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1. Introduction: history of 

probabilistic AI in medicine 



Probability in artificial intelligence 

 A.I. was “born” in 1956, at the Dartmouth Conference 

 In the first 25 or 30 years, many researchers questioned that 

probability could play a significant role in A.I. 

 First reason (cf. [Sutton and Barto, 1998]): 

Computers were already good at arithmetic operations 

but could not perform “easy” tasks (easy for a little child): 

vision (image understanding), natural language, planning… 

Those tasks could not be solved with arithmetic operations; 

they require conceptual reasoning (symbol manipulation  LISP). 

Probabilistic “reasoning” consisted mainly in number crunching, 

not in conceptual reasoning. 

 Second reason: limitations of probabilistic methods. 



11 (1978) 115-144 



Limitations of probability for AI in medicine 

“The chief disadvantages of the decision theoretic approach are the 

difficulties of obtaining reasonable estimates of probabilities and utilities for a 

particular analysis. Although techniques such as sensitivity analysis help 

greatly to indicate which potential inaccuracies are unimportant, the lack of 

adequate data often forces artificial simplifications of the problem and lowers 

confidence in the outcome of the analysis. Attempts to extend these 

techniques to large medical domains in which multiple disorders may co-occur, 

temporal progressions of findings may offer important diagnostic clues, or 

partial effects of therapy can be used to guide further diagnostic reasoning, 

have not been successful. The typical language of probability and utility 

theory is not rich enough to discuss such issues, and its extension within the 

original spirit leads to untenably large decision problems. […] 

A second difficulty for decision analysis is the relatively mysterious reasoning 

of a decision theoretic program—an explanation of the results is to he 

understood in terms of the numeric manipulations involved in expected value 

computations, which is not a natural way of thinking for most people.” 

P. Szolovits. Artificial Intelligence in Medicine. Westview Press, 1982. 



Historic evolution of probabilistic AI 

 1960s and 1970s: naïve-Bayes diagnostic systems 

 able to diagnose better than physicians in restricted problems 

 expert system Prospector (Hart and Duda, 1977) 

  used approximate Bayesian reasoning 

  found a molybdenum deposit valued in $1,000,000 

  was the first commercial success of A.I. 

 Bayesian networks (Pearl, 1982, 1986, 1988) 

  overcame the limitations of the naïve Bayes 

 Nowadays: probabilistic graphical models (PGMs) 

are used more and more in A.I. 

  tasks: diagnosis, planning, learning (incl. deep learning)… 

  fields: medicine, robotics, computer vision, e-commerce… 



2. Probabilistic diagnosis 



2.1. Basic concepts  

of probabilistic diagnosis 



Probabilistic diagnosis with one finding 

 Example: 

 Prevalence of a disease:  14% 

 Sensitivity of a test: 70% 

 Specificity of the test: 91% 

Questions: 

 What is the positive predictive value (PPV)? 

• If the test is positive, what is the probability  

that the patient has the disease? 

 What is the negative predictive value (NPV)? 

• If the test is negative, what is the probability  

that the patient does not have the disease? 

 



Basic concepts for medical diagnosis 

 Disease E, result of a test T 

 Parameters of the model 

 Prevalence:   P(+e) 

 Sensitivity:  P(+t|+e) 

 Specificity: P(¬t|¬e) 

 Predictive values: 

 Positive PV: P(+e|+t) 

 Negative PV: P(¬e|¬t) 



2.2. Bayes theorem 



Bayes theorem 
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 Combining these results: 

 It means that knowing P(x) and P(y|x) we compute P(x|y). 
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Predictive value of a finding 

Positive predictive value:  P(+e|+h) 
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Negative predictive value:  P(¬e|+h) 



Probabilistic diagnosis with two findings 

 Example: 

 Prevalence of the disease:  14% 

 Sensitivity of test C: 70% 

 Specificity of test C: 91% 

 Sensitivity of test E: 90% 

 Specificity of test E: 93% 

Questions: 

 What is the posterior probability for each combination of findings? 



2.3. The naïve Bayes method 



 Graphical representation: 

Diagnostic D 

Finding H1 Finding Hn Finding H2 
... 

 Two hypotheses: 

 Diagnostics are mutually exclusive 

  every patient has at most one disease 

 Findings are conditionally independent  

given the diagnostics 

The naïve Bayes method 



Succesfull applications of the naïve-Bayes 

• Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone 

tumors: A preliminary report” Radiology 80 (1963) 273-275. 

• Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid 

function” JAMA 183 (1963) 307-313.  

• Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis 

of congenital heart disease” Progress in Cardiovascular Diseases 5 (1963) 362-377. 

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer 

diagnosis of congenital heart disease” Annals New York Acad. Sciences 115 (1964) 

558-567. 

• de Dombal FT, Leaper JR, Staniland JR, et al., “Computer-aided diagnosis of acute 

abdominal pain” BMJ 2 (1972) 9-13. 

• Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for 

computer-aided management of acute renal failure” Amer. J Med 55 (1973) 473-484. 

• Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program 

that considers clinical responses to digitalis” Amer. J. Med 64 (1978) 452-460.  

 



Limitations of the naïve Bayes 

 In general the diagnostics are not mutually exclusive. 

 In general, findings are not conditionally independent. 

Bacterial infection 

Sign Organism 2  Lab. test Organism 1 



Three cases 

Test results are  

conditionally 

independent 

given the disease 

Correlation, even when 

the disease  

is present 

or absent 

Test C is conditionally 

independent of the 

disease given test E 

In the three cases the sensitivity and specificity  

of the tests (wrt the disease) are the same,  

but the posterior probabilities are different 



Impact of correlation on the posterior prob. 

 Extreme case:  

test results are conditionally independent given the disease 

 P(+d | +c, +e) = 0.9421 

 maximum increase in the posterior probability 

 Opposite extreme case: 

test C is conditionally independent of the disease given test E: 

 P(+d | +c, +e) = 0.5587 = P(+d | +e) 

 no increase in the posterior probability  no new information  

 Intermediate cases: 

correlation among findings 

 0.5587 < P(+d | +c, +e) < 0.9421 

 the bigger the correlation, the smaller the information contributed. 



Prob. diagnosis with two findings (revisited) 

 Example: 

 Prevalence of the disease:  14% 

 Sensitivity of test C: 70% 

 Specificity of test C: 91% 

 Sensitivity of test E: 90% 

 Specificity of test E: 93% 

Questions: 

 What is the posterior probability for each combination of findings? 

