

U(¬d |¬y) = 9.70 

infection 
u (+x, ¬d) = 2.8 

u (¬x, ¬d) = 9.8 

P(+x|¬y) = 0.015 

X 
no infection 

P(¬x|¬y) = 0.985 

Y 

positive 

P(+y) = 0.153 

Dopt (+y) = +d 

U(+y) = 7.97 

negative 

P(¬y) = 0.847 

Dopt (¬y) = ¬d 

U(¬y) = 9.70 

U = 9.43 



Policy and prognosis 

 Policy: 

 When Y is positive: give antibiotics 

 When Y is negative: do not give antibiotics 

 Prognosis 

 When Y is positive: U(+y) = 7.97  

 When Y is negative: U(¬y) = 9.70 

 Global prognosis (average utility) 

 Uwith test = U(+y)  P(+y) + U(¬y)  P(¬y) 

  = 7.97  0.153 + 9.69  0.847 

  = 9.43  



Influence diagram DAN 

 

An information link  

from Result of test to Therapy 

Result of test is marked as 

always-observed. 

 Different ways of indicating the flow of information. 

 Both models generate the same decision tree. 



Medical example (4):  

deciding about a test 

 Test Y 

Advantage:  gives information 

Disadvantage:  has a cost 

 Is it worth doing the test? 

 Three possible policies: 

1. Give the therapy to all patients, preventively 

2. Never apply the therapy 

3. Do test Y; apply the therapy only when it is positive 



D 

u (+x, +d , +t) = 7.8 

u (¬x, +d , +t) = 8.8 

X 

D 

u (+x, +d , +t) = 7.8 

u (¬x, +d , +t) = 8.8 

X 

u (+x, ¬d , +t) = 2.8 

u (¬x, ¬d , +t) = 9.8 

X 

antibiotics 

U(+d|+y) = 7.97 

no antibiotics 

U(¬d |+y) = 3.98 

antibiotics 

U(+d |¬y) = 8.79 

no antibiotics 

U(¬d |¬y) = 9.70 

u (+x, ¬d , +t) = 2.8 

u (¬x, ¬d , +t) = 9.8 

X 

infection 

P(+x|+y) = 0.832 

no infection 

P(¬x|+y) = 0.168 

infection 

P(+x|+y) = 0.832 

no infection 

P(¬x|+y) = 0.168 

infection 

P(+x|¬y) = 0.015 

no infection 

P(¬x|¬y) = 0.985 

infection 

P(+x|¬y) = 0.015 

no infection 

P(¬x|¬y) = 0.985 

Y 

Y positive 

P(+y)=0.153 

Dopt = +d 

U(+y) = 7.97 

Y negative 

P(¬y)=0.847 

Dopt = ¬d 

U(¬y) = 9.68 

D 

u (+x, +d, ¬t) = 8 

u (¬x, +d, ¬t) = 9 

X 

u (+x, ¬d, ¬t) = 3 

u (¬x, ¬d, ¬t) = 10 

X 

antibiotics 

U(+d) = 8.86 

no antibiotics 

U(¬d) = 9.02 

infection 

P(+x) = 0.14 

no infection 

P(¬x) = 0.86 

infection 
P(+x) = 0.14 

no infection 
P(¬x) = 0.86 

T 

do not test 

Dopt = ¬d 

U(¬t) = 9.02 

do test 

U(+t) = 9.43 

  

U = 9.43 



Influence diagram DAN 

 

An information link. 

Total ordering of the decisions 

Restrictions. Revelation link. 

The decisions are not ordered. 

 Different ways of indicating the flow of information. 

 The decision trees are different but equivalent:  

 the same probabilities, utilities, and policies. 



Decision tree 

generated by the ID 

Decision tree  

generated by the DAN 

 

symmetric asymmetric 



in the ID in the DAN 

• dummy value: 

test not done 

• restrictions 

• no dummy value 

Conditional prob. for Result of test 



Hands-on exercise 3 



Exercise: Optimal stratety for two tests 

 QALY is a unit of effectiveness 

 Question:  What is the most effective strategy? 