 The problem is ill-specified 

 The solution depends on the correlation among findings 

 



Limitations of the naïve Bayes 

 In general the diagnostics are not mutually exclusive. 

 In general, findings are not conditionally independent. 

Bacterial infection 

Sign Organism 2  Lab. test Organism 1 

 These limitations are rarely discussed in the books of  

medical decision analysis and evidence-based medicine. 

 This is the only method presented in those books. 



3. Bayesian networks 



Probabilistic graphical models 

  Elements of a PGM 

 Qualitative component (structure): a graph 

• Links usually represent causal relations 

 Quantitative components (parameters): potentials 

• A conditional probability for each chance node 

• A value function for each value node 

 Relation between the graph and the prob. distribution 

 Every node in the graph represents a variable of the prob. 

 The graph represents the dependencies of the prob. distr. 

 

 



3.1. Definition of BN 



Notions about graphs 

 Basic concepts 

 Definition: a set of nodes and links (vertices and edges) 

 Two types of links: directed / undirected 

 Open path (A-B, A-B-C-D), closed path (A-B-C-D-A),  

 In directed graphs:  

 parent, child, ancestor, descendant. 

A 

C B 

D 

A 

C B 

D 



Directed graphs: cycles and loops 

Cycles 

A 

C B 

A 

C B 

D 

 Loops 

A 

C B 

A 

C B 

D 

A 

C B 

D 



Definition of Bayesian network 
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Elements: 

 a set of variables {Xi } 

 an acyclic directed graph 

• every node in the graph represents a variable Xi 

 a conditional probability distribution (usually a table)  

for each variable: P(xi | pa(xi)) 

• for a node without parents: P(xi | pa(xi)) = P(xi ) 

Result: join probability for the network 



Naïve Bayes Bayesian network 



3.2. Examples of BNs 



Examples of BNs 

Medical Bayesian networks we have built 

 DIAVAL: echocardiography (valvulopathies) 

   F. J. Díez’ thesis, 1994 

 Prostanet: urology (prostate cancer) 

   Carmen Lacave’s thesis, 2003 

 Nasonet:  nasopharyngeal cancer spread 

   Severino Galán’s thesis, 2003 

 HEPAR II: liver diseases 

   Agnieszka Onisko’s thesis, 2003 

 Catarnet: Cataract surgery  

   Nuria Alonso’s thesis, 2009 

 



DIAVAL 



DIAVAL: numeric findings 



DIAVAL: qualitative findings 



DIAVAL: diagnostics 



DIAVAL:  

final report 

in a text editor 



Prostanet (for prostate diseases) 



Nasonet (nasopharyngeal cancer spread) 



Hepar II (liver diseases) 

 



Catarnet (cataract surgery) 



Input:  1. General data 



Input:  2. Ocular comorbidity 



Input:  3. Surgical complexity 



Output:  1. Expert panel’s recommendations 



Output:  2. BN recommendation 



3.3. BNs and causality 



 Example 1 

 

Two interpretations of BNs 

 Semantics of a Bayesian network: 

 As a mathematical model: probabilistic independencies 

 As a model of the real world: they usually represent causality 

 Two models are mathematically equivalent when they represent 

the same set of independencies. 

 But two different BNs can never have the same causal meaning. 

 

X Y Z X Y Z X Y Z 

X Y X Y 

 Example 2 

 



Correlation does not imply causality 

causal 

relation 

logical 

ìmplication 

conjecture 

correlation  

(statistical) 



Correlation does not imply causality (example 1) 

# storks # births 

# churches 

# inhabitants 

# storks 

# births 



Correlation does not imply causality (example 2) 

Skin spots Teracola 

Swim. pool 

Temperature Income 

Teracola 

Skin spots 



Correlation does not imply causality (example 3) 

Smoking Lung cancer 

Smoking 

Lung cancer Smoking Lung cancer 

Gene 



Several types of correlation 

B A 

C 

 Direct cause 

A 

B 

B 

A 

 Common cause 

C 

B A 

 Selection bias 

(example: Berkson bias) 

Correlation 

without 

    direct causality 





www.hsph.harvard.edu/miguel-hernan/causal-inference-book  

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book


3.4. Building BNs 



How to build a Bayesian network 

 From a database 

Data 

base 
algorithm Bayesian 

network 

 There are many algorithms, several new algorithms every year  

 Similar to statistical methods (logistic regression, neural nets...) 

 With a human expert’s help 

Causal 

knowledge 
modeling Causal 

graph 
probabilities Bayesian 

network 

 Hybrid methods:  

 experts structure;   database probabilities 

 experts initial model;   new cases refine the probabilities 



3.4.1. Building BNs  

with causal knowledge 



A portion 

of the 

real world 

Building BNs with causal knowledge 

  Observed 
frequencies 

  Causal 
mechanisms 

Prior knowledge 

Model 
Graph 

Cond. 
prob. 

BN 

Joint 

probability 

Data 



   Age 

 Heredity 

Hypercoles- 

terolemia 

  Obesity 

Diabetes 

  Sex 

   Smoking 

Race 

 Stress 

HTA 

Sodium 

intake 

Ischemia 

  Age 

 Heredity 

  Obesity 

Diabetes 

  Sex  Race 

 Stress 

Smoking 

HTA 

 Ischemia 

Sodium 

intake 

Hypercoles- 

terolemia 

PROBLEMS DUE TO  

LACK OF CAUSAL KNOWLEDGE (1) 



Where do the probabilities come from? 

 Epidemiological studies 

 advantage: we obtain directly the parameters we need 

 disadvantage: time and cost; biases 

 Medical literature 

 advantage: reliable, inexpensive 

 disadvantage: few qualitative data, few direct probabilities, 

different criteria, population-dependent, biases 

 Databases 

 advantage: fast, inexpensive 

 disadvantage: small databases, selection biases 

 Subjective estimates 

 advantage: relatively inexpensive 

 disadvantage: unavailability of experts, psychological biases 



3.4.1.1. Canonical models 



General model 

 Probability table:   

 P(y | x1, … , xn)  

 Factors that   

influence the prob. of X 

Obesity 

Age 

Sex 

AHT 

Smoking  Meningitis Pneumonia 

Paludism 

Fever 

Flu 

 Efficiency of each link: 

 ci 

 Causes that  

can produce X 

Noisy OR 

Canonical models 



The noisy OR (hypotheses) 

1. Each cause, by itself, is able to produce the effect, 

with a certain probability 

 which is less than 100% when there are inhibitors. 

2. The effect is absent when no cause has produced it 

 i.e., when every cause is either absent or inhibited 

3. If a cause has produced the effect, then the effect is 

present (regardless of the other causes) 

4. Independence of causal influences 

 there is no interaction between the causes (or its inhibitors) 

when producing the effect 

 the probability of the effect is the probability that the first cause 

has produced it, plus the probability that the second cause 

produces it when the first has not, plus… 



Advantages of the noisy OR 

 Easier to build, because it requires fewer parameters  

• from a database: more cases to estimate each parameter 

• from a human expert: fewer parameters and more intuitive  

 The computation of probability is more efficient (faster) 

 Possibility of explaining the reasoning: 

differencial diagnosis (explaining away) 

 Two ways to establish the noisy OR 

 From a statistical study  

 Knowing the causal mechanisms 

Application of the noisy OR 

when building BNs 





3.4.2. Learning BNs from data 



Learning BNs from data 

 Two possibilities of learning 

 automatic, interactive 

 Two main algorithms: 

 Search-and-score 

• search 

– depart from a network with no links 

– add/remove/invert a link in each iteration 

• score 

– use a metric (there are several metrics available) to quantify how well 

the model matches the data 

 PC 

• depart from a fully-connected undirected graph 

• when two variables are independent, remove the link 

– more precisely, when the correlation is not statistically significant (p < a) 

• when two variables are conditionally indep., remove the link 

• orient the remaining links to obtain a directed graph 



The role of significance in the PC algorithm 

 We set the value of the significance, a 

 For each link, when p > awe assume that the correlation in the 

database is spurious (i.e., due randomness) and remove the link 

 Low value of a  removing many links  sparse network 

 High value of a  keeping many links  dense network 

 

completely 
connected 
network sparse 

networks 



Advantages of interactive learning 

 The system proposes, the user decides 

 Very useful for tuition 

 Useful for combining data with expert knowledge 

 Useful for debugging new algorithms (workbench) 

 See www.openmarkov.org/docs/tutorial. 



A comparison of both methods for building BNs 

 Automatic learning from databases 

 Advantage: faster (graph + probabilities) 

 Limitation: medical databases are usually incomplete 

• Missing values  problem of imputation (rarely missing at random) 

• Missing variables  spurious correlations 

 Blackbox algorithm that returns non-causal models 

  Human experts are reluctant to accept their advice 

 With expert knowledge (“manual” method) 

 Only method possible when there is not a good-enough database 

 Difficulty in practice: getting the collaboration of experts 

 Building the structure of the causal is sometimes difficult 

 Obtaining the probabilities is even more difficult. 



Summary: BNs vs. the naïve Bayes 

 BNs can diagnose several diseases simultaneously. 

 BNs do not assume conditional independence of findings. 

 BNs are usually causal models 

 closer to doctors’ reasoning: explanation of reasoning 

 probabilities are in general easier to obtain 

 Three types of reasoning: abductive, deductive, inter-causal. 

 They can combine data (from databases),  

epidemiological studies (scientific literature)  

and expert knowledge (doctors). 

    

 
In spite of these advantages, 

BNs are almost unknown in medicine. 

No book for medical doctors mentions them! 

 



4. Unicriterion decision analysis 



4.1. Introductory examples 



Medical example (1) 

 Three variables 

 Chance variable: X bacterial infection;   P(+x) = 0.14 

 Decision: D give antibiotics 

 Utility (value): U effectiveness 

u (x, d)  +x   ¬x  

+d 8 9 

¬d 3 10 
 

 

 When making the decision we do not know whether  

the patient is infected with the bacteria. 

 Question:  Should we give antibiotics? 



Decision tree (1) 

no antibiotics 

D 

antibiotics 

infection 
u (+x, +d) = 8 

u (¬x, +d) = 9 
no infection 

P(+x) = 0.14 

u (¬x, ¬d) = 10 

u (+x, ¬d) = 3 

X 

X 

P(¬x) = 0.86 

infection 

P(+x) = 0.14 

no infection 

P(¬x) = 0.86 

U(+d) = 8.86 

U(¬d) = 9.02 

Optimal decision: Dopt = ¬d    do not give antibiotics 

Prognosis: U = max (U(+d), U(¬d)) = max (8.86, 9.02) = 9.02 

Dopt = ¬d 



Influence diagram DAN 
(decision analysis network) 

 Both models are identical. 

 They generate the same decision tree. 



Utility as a function of prevalence 

U d u x d P x
x

( ) ( , ) ( ) 

P(+x)  U(+d)   U(¬d)   Dopt   U  

0’00 9’00 10’00 ¬d 10’00 

0’05 8’95 9’65 ¬d 9’79 

0’14 8’86 9’02 ¬d 9’02 

0’17 8’83 8’81 +d 8’83 

0’40 8’60 7’20 +d 8’60 

0’75 8’25 4’75 +d 8’25 

1’00 8’00 3’00 +d 8’00 
 

 

U U d U d  max( ( ), ( ))

D U d U dopt   arg ( ( ), ( ))max

decision 
threshold 



Utility as a function of prevalence 



Medical example (2) 

 In the previous scenario, what should we do if we knew 

with certainty whether the patient has the disease? 

 Question 1: What to do when infection is present? 

 Question 2: What to do when infection is absent? 

 What is the average utility in this sub-population? 

 



Decision tree (2) 

Optimal decision: infection (+x)  give antibiotics (+d)   

 no infection (¬x)   do not give antibiotics (¬d) 

Expected utility: U = 8  0.14 + 10  0.86 = 9.72 

no infection 

infection 

 

antibiotics 
u (+x, +d) = 8 

u (+x, ¬d) = 3 
no antibiotics 

u (¬x, ¬d) = 10 

u (¬x, +d) = 9 

X 

antibiotics 

no antibiotics 

P(+x) = 0.14 

Dopt (+x)= +d 

U(+x) = 8 

P(¬x) = 0.86 

Dopt (¬x) = ¬d 

U(¬x) = 10 

D 

D 

U = 9.72 



Influence diagram DAN 

 

We have added an 

information link. 

We have marked Disease as 

always-observed. 