The n-test problem 

 Computationally hard: n! possible orderings of the tests. 

 We have developed an any-space algorithm for this problem 

 and a fast algorithm (9 minutes for the 7-test problem). 

 We are developing more efficient algorithms. 

 



4.2. Examples of decision models 

for real-world problems 



Mediastinet, an ID for lung cancer 

Equivalent to a decision tree containing ~104 branches. 



Mediastinet (DAN version) 

Decisions are partially ordered. 



Arthronet, an ID for total knee arthroplasty 

Equivalent to a decision tree containing ~104 branches. 



4.3. Advantages and limitations  

of influence diagrams 



Advantages of influence diagrams (1/3) 

 IDs are more compact than decision trees 

An ID having n binary nodes ~ a DT having 2n branches 

 IDs transform automatically into decision trees 

 ... but the reverse is not true (no general algorithm) 

 If you build a decision tree, you only have a decision tree. 

 If you build an ID, you have both. 

 IDs are much easier to build than decision trees 

 IDs use direct probabilities (prevalence, sensitivity, specificity...) 

and costs (mortality, morbidity, economic cost...) 

 ID can use canonical models (noisy OR, noisy AND, etc.) 

Each parameter appears only once in the ID  

• in many cases it is not necessary to have parametric variables 

 IDs can have several value nodes: more clarity, separate criteria 



Advantages of influence diagrams (2/3) 

 No external pre-calculation of probabilities is required 

 Having all the information, no debugging is usually needed 

On the contrary, “all trees have bugs” (Primer on MDA, at MDM journal) 

 IDs are much easier to modify than decision trees 

Refine the model with new decisions and chance variables 

Structural sensitivity analysis 

Can adapt to different regional settings 

Can adapt to patient’s medical characteristics and preferences 

 Explicit representation of causality 

a link indicates causal influence 

 the absence of a link means “no causal influence” (hypothesis) 



Advantages of influence diagrams (3/3) 

 Two possibilities of evaluation: 

1. expansion of an equivalent decision tree 

• exponential complexity (time and space) 

• equivalent to the brute-force method for Bayesian networks 

• many problems can not be solved with this method 

2. operations on the ID (recursive reduction of the ID) 

• direct manipulation of the graph and/or potentials of the ID 

• similar to the best algorithms for Bayesian networks 

• canonical models and the separation of utility nodes can lead to  

more efficient evaluations 

 More possibilities of explanation of reasoning 

 computation of posterior probabilities on the ID (as if it were a BN) 

 value of information (EVPI and other measures) can be computed easily 

 other methods from Bayesian networks and qualitative prob. networks. 

These methods can be used to debug/refine IDs. 







Clinical practice guidelines (CPGs) 

 Construction of CPGs 

 Usually: expert opinion or consensus of experts 

 Another possibility:  probabilistic graphical models  

• Sanders, Nease, Owens: several papers on building CPGs from IDs. 

 Advantages of a PGM wrt a traditional CPG 

 explicit decision model 

• combines expert opinions and evidence (statistical data) 

• helps in difficult cases, in which the policy is not evident for experts 

 flexibility: can be extended and adapted, as mentioned above 

 can include patients’ preferences 

 the physician plays an active role,  

he/she is not a passive user of CPGs developed by others.  



A proverb 

 Don’t give a man a fish; 

give him a rod  

and teach him how to fish. 

 Don’t give a doctor a written CPG; 

 give him/her a DAN 

 and teach him/her how to use OpenMarkov. 



IDs in the literature on MDM (1/3) 

 Books that mention decision trees but do not mention IDs 

• Weinstein, Fineberg. Clinical Decision Making. 1980.  

• Sloan (ed.). Valuing Health Care. 1995. 