 Two different ways of saying that the value of Disease is known 

when making the decision Therapy. 

 Both models are equivalent: they generate the same decision tree. 



Medical example (3): 

The value of information 

Test Y for detecting X 

 sensitivity: P(+y|+x) = 0.91  

 specificity: P(¬y|¬x) = 0.97 

 cost:   utest(x, d) = uno test(x, d) – 0.2  

u (x, d)  +x   ¬x  

+d 7’8 8’8 

¬d 2’8 9’8 
 

 

 When making the decision we do know the result  

of the test. 

 Question:  Should we give antibiotics? 



D 

antibiotics 

infection 
u (+x, +d) = 7.8 

u (¬x, +d) = 8.8 

P(+x|+y) = 0.832 

X 
U(+d |+y) = 7.97 no infection 

P(¬x|+y) = 0.168 

no antibiotics 

U(¬d|+y) = 3.98 

infection 
u (+x, ¬d) = 2.8 

u (¬x, ¬d) = 9.8 

P(+x|+y) = 0.832 

X 

no infection 

P(¬x|+y) = 0.168 

D 

antibiotics 

infection 
u (+x, +d) = 7.8 

u (¬x, +d) = 8.8 

P(+x|¬y) = 0.015 

X 
U(+d |¬y) = 8.79 no infection 

P(¬x|¬y) = 0.985 

no antibiotics 

U(¬d |¬y) = 9.70 

infection 
u (+x, ¬d) = 2.8 

u (¬x, ¬d) = 9.8 

P(+x|¬y) = 0.015 

X 
no infection 

P(¬x|¬y) = 0.985 

Y 

positive 

P(+y) = 0.153 

Dopt (+y) = +d 

U(+y) = 7.97 

negative 

P(¬y) = 0.847 

Dopt (¬y) = ¬d 

U(¬y) = 9.70 

U = 9.43 



Policy and prognosis 

 Policy: 

 When Y is positive: give antibiotics 

 When Y is negative: do not give antibiotics 

 Prognosis 

 When Y is positive: U(+y) = 7.97  

 When Y is negative: U(¬y) = 9.70 

 Global prognosis (average utility) 

 Uwith test = U(+y)  P(+y) + U(¬y)  P(¬y) 

  = 7.97  0.153 + 9.69  0.847 

  = 9.43  



Influence diagram DAN 

 

An information link  

from Result of test to Therapy 

Result of test is marked as 

always-observed. 

 Different ways of indicating the flow of information. 

 Both models generate the same decision tree. 



Medical example (4):  

deciding about a test 

 Test Y 

Advantage:  gives information 

Disadvantage:  has a cost 

 Is it worth doing the test? 

 Three possible policies: 

1. Give the therapy to all patients, preventively 

2. Never apply the therapy 

3. Do test Y; apply the therapy only when it is positive 



D 

u (+x, +d , +t) = 7.8 

u (¬x, +d , +t) = 8.8 

X 

D 

u (+x, +d , +t) = 7.8 

u (¬x, +d , +t) = 8.8 

X 

u (+x, ¬d , +t) = 2.8 

u (¬x, ¬d , +t) = 9.8 

X 

antibiotics 

U(+d|+y) = 7.97 

no antibiotics 

U(¬d |+y) = 3.98 

antibiotics 

U(+d |¬y) = 8.79 

no antibiotics 

U(¬d |¬y) = 9.70 

u (+x, ¬d , +t) = 2.8 

u (¬x, ¬d , +t) = 9.8 

X 

infection 

P(+x|+y) = 0.832 

no infection 

P(¬x|+y) = 0.168 

infection 

P(+x|+y) = 0.832 

no infection 

P(¬x|+y) = 0.168 

infection 

P(+x|¬y) = 0.015 

no infection 

P(¬x|¬y) = 0.985 

infection 

P(+x|¬y) = 0.015 

no infection 

P(¬x|¬y) = 0.985 

Y 

Y positive 

P(+y)=0.153 

Dopt = +d 

U(+y) = 7.97 

Y negative 

P(¬y)=0.847 

Dopt = ¬d 

U(¬y) = 9.68 

D 

u (+x, +d, ¬t) = 8 

u (¬x, +d, ¬t) = 9 

X 

u (+x, ¬d, ¬t) = 3 

u (¬x, ¬d, ¬t) = 10 

X 

antibiotics 

U(+d) = 8.86 

no antibiotics 

U(¬d) = 9.02 

infection 

P(+x) = 0.14 

no infection 

P(¬x) = 0.86 

infection 
P(+x) = 0.14 

no infection 
P(¬x) = 0.86 

T 

do not test 

Dopt = ¬d 

U(¬t) = 9.02 

do test 

U(+t) = 9.43 

  

U = 9.43 



Influence diagram DAN 

 

An information link. 

Total ordering of the decisions 

Restrictions. Revelation link. 

The decisions are not ordered. 

 Different ways of indicating the flow of information. 

 The decision trees are different but equivalent:  

 the same probabilities, utilities, and policies. 



Decision tree 

generated by the ID 

Decision tree  

generated by the DAN 

 

symmetric asymmetric 



in the ID in the DAN 

• dummy value: 

test not done 

• restrictions 

• no dummy value 

Conditional prob. for Result of test 



Hands-on exercise 3 



Exercise: Optimal stratety for two tests 

 QALY is a unit of effectiveness 

 Question:  What is the most effective strategy? 



The n-test problem 

 Computationally hard: n! possible orderings of the tests. 

 We have developed an any-space algorithm for this problem 

 and a fast algorithm (9 minutes for the 7-test problem). 

 We are developing more efficient algorithms. 

 



4.2. Examples of decision models 

for real-world problems 



Mediastinet, an ID for lung cancer 

Equivalent to a decision tree containing ~104 branches. 



Mediastinet (DAN version) 

Decisions are partially ordered. 



Arthronet, an ID for total knee arthroplasty 

Equivalent to a decision tree containing ~104 branches. 



4.3. Advantages and limitations  

of influence diagrams 



Advantages of influence diagrams (1/3) 

 IDs are more compact than decision trees 

An ID having n binary nodes ~ a DT having 2n branches 

 IDs transform automatically into decision trees 

 ... but the reverse is not true (no general algorithm) 

 If you build a decision tree, you only have a decision tree. 

 If you build an ID, you have both. 

 IDs are much easier to build than decision trees 

 IDs use direct probabilities (prevalence, sensitivity, specificity...) 

and costs (mortality, morbidity, economic cost...) 

 ID can use canonical models (noisy OR, noisy AND, etc.) 

Each parameter appears only once in the ID  

• in many cases it is not necessary to have parametric variables 

 IDs can have several value nodes: more clarity, separate criteria 



Advantages of influence diagrams (2/3) 

 No external pre-calculation of probabilities is required 

 Having all the information, no debugging is usually needed 

On the contrary, “all trees have bugs” (Primer on MDA, at MDM journal) 

 IDs are much easier to modify than decision trees 

Refine the model with new decisions and chance variables 

Structural sensitivity analysis 

Can adapt to different regional settings 

Can adapt to patient’s medical characteristics and preferences 

 Explicit representation of causality 

a link indicates causal influence 

 the absence of a link means “no causal influence” (hypothesis) 



Advantages of influence diagrams (3/3) 

 Two possibilities of evaluation: 

1. expansion of an equivalent decision tree 

• exponential complexity (time and space) 

• equivalent to the brute-force method for Bayesian networks 

• many problems can not be solved with this method 

2. operations on the ID (recursive reduction of the ID) 

• direct manipulation of the graph and/or potentials of the ID 

• similar to the best algorithms for Bayesian networks 

• canonical models and the separation of utility nodes can lead to  

more efficient evaluations 

 More possibilities of explanation of reasoning 

 computation of posterior probabilities on the ID (as if it were a BN) 

 value of information (EVPI and other measures) can be computed easily 

 other methods from Bayesian networks and qualitative prob. networks. 

These methods can be used to debug/refine IDs. 







Clinical practice guidelines (CPGs) 

 Construction of CPGs 

 Usually: expert opinion or consensus of experts 

 Another possibility:  probabilistic graphical models  

• Sanders, Nease, Owens: several papers on building CPGs from IDs. 

 Advantages of a PGM wrt a traditional CPG 

 explicit decision model 

• combines expert opinions and evidence (statistical data) 

• helps in difficult cases, in which the policy is not evident for experts 

 flexibility: can be extended and adapted, as mentioned above 

 can include patients’ preferences 

 the physician plays an active role,  

he/she is not a passive user of CPGs developed by others.  



A proverb 

 Don’t give a man a fish; 

give him a rod  

and teach him how to fish. 

 Don’t give a doctor a written CPG; 

 give him/her a DAN 

 and teach him/her how to use OpenMarkov. 



IDs in the literature on MDM (1/3) 

 Books that mention decision trees but do not mention IDs 

• Weinstein, Fineberg. Clinical Decision Making. 1980.  

• Sloan (ed.). Valuing Health Care. 1995. 

• Gold et al. Cost-Effectiveness in Health and Medicine. 1996. 

• Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM). 

• Petitti. Meta-Analysis, Decision Analysis and CEA. 2nd ed., 2000. 

• Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001. 

• Levin and McEwan. Cost-Effectiveness Analysis. 2nd ed., 2001. 

• Parmigiani. Modelling in Medical Decision Making. 2002. 

• Haddix et al. Prevention Effectiveness. 2nd ed., 2003. 

• Fox-Rushby and Cairns. Economic Evaluation. 2005. 

• Briggs et al. Decision Modelling for Health Economic Evaluation, 2006. 

• Alemi and Gustafson. Decision Analysis for Healthcare Managers, 2006. 

• Arnold. Pharmacoeconomics: From Theory to Practice. 2009. 

• Kassirer et al. Learning Clinical Reasoning. 2nd ed., 2010. 

• Mushlin and Greene. Decision Making in Medicine. 3rd ed., 2010. 

(cont’d) 

 

 



IDs in the literature on MDM (2/3) 

 Books that mention decision trees but do not mention IDs (cont.) 

• Gray et al. Applied Methods of CEA in Health Care, 2011.  

• Alfaro-LeFevre. Critical Thinking, Clinical Reasoning… 5th ed., 2013. 

• Morris et al. Economic Analysis in Healthcare. 2nd ed., 2012. 

• Rascati. Essentials of Pharmacoeconomics. 2nd ed., 2013. 

• Sox et al. Medical Decision Making. Latest ed., 2013. 

• Hunink et al. Decision Making in Health and Medicine. 2nd ed., 2014. 

• Drummond et al. Methods for the Economic Evaluation of… 4th ed. 2015. 

• Edlin et al. Cost Effectiveness Modelling for HTA… 2015. 

• Neumann et al. Cost-Effectiveness in Health and Medicine. 2016 

• Caro et al. Discrete Event Simulation for HTA. 2016 

 One book that mentioned IDs  

• Muennig. Designing and Conducting Cost-Effectiveness Analyses in 

Medicine and Health Care. 2002, page 242: 

“An influence diagram (also known as a tornado diagram) ...” 

 The 2nd edition (2007) and the 3rd (2016) do not mention them. 



IDs in the literature on MDM (3/3) 

 Three books that describe IDs  

• Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000  

(5 pages out of 421, in a chapter authored by Mark Roberts) 

• Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008. 

(2 pages out of 230) 

• Kattan. Encyclopedia of Medical Decision Making. 2009 

(4 pages out of 1200+). 

 Summary of the informal survey of books on MDM and EBM  

 26 books published after 1984  

 All of them explain DTs but only 3 describe IDs, very briefly. 

 Some books on medical informatics mention IDs: 

• Shortliffe and Cimino. Biomedical Informatics. 4th ed., 2013 (2.5 pages out of 991). 

• Kalet. Principles of Biomedical Informatics. 2nd ed., 2013 (3 pages out of 708). 

 Why are IDs so little known in health sciences after 30+ years? 

 



Limitations of IDs 

1. The “reasoning” of an ID is not easy to understand 

2. The evaluation returns large policy tables 

3. IDs can only model symmetric problems 

 IDs require a total ordering of the decisions 

 IDs cannot represent incompatibilities between values 

• Non-standard versions of IDs partially solve this problem,  

but none of the alternatives was completely satisfactory. 

4. Algorithms could only evaluate unicriterion IDs 

 They could not perform cost-effectiveness analysis 

5. Temporal reasoning was not possible with IDs 

 Dynamic IDs are computationally unfeasible. 