• Gold et al. Cost-Effectiveness in Health and Medicine. 1996. 

• Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM). 

• Petitti. Meta-Analysis, Decision Analysis and CEA. 2nd ed., 2000. 

• Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001. 

• Levin and McEwan. Cost-Effectiveness Analysis. 2nd ed., 2001. 

• Parmigiani. Modelling in Medical Decision Making. 2002. 

• Haddix et al. Prevention Effectiveness. 2nd ed., 2003. 

• Fox-Rushby and Cairns. Economic Evaluation. 2005. 

• Briggs et al. Decision Modelling for Health Economic Evaluation, 2006. 

• Alemi and Gustafson. Decision Analysis for Healthcare Managers, 2006. 

• Arnold. Pharmacoeconomics: From Theory to Practice. 2009. 

• Kassirer et al. Learning Clinical Reasoning. 2nd ed., 2010. 

• Mushlin and Greene. Decision Making in Medicine. 3rd ed., 2010. 

(cont’d) 

 

 



IDs in the literature on MDM (2/3) 

 Books that mention decision trees but do not mention IDs (cont.) 

• Gray et al. Applied Methods of CEA in Health Care, 2011.  

• Alfaro-LeFevre. Critical Thinking, Clinical Reasoning… 5th ed., 2013. 

• Morris et al. Economic Analysis in Healthcare. 2nd ed., 2012. 

• Rascati. Essentials of Pharmacoeconomics. 2nd ed., 2013. 

• Sox et al. Medical Decision Making. Latest ed., 2013. 

• Hunink et al. Decision Making in Health and Medicine. 2nd ed., 2014. 

• Drummond et al. Methods for the Economic Evaluation of… 4th ed. 2015. 

• Edlin et al. Cost Effectiveness Modelling for HTA… 2015. 

• Neumann et al. Cost-Effectiveness in Health and Medicine. 2016 

• Caro et al. Discrete Event Simulation for HTA. 2016 

 One book that mentioned IDs  

• Muennig. Designing and Conducting Cost-Effectiveness Analyses in 

Medicine and Health Care. 2002, page 242: 

“An influence diagram (also known as a tornado diagram) ...” 

 The 2nd edition (2007) and the 3rd (2016) do not mention them. 



IDs in the literature on MDM (3/3) 

 Three books that describe IDs  

• Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000  

(5 pages out of 421, in a chapter authored by Mark Roberts) 

• Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008. 

(2 pages out of 230) 

• Kattan. Encyclopedia of Medical Decision Making. 2009 

(4 pages out of 1200+). 

 Summary of the informal survey of books on MDM and EBM  

 26 books published after 1984  

 All of them explain DTs but only 3 describe IDs, very briefly. 

 Some books on medical informatics mention IDs: 

• Shortliffe and Cimino. Biomedical Informatics. 4th ed., 2013 (2.5 pages out of 991). 

• Kalet. Principles of Biomedical Informatics. 2nd ed., 2013 (3 pages out of 708). 

 Why are IDs so little known in health sciences after 30+ years? 

 



Limitations of IDs 

1. The “reasoning” of an ID is not easy to understand 

2. The evaluation returns large policy tables 

3. IDs can only model symmetric problems 

 IDs require a total ordering of the decisions 

 IDs cannot represent incompatibilities between values 

• Non-standard versions of IDs partially solve this problem,  

but none of the alternatives was completely satisfactory. 

4. Algorithms could only evaluate unicriterion IDs 

 They could not perform cost-effectiveness analysis 

5. Temporal reasoning was not possible with IDs 

 Dynamic IDs are computationally unfeasible. 



Solutions we have proposed 

1. Explanation in influence diagrams 

 showing the posterior probabilities and expected values 

 introduction of evidence 

 hypothetical reasoning (what if) by means of imposed policies 

2. Synthesizing the optimal intervention 

 in the form of a compact tree 

3. Decision analysis networks 

 an alternative to IDs for asymmetric decision problems. 