Solutions we have proposed 

1. Explanation in influence diagrams 

 showing the posterior probabilities and expected values 

 introduction of evidence 

 hypothetical reasoning (what if) by means of imposed policies 

2. Synthesizing the optimal intervention 

 in the form of a compact tree 

3. Decision analysis networks 

 an alternative to IDs for asymmetric decision problems. 

4. Cost-effectiveness analysis with IDs 

5. Markov influence diagrams  

 including cost-effectiveness analysis 





DANs vs. IDs 

 A DAN is symmetric if: 

 it has no restrictions 

 if a value of X reveals Y, then every value of X reveals Y 

 DANs can replace IDs as the standard decision analysis tool 

(in AI, MDM, operations research…) because: 

 For every ID there is an equivalent symmetric DAN 

• but for many DANs there is no equivalent ID 

 Virtually all real-world problems are asymmetric. 

 There many problems that cannot be modeled with IDs. 

 Even if a problem can be modeled with an ID, a DAN is 

usually better because it does not need dummy states. 



DANs vs. IDs 

 DANs can replace IDs as the standard decision analysis tool 

(in AI, MDM, operations research…) because: 

 For every ID there is an equivalent symmetric DAN 

• but for many DANs there is no equivalent ID 

 Virtually all real-world problems are asymmetric. 

 There many problems that cannot be modeled with IDs. 

 Even if a problem can be modeled with an ID, a DAN is 

usually better because it does not need dummy states. 



5. Multicriteria decision making 



5.1. Effectiveness and utility  

in medicine 



Economic evaluation in medicine 

Objective: 

 to decide whether the benefit of an intervention outweighs  

its economic cost. 

Three types of analysis: 

 Cost-benefit 

• Health benefits are converted into monetary units 

 Cost-effectiveness 

• Benefits are measured in medical units, such as lives 

saved, life years gained, detected cases, etc. 

 Cost-utility 

• Benefit is measured in quality-adjusted life years (QALYs). 



Quantity and quality of life 

 Effectiveness (in cost-utility studies): 

1 

 QoL(t) 

Time: t 

  dttQoLeff )(

 1 QALY = effectiveness accrued in one year of perfect health 



QoL is subjective: how can we measure it? 

 Visual analog scale (VAS) 

 

 

• does not measure quantitative preferences 

• cannot be directly used in cost-utility analyses 

 Standard gamble 

• “Do you prefer to live in state s or to enter a lottery with probability p of recovering 

perfect health and (1- p) of dying?” 

 Time trade-off (TTO) 

• “Do you prefer to live in state s for 50 years or do you prefer to live with perfect health 

for 45 years?” 

• “Imagine you are in state s and your life expectancy is 50 years. How many years of 

your life expectancy would you give up  to recover perfect health? 

 

 

 



Trade-off between quantity and quality of life 

Torrance, Thomas and Sackett (1972) 

Perfect health  

for less time 

Imperfect health  

for more time 



Quality of life indexes (indices) 

 Every index considers a reduced number of attributes (dimensions) 

• HUI-3 has 8 attributes: sight, hearing, ability to converse, ability to walk, manual 

dexterity, emotional status, cognitive ability and pain 

 Every attribute has a limited number of states 

• “Hearing” in the HUI-3 has 6 states (see next slide) 

 Every individual is characterized by a tuple of states 

• In HUI-3, it is an 8-tuple. Example: (4,5,5,6,4,3,4,5). 

 A mathematical function maps each configuration onto a number 

• f(4,5,5,6,4,3,4,5) = 0.742. 

 Function f, specific for each index, is calibrated using a preference-

elicitation method: standard gamble or time trade-off. 

 

 

 



QoL tables 

From: Torrance (1987). Utility approach to measuring… 



An example with two criteria 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



5.2. Combining cost and effectiveness  

into a single criterion 



Net benefit

 Net monetary benefit:     NMB = l · E – C 

• E = effectiveness, usually measured in QALYs (utility) 

• C = cost, in monetary units (€, £, $…) 

•  l= willingness to pay = cost-effectiveness threshold 

 l is usually measured in $ / QALY, € / QALY, £/QALY…  

 It converts effectiveness into monetary units 

 It is specific for each decision maker 

 When comparing two or more interventions/strategies, 

which one is more beneficial? 

– It may depend on l 

 

 



NMB as a function of l

NMB No therapy Therapy 1 Therapy 2 

Disease present 36,000 € 100,000 € 125,000 € 

Disease absent 300,000 € 277,000 € 209,000 € 

NMB No therapy Therapy 1 Therapy 2 

Disease present 18,000 € 40,000 € 27,500 € 

Disease absent 150,000 € 128,500 € 69,500 € 

 If l = 15,000 €/QALY: 

 If l = 30,000 €/QALY: 

NMB No therapy Therapy 1 Therapy 2 

Disease present 7,200 € 4,000 € –31,000 € 

Disease absent 60,000 € 39,400 € –14,200 € 

 If l = 6,000 €/QALY: 



Problem: difficult to estimate the WTP 

 l is different for each decision maker: 

• USA $50,000-100,000 / QALY 

• UK £20,000-30,000 / QALY 

• Spain, Italy ~ €30,000/QALY 

• Norway ~ €70,000/QALY 

• WHO ~3 × (annual per capita GDP) / DALY 

 In some countries the range of variation is very wide. 

 How to estimate it? 

1. Shadow threshold: what interventions are covered in a country 

2. Econometric methods 

 No consensus among health economists  

What value of l should we use in our analyses? 

 Solution (partial solution): cost-effectiveness analysis 



5.3. Cost-effectiveness analysis 



5.3.1. Deterministic CEA 



Cost-effectiveness plane 

standard intervention 



Incremental cost-effectiveness ratio (ICER)

  One intervention is more effective but more expensive 

NHB1 = l  E1 – C1 

NHB2 = l  E2 – C2 

l





12

12
21

EE

CC
NHBNHB

12

12
1,2

EE

CC
ICER






  Def.: Incremental cost-effectiveness ratio (ICER) 

  Conclusion 

 NHB2 > NHB1    ICER2,1 < l

 l, the WTP, determines which option is more beneficial 
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 Two of the interventions are cost-effective wrt no intervention. 
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 If they are mutually exclusive, they must be compared pairwise. 
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 It is essential to select the right comparator. 



5.3.1.1. Deterministic CEA 

for the previous example 



The example we are considering 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



When we know that the disease is present 

Interval for l Cost Effect. Best therapy 

(0, 7,143)         0 1.2 no-therapy 

(7,143, 13,208) 20.000 4.0 therapy-1 

(13,208, +) 70.000 6.5 therapy-2 

7,402 13,208 

l



The example we are considering 

 Two therapies 

 Effectiveness (QALY) 

 

 

 

 Therapy 1  cost = 20,000 € 

 Therapy 2 cost = 70,000 € 

 Questions: 

 What therapy to apply when the disease is present 

 What therapy to apply when the disease is absent 

 Problem: how to compare health and money 

No therapy Therapy 1 Therapy 2 

Disease present 1.2 4.0 6.5 

Disease absent 10 9.9 9.3 



When we know that the disease is absent 

Interval for l Cost Effect. Best therapy 

(0, +)         0 10 no-therapy 

l



5.3.2. CEA with uncertain outcomes 



Example with uncertain outcomes:  

cost-effectiveness of a test 

 The costs and effectiveness of the two therapies 

are the same as in the previous example 

But there is uncertainty (probabilities): 

 prevalence of the disease: 0.14 

 test: sensitivity 0.90 

 specificity 0.93 

Also the test has a cost:  150 € 

 

 Questions: 

When is the test cost-effective? = What is its ICER? 

What is the most beneficial therapy for each value of l? 

 



Effectiveness as a function of prevalence 



A decision tree for this example 

present

Disease

prev*sensit/_pJ_5
(cost_test+cost_ther_2) / e2pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_2) / e2abs

therapy-2

Therapy

present

prev*sensit/_pJ_5
(cost_test+cost_ther_1) / e1pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*sensit/_pJ_5
cost_test / e0pres

absent

_pJ_1*_pJ_2/_pJ_5
cost_test / e0abs

no-therapy

positive

Result

of test

_pJ_5

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_2) / e2pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_2) / e2abs

therapy-2

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_1) / e1pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*_pJ_3/_pJ_6
cost_test / e0pres

absent

_pJ_4*spec/_pJ_6
cost_test / e0abs

no-therapy

negative

_pJ_6

do_test

Dec:Test

present

prev
cost_ther_2 / e2pres

absent

#
cost_ther_2 / e2abs

therapy-2

present

prev
cost_ther_1 / e1pres

absent

#
cost_ther_1 / e1abs

therapy-1

present

prev
0 / e0pres

absent

#
0 / e0abs

no-therapy

no_test

cost-effectiveness

cost_test=150

cost_ther_1=20000

cost_ther_2=70000

e0abs=10

e0pres=1,2

e1abs=9,9

e1pres=4,0

e2abs=9,3

e2pres=6,5

prev=0,14

Problem: the standard algorithm only works for the unicriterion case 



A warning and a (rudimentary) solution 

“Embedded, or downstream, decision nodes are not useful in 

cost-effectiveness analysis because the optimal branch 

cannot be determined when folding back the tree without an 

explicit decision rule for comparing costs and consequences. 

Cost-effectiveness analyses can be performed with  

a decision tree that has one decision node at the root.  

The branches of the initial decision node represent  

all of the strategies that are to be compared.” 

 Kuntz and Weinstein [2001] 

 

 

 



How many strategies for this example? 

 Without testing 

 No therapy in any case 

 Always therapy 1 

 Always therapy 2 

 With testing 

 If positive, no therapy; if negative, no therapy. 

 If positive, no therapy; if negative, therapy 1. 

 If positive, no therapy; if negative, therapy 2. 

 If positive, therapy 1; if negative, no therapy. 

 If positive, therapy 1; if negative, therapy 1. 

 If positive, therapy 1; if negative, therapy 2. 

 If positive, therapy 2; if negative, no therapy. 

 If positive, therapy 2; if negative, therapy 1. 

 If positive, therapy 2; if negative, therapy 2. 

 









5.3.3. CEA with IDs and DANs 



Influence diagram DAN 

 

 The same structure as in the unicriterion case 

 but now we have two criteria: cost and effectiveness 



Methods of Information in Medicine 2015;54:353-358. 





Hands-on exercise 4 



Exercise: Optimal stratety for two tests 

 The same probabilities and effectiveness as in exercise 3 

 but now we also considering economic costs. 

 Question:  What is the most beneficial strategy? 



6. Temporal models 



Temporal PGMs 

Markov models 

 The future is independent of the past given the present 

• “Markov models do not have memory” 

 Key concept: state 

 Types of models: Markov chains, HMMs, MDPs, 

POMDPs, DBNs, MIDs, DLIMIDs…  

 Temporal non-Markov models 

 The future is not determined by the current state 

• for example, birth occurs around 9 months after conception 

 An type of non-Markov model: event networks 

• Galán, Aguado, Díez, Mira.  NasoNet: Modelling the spread of nasopharyngeal 

cancer with temporal Bayesian networks. AI in Med, 2002.  



6.1. Types of Markov models 



Markov chain 

One variable that evolves over time 

 Transition probabilities:  P(xi+1|xi) 



Hidden Markov model (HMM) 

Observed variable:  Y 

 Non-observed (hidden) variable: X 

 Transition probabilities:  P(xi+1|xi) 

 Probability of each observation:  P(yi|xi) 

 



Markov decision process (MDP) 

Observed variable:  X 

 Decision: D 

 Transition probabilities:  P(xi+1|xi) 

 Reward:  U(xi, di) 

 



Partially observable MDP (POMDP) 

 Hidden variable: X  

Observed variable : Y 

 Decision: D 

Observation prob.: P(yi|xi) 

 Transition prob.: P(xi+1|xi) 

 Reward: U(xi, di) 

 



Dynamic Bayesian network (DBN) 

 Markov chain or hidden Markov model:  

  – one variable, X 

  – one conditional probability: P(xi+1|xi) 

 Dynamic Bayesian network:  

  – several variables, {X, Y, Z…} 

  – factored probability: P(yi|xi), P(zi|xi, yi), P(xi+1|xi, yi)… 



Factored extensions of Markov models 



Markov influence diagrams 

 Can be used for cost-effectiveness analysis 



Dynamic limited-memory IDs (DLIMIDs) 

 Differences wrt POMDPs 

 Several decisions in each time slice. 

 Limited memory: the decision maker only knows the observations 

made at the current and the previous time slices 

 Memory variables summarize the past. 