4. Cost-effectiveness analysis with IDs 

5. Markov influence diagrams  

 including cost-effectiveness analysis 





DANs vs. IDs 

 A DAN is symmetric if: 

 it has no restrictions 

 if a value of X reveals Y, then every value of X reveals Y 

 DANs can replace IDs as the standard decision analysis tool 

(in AI, MDM, operations research…) because: 

 For every ID there is an equivalent symmetric DAN 

• but for many DANs there is no equivalent ID 

 Virtually all real-world problems are asymmetric. 

 There many problems that cannot be modeled with IDs. 

 Even if a problem can be modeled with an ID, a DAN is 

usually better because it does not need dummy states. 



DANs vs. IDs 

 DANs can replace IDs as the standard decision analysis tool 

(in AI, MDM, operations research…) because: 

 For every ID there is an equivalent symmetric DAN 

• but for many DANs there is no equivalent ID 

 Virtually all real-world problems are asymmetric. 

 There many problems that cannot be modeled with IDs. 

 Even if a problem can be modeled with an ID, a DAN is 

usually better because it does not need dummy states. 



5. Multicriteria decision making 



5.1. Effectiveness and utility  

in medicine 



Economic evaluation in medicine 

Objective: 

 to decide whether the benefit of an intervention outweighs  

its economic cost. 

Three types of analysis: 

 Cost-benefit 

• Health benefits are converted into monetary units 

 Cost-effectiveness 

• Benefits are measured in medical units, such as lives 

saved, life years gained, detected cases, etc. 

 Cost-utility 

• Benefit is measured in quality-adjusted life years (QALYs). 



Quantity and quality of life 

 Effectiveness (in cost-utility studies): 

1 

 QoL(t) 

Time: t 

  dttQoLeff )(

 1 QALY = effectiveness accrued in one year of perfect health 



QoL is subjective: how can we measure it? 

 Visual analog scale (VAS) 

 

 

• does not measure quantitative preferences 

• cannot be directly used in cost-utility analyses 

 Standard gamble 

• “Do you prefer to live in state s or to enter a lottery with probability p of recovering 

perfect health and (1- p) of dying?” 

 Time trade-off (TTO) 

• “Do you prefer to live in state s for 50 years or do you prefer to live with perfect health 

for 45 years?” 

• “Imagine you are in state s and your life expectancy is 50 years. How many years of 

your life expectancy would you give up  to recover perfect health? 

 

 

 



Trade-off between quantity and quality of life 

Torrance, Thomas and Sackett (1972) 

Perfect health  

for less time 

Imperfect health  

for more time 



Quality of life indexes (indices) 

 Every index considers a reduced number of attributes (dimensions) 

• HUI-3 has 8 attributes: sight, hearing, ability to converse, ability to walk, manual 

dexterity, emotional status, cognitive ability and pain 

 Every attribute has a limited number of states 

• “Hearing” in the HUI-3 has 6 states (see next slide) 

 Every individual is characterized by a tuple of states 

• In HUI-3, it is an 8-tuple. Example: (4,5,5,6,4,3,4,5). 

 A mathematical function maps each configuration onto a number 

• f(4,5,5,6,4,3,4,5) = 0.742. 

 Function f, specific for each index, is calibrated using a preference-

elicitation method: standard gamble or time trade-off. 

 

 

 



QoL tables 

From: Torrance (1987). Utility approach to measuring… 



An example with two criteria 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



5.2. Combining cost and effectiveness  

into a single criterion 



Net benefit

 Net monetary benefit:     NMB = l · E – C 

• E = effectiveness, usually measured in QALYs (utility) 

• C = cost, in monetary units (€, £, $…) 

•  l= willingness to pay = cost-effectiveness threshold 

 l is usually measured in $ / QALY, € / QALY, £/QALY…  

 It converts effectiveness into monetary units 

 It is specific for each decision maker 

 When comparing two or more interventions/strategies, 

which one is more beneficial? 

– It may depend on l 

 

 



NMB as a function of l

NMB No therapy Therapy 1 Therapy 2 

Disease present 36,000 € 100,000 € 125,000 € 

Disease absent 300,000 € 277,000 € 209,000 € 

NMB No therapy Therapy 1 Therapy 2 

Disease present 18,000 € 40,000 € 27,500 € 

Disease absent 150,000 € 128,500 € 69,500 € 

 If l = 15,000 €/QALY: 

 If l = 30,000 €/QALY: 

NMB No therapy Therapy 1 Therapy 2 

Disease present 7,200 € 4,000 € –31,000 € 

Disease absent 60,000 € 39,400 € –14,200 € 

 If l = 6,000 €/QALY: 



Problem: difficult to estimate the WTP 

 l is different for each decision maker: 

• USA $50,000-100,000 / QALY 

• UK £20,000-30,000 / QALY 

• Spain, Italy ~ €30,000/QALY 

• Norway ~ €70,000/QALY 

• WHO ~3 × (annual per capita GDP) / DALY 

 In some countries the range of variation is very wide. 

 How to estimate it? 

1. Shadow threshold: what interventions are covered in a country 

2. Econometric methods 

 No consensus among health economists  

What value of l should we use in our analyses? 

 Solution (partial solution): cost-effectiveness analysis 



5.3. Cost-effectiveness analysis 



5.3.1. Deterministic CEA 



Cost-effectiveness plane 

standard intervention 



Incremental cost-effectiveness ratio (ICER)

  One intervention is more effective but more expensive 

NHB1 = l  E1 – C1 

NHB2 = l  E2 – C2 

l
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  Def.: Incremental cost-effectiveness ratio (ICER) 

  Conclusion 

 NHB2 > NHB1    ICER2,1 < l

 l, the WTP, determines which option is more beneficial 
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 Two of the interventions are cost-effective wrt no intervention. 
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5.3.1.1. Deterministic CEA 

for the previous example 



The example we are considering 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



When we know that the disease is present 

Interval for l Cost Effect. Best therapy 

(0, 7,143)         0 1.2 no-therapy 

(7,143, 13,208) 20.000 4.0 therapy-1 

(13,208, +) 70.000 6.5 therapy-2 

7,402 13,208 

l



The example we are considering 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



When we know that the disease is absent 

Interval for l Cost Effect. Best therapy 

(0, +)         0 10 no-therapy 

l



5.3.2. CEA with uncertain outcomes 



Example with uncertain outcomes:  

cost-effectiveness of a test 

 The costs and effectiveness of the two therapies 

are the same as in the previous example 

But there is uncertainty (probabilities): 

 prevalence of the disease: 0.14 

 test: sensitivity 0.90 

 specificity 0.93 

Also the test has a cost:  150 € 

 

 Questions: 

When is the test cost-effective? = What is its ICER? 

What is the most beneficial therapy for each value of l? 

 



Effectiveness as a function of prevalence 



A decision tree for this example 

present

Disease

prev*sensit/_pJ_5
(cost_test+cost_ther_2) / e2pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_2) / e2abs

therapy-2

Therapy

present

prev*sensit/_pJ_5
(cost_test+cost_ther_1) / e1pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*sensit/_pJ_5
cost_test / e0pres

absent

_pJ_1*_pJ_2/_pJ_5
cost_test / e0abs

no-therapy

positive

Result

of test

_pJ_5

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_2) / e2pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_2) / e2abs

therapy-2

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_1) / e1pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*_pJ_3/_pJ_6
cost_test / e0pres

absent

_pJ_4*spec/_pJ_6
cost_test / e0abs

no-therapy

negative

_pJ_6

do_test

Dec:Test

present

prev
cost_ther_2 / e2pres

absent

#
cost_ther_2 / e2abs

therapy-2

present

prev
cost_ther_1 / e1pres

absent

#
cost_ther_1 / e1abs

therapy-1

present

prev
0 / e0pres

absent

#
0 / e0abs

no-therapy

no_test

cost-effectiveness

cost_test=150

cost_ther_1=20000

cost_ther_2=70000

e0abs=10

e0pres=1,2

e1abs=9,9

e1pres=4,0

e2abs=9,3

e2pres=6,5

prev=0,14

Problem: the standard algorithm only works for the unicriterion case 



A warning and a (rudimentary) solution 

“Embedded, or downstream, decision nodes are not useful in 

cost-effectiveness analysis because the optimal branch 

cannot be determined when folding back the tree without an 

explicit decision rule for comparing costs and consequences. 

Cost-effectiveness analyses can be performed with  

a decision tree that has one decision node at the root.  

The branches of the initial decision node represent  

all of the strategies that are to be compared.” 

 Kuntz and Weinstein [2001] 

 

 

 



How many strategies for this example? 

 Without testing 

 No therapy in any case 

 Always therapy 1 

 Always therapy 2 

 With testing 

 If positive, no therapy; if negative, no therapy. 

 If positive, no therapy; if negative, therapy 1. 

 If positive, no therapy; if negative, therapy 2. 

 If positive, therapy 1; if negative, no therapy. 

 If positive, therapy 1; if negative, therapy 1. 

 If positive, therapy 1; if negative, therapy 2. 

 If positive, therapy 2; if negative, no therapy. 

 If positive, therapy 2; if negative, therapy 1. 

 If positive, therapy 2; if negative, therapy 2. 

 









5.3.3. CEA with IDs and DANs 



Influence diagram DAN 

 

 The same structure as in the unicriterion case 

 but now we have two criteria: cost and effectiveness 



Methods of Information in Medicine 2015;54:353-358. 





Hands-on exercise 4 



Exercise: Optimal stratety for two tests 

 The same probabilities and effectiveness as in exercise 3 

 but now we also considering economic costs. 

 Question:  What is the most beneficial strategy? 



6. Temporal models 



Temporal PGMs 

Markov models 

 The future is independent of the past given the present 

• “Markov models do not have memory” 

 Key concept: state 

 Types of models: Markov chains, HMMs, MDPs, 

POMDPs, DBNs, MIDs, DLIMIDs…  

 Temporal non-Markov models 

 The future is not determined by the current state 

• for example, birth occurs around 9 months after conception 

 An type of non-Markov model: event networks 

• Galán, Aguado, Díez, Mira.  NasoNet: Modelling the spread of nasopharyngeal 

cancer with temporal Bayesian networks. AI in Med, 2002.  



6.1. Types of Markov models 



Markov chain 

One variable that evolves over time 

 Transition probabilities:  P(xi+1|xi) 



Hidden Markov model (HMM) 

Observed variable:  Y 

 Non-observed (hidden) variable: X 

 Transition probabilities:  P(xi+1|xi) 

 Probability of each observation:  P(yi|xi) 

 



Markov decision process (MDP) 

Observed variable:  X 

 Decision: D 

 Transition probabilities:  P(xi+1|xi) 

 Reward:  U(xi, di) 

 



Partially observable MDP (POMDP) 

 Hidden variable: X  

Observed variable : Y 

 Decision: D 

Observation prob.: P(yi|xi) 

 Transition prob.: P(xi+1|xi) 

 Reward: U(xi, di) 

 



Dynamic Bayesian network (DBN) 

 Markov chain or hidden Markov model:  

  – one variable, X 

  – one conditional probability: P(xi+1|xi) 

 Dynamic Bayesian network:  

  – several variables, {X, Y, Z…} 

  – factored probability: P(yi|xi), P(zi|xi, yi), P(xi+1|xi, yi)… 



Factored extensions of Markov models 



Markov influence diagrams 

 Can be used for cost-effectiveness analysis 



Dynamic limited-memory IDs (DLIMIDs) 

 Differences wrt POMDPs 

 Several decisions in each time slice. 

 Limited memory: the decision maker only knows the observations 

made at the current and the previous time slices 

 Memory variables summarize the past. 



A DLIMID for a carcinoid tumors 

 Therapy selection for high-grade carcinoid tumors (van Gerven et al., 2007) 



IJCAI Workshop Decision Making in Partially Observable,  

Uncertain Worlds: Exploring Insights from Multiple Communities 

Barcelona, July 2011 



6.2. Markov influence diagrams 



Medical Decision Making 2017; 37:183-195  



6.2.1. Example: 

Chancellor’s model for HIV 



Case study: HIV/AIDS  
(Chancellor et al.,1997) 



 Two therapies:  

 monotherapy: only AZT 

 combined therapy: AZT + lamivudine for 2 years; then only AZT 

 State-transition diagram:  4 states 



A MID version of the HIV model 
[Chancellor et al., 1997] 

 



Representing the patient history (1) 

 Transition probabilities that depend on the time spent in 

current state: 

 State-transition model with tunnel states 

 
State A

State B1

State B3

State B2 State DState C



Representing the patient history (1) 

 Transition probabilities that depend on the time spent in 

current state: 

 
Memory variable 

Only 4 states 



Representing the patient history (2) 

 Transition probabilities that depend on the number of 

relapses: 

D

A0 A1 A2

C0 C1 C2

B0 B1 B2



Representing the patient history (2) 

 Transition probabilities that depend on the number of 

relapses: 

  

Memory variable 

Only 4 states 



6.2.2. Other MIDs for real-world problems 



Case study: Hip replacement 
(Briggs et al., 2004) 



A MID version of the hip replacement model 

[Briggs et al., 2004] 

 



Case study: HPV vaccine 
(Insinga et al., 2009) 





A MID version of the HPV vaccination model 
[Callejo et al., 2010] 

 



Content of one of the Excel cells for this model: 

=VLOOKUP($C5;Variables!$A$4:$H$21;8;TRUE)*(((BI5+BJ5)+BK5*u

CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC

+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_

3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU

P($C4;Variables!$A$4:$H$21;2;TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(

$C4;Variables!$A$4:$H$21;4;TRUE)+(BS4+BT4)*uRCC*VLOOKUP($

C4;Variables!$A$4:$H$21;5;TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C

4;Variables!$A$4:$H$21;2;TRUE)) 

 



Case study: AIDS in Africa 
(Ryan et al., 2009) 



A MID version of the CHAP model 

[Ryan et al., 2008] 

 



Our model for malignant pleural effusion 

 Meeting of the Society for Medical Decision Making (SMDM 2015),  

St. Louis, October 2015. 



Our model for colorectal cancer screening 

 European Conference of the Society for Medical Decision Making,  

London, UK, June 2015. 



Our model for bilateral cochlear implantation 

 Cochlear Implant Symposium, Washington DC, October 2015. 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



A MID with several decisions 
Adapted from [Walker et al., 2013] 

 

 This model evaluates all the possible interventions. 

 It can cope with heterogeneity: sex, age, grade. 
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6.2.3. MIDs vs. other types of models 



Advantages of MIDs for CEA 

For model builders 

 No programming is required, not even for sensitivity analysis 

 The construction of the model is much faster and easier. 

 It is possible to accomplish each phase (structure, numeric 
parameters, deterministic analysis, sensitivity analysis)  
without thinking of the next one 

 Debugging consists only of refining the knowledge contained in 
the model: it is not necessary to debug formulas and macros. 

For the recipients of the model (agencies: NICE, etc.) 

 Just by observing the graph it is possible to find out the basic 
structure of the model its main hypotheses. 

 It is not necessary to check that the code (formulas, macros…) 
is correct. 

 



Comparison of MIDs with other techniques 

 MIDs vs. spreadsheets (Excel) 

 no need to write any formulas nor VisualBasic macros 

 no need to multiply the number of states 

 MIDs vs. Markov decision trees 

 much more compact  possible to build much larger models 

 no need to add tracking variables (microsimulation) 

 MIDs vs. a programming language (R, C++, MATLAB…) 

 no need to write any code, not even for sensitivity analysis 

 but programming languages are much more flexible 

 MIDs vs. discrete event simulation 

 cohort propagation (exact algorithm) is often much faster 

 MIDs vs. all the others: may contain several decisions. 

 

 



7. Sensitivity analysis 



Types of sensitivity analysis 

 Two main types 

  structural (qualitative) 

  parametric (quantitative) 

 Depending on the effect analyzed 

  analysis of utility 

  analysis of decisions / policies 

 Depending on how many parameters are varied 

  one-way analysis 

  n-way analysis (independent or join analysis) 

 Depending on how the parameters are varied 

  range (interval) 

  probability distribution 

  look for thresholds 



7.1. Unicriterion sensitivity analysis 



Tornado diagram 



Spider diagram 



Plot (one-way sensitivity analysis) 



7.2. Cost-effectiveness 

sensitivity analysis 



Scatter plot 



Acceptability curve 



Some sensitivity analysis options 



8. Overview of software tools 



69 packages! 



Open-source tools for PGMs 

 Only BNT and OpenMarkov can represent Markov models. 

 Among the tools having a GUI for editing PGMs, only  

Weka and OpenMarkov are still under active development. 



OpenMarkov. Main features 

 Main advantage: open source 

 Free 

 Users can adapt it to their needs 

 Software engineering tools:  

    JUnit, maven, mercurial (bitbucket), nexus, bugtracker, etc. 

 Strengths 

 Written in Java: portability (Windows, linux, MacOS…) 

 Many types of models, potentials, etc.  

 Algorithms not available in any other package 

• CEA with IDs 

• interactive learning 

 Very active: new features are continuously added 

 Support for users and developers: wiki, lists, mail… 

 Well-documented format for encoding networks: ProbModelXML. 



OpenMarkov. Limitations 

 Main weakness 

 Still a prototype: needs debugging 

 Other weaknesses 

 Written in Java: relatively slow (in some cases) 

 No on-line help, documentation still poor 

 Support is limited, due to scarcity of human resources. 



8. Conclusions 



Conclusions 

 BNs overcame the limitations of the naïve Bayes method. 

 IDs have several advantages over decision trees, 

but also have serious limitations for medical decision making. 

 DANs are similar to IDs, but more suitable for asymmetric 

decision problems. 

 It is possible to do cost-effectiveness analysis with IDs. 

 and also with Markov IDs (MIDs) if all decisions are atemporal. 

 There are other types of Markov PGMs having one or more 

decisions per cycle: MDPs, POMDPs, DLIMIDs… 



How to bring PGMs  

from artificial intelligence  

into medical decision making 

 Dissemination 

 Seminars, short courses… 

 Tutorials and textbooks written in the language of clinicians, 

epidemiologists and health economists 

 Research 

 New methods for the representation of knowledge 

 New algorithms for CEA, sensitivity analysis… 

 User-friendly software tools 

 for building, debugging and maintaining the models 

 for displaying the results using charts, tables, etc. 



Future work 

 New models and algorithms 

 Markov DANs 

 CEA with models having one or several decisions per cycle 

 new methods for CEA, sensitivity analysis, explanation of 

“reasoning”… 

 Integration of PGMs, cost-effectiveness analysis,  

and Bayesian inference 

 integration of OpenMarkov with OpenBUGS and/or STAN. 



Thank you very much for your attention! 

 Links 

• www.cisiad.uned.es 

• www.OpenMarkov.org 

• www.ProbModelXML.org/networks 

 Contact: fjdiez@dia.uned.es 

 

http://www.probmodelxml.org/networks
mailto:fjdiez@dia.uned.es