A DLIMID for a carcinoid tumors 

 Therapy selection for high-grade carcinoid tumors (van Gerven et al., 2007) 



IJCAI Workshop Decision Making in Partially Observable,  

Uncertain Worlds: Exploring Insights from Multiple Communities 

Barcelona, July 2011 



6.2. Markov influence diagrams 



Medical Decision Making 2017; 37:183-195  



6.2.1. Example: 

Chancellor’s model for HIV 



Case study: HIV/AIDS  
(Chancellor et al.,1997) 



 Two therapies:  

 monotherapy: only AZT 

 combined therapy: AZT + lamivudine for 2 years; then only AZT 

 State-transition diagram:  4 states 



A MID version of the HIV model 
[Chancellor et al., 1997] 

 



Representing the patient history (1) 

 Transition probabilities that depend on the time spent in 

current state: 

 State-transition model with tunnel states 

 
State A

State B1

State B3

State B2 State DState C



Representing the patient history (1) 

 Transition probabilities that depend on the time spent in 

current state: 

 
Memory variable 

Only 4 states 



Representing the patient history (2) 

 Transition probabilities that depend on the number of 

relapses: 

D

A0 A1 A2

C0 C1 C2

B0 B1 B2



Representing the patient history (2) 

 Transition probabilities that depend on the number of 

relapses: 

  

Memory variable 

Only 4 states 



6.2.2. Other MIDs for real-world problems 



Case study: Hip replacement 
(Briggs et al., 2004) 



A MID version of the hip replacement model 

[Briggs et al., 2004] 

 



Case study: HPV vaccine 
(Insinga et al., 2009) 





A MID version of the HPV vaccination model 
[Callejo et al., 2010] 

 



Content of one of the Excel cells for this model: 

=VLOOKUP($C5;Variables!$A$4:$H$21;8;TRUE)*(((BI5+BJ5)+BK5*u

CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC

+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_

3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU

P($C4;Variables!$A$4:$H$21;2;TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(

$C4;Variables!$A$4:$H$21;4;TRUE)+(BS4+BT4)*uRCC*VLOOKUP($

C4;Variables!$A$4:$H$21;5;TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C

4;Variables!$A$4:$H$21;2;TRUE)) 

 



Case study: AIDS in Africa 
(Ryan et al., 2009) 



A MID version of the CHAP model 

[Ryan et al., 2008] 

 



Our model for malignant pleural effusion 

 Meeting of the Society for Medical Decision Making (SMDM 2015),  

St. Louis, October 2015. 



Our model for colorectal cancer screening 

 European Conference of the Society for Medical Decision Making,  

London, UK, June 2015. 



Our model for bilateral cochlear implantation 

 Cochlear Implant Symposium, Washington DC, October 2015. 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



Our model for bilateral cochlear implantation 



A MID with several decisions 
Adapted from [Walker et al., 2013] 

 

 This model evaluates all the possible interventions. 

 It can cope with heterogeneity: sex, age, grade. 







Hands-on exercise 5 



6.2.3. MIDs vs. other types of models 



Advantages of MIDs for CEA 

For model builders 

 No programming is required, not even for sensitivity analysis 

 The construction of the model is much faster and easier. 

 It is possible to accomplish each phase (structure, numeric 
parameters, deterministic analysis, sensitivity analysis)  
without thinking of the next one 

 Debugging consists only of refining the knowledge contained in 
the model: it is not necessary to debug formulas and macros. 

For the recipients of the model (agencies: NICE, etc.) 

 Just by observing the graph it is possible to find out the basic 
structure of the model its main hypotheses. 

 It is not necessary to check that the code (formulas, macros…) 
is correct. 

 



Comparison of MIDs with other techniques 

 MIDs vs. spreadsheets (Excel) 

 no need to write any formulas nor VisualBasic macros 

 no need to multiply the number of states 

 MIDs vs. Markov decision trees 

 much more compact  possible to build much larger models 

 no need to add tracking variables (microsimulation) 

 MIDs vs. a programming language (R, C++, MATLAB…) 

 no need to write any code, not even for sensitivity analysis 

 but programming languages are much more flexible 

 MIDs vs. discrete event simulation 

 cohort propagation (exact algorithm) is often much faster 

 MIDs vs. all the others: may contain several decisions. 

 

 



7. Sensitivity analysis 



Types of sensitivity analysis 

 Two main types 

  structural (qualitative) 

  parametric (quantitative) 

 Depending on the effect analyzed 

  analysis of utility 

  analysis of decisions / policies 

 Depending on how many parameters are varied 

  one-way analysis 

  n-way analysis (independent or join analysis) 

 Depending on how the parameters are varied 

  range (interval) 

  probability distribution 

  look for thresholds 



7.1. Unicriterion sensitivity analysis 



Tornado diagram 



Spider diagram 



Plot (one-way sensitivity analysis) 



7.2. Cost-effectiveness 

sensitivity analysis 



Scatter plot 



Acceptability curve 



Some sensitivity analysis options 



8. Overview of software tools 



69 packages! 



Open-source tools for PGMs 

 Only BNT and OpenMarkov can represent Markov models. 

 Among the tools having a GUI for editing PGMs, only  

Weka and OpenMarkov are still under active development. 



OpenMarkov. Main features 

 Main advantage: open source 

 Free 

 Users can adapt it to their needs 

 Software engineering tools:  

    JUnit, maven, mercurial (bitbucket), nexus, bugtracker, etc. 

 Strengths 

 Written in Java: portability (Windows, linux, MacOS…) 

 Many types of models, potentials, etc.  

 Algorithms not available in any other package 

• CEA with IDs 

• interactive learning 

 Very active: new features are continuously added 

 Support for users and developers: wiki, lists, mail… 

 Well-documented format for encoding networks: ProbModelXML. 



OpenMarkov. Limitations 

 Main weakness 

 Still a prototype: needs debugging 

 Other weaknesses 

 Written in Java: relatively slow (in some cases) 

 No on-line help, documentation still poor 

 Support is limited, due to scarcity of human resources. 



8. Conclusions 



Conclusions 

 BNs overcame the limitations of the naïve Bayes method. 

 IDs have several advantages over decision trees, 

but also have serious limitations for medical decision making. 

 DANs are similar to IDs, but more suitable for asymmetric 

decision problems. 

 It is possible to do cost-effectiveness analysis with IDs. 

 and also with Markov IDs (MIDs) if all decisions are atemporal. 

 There are other types of Markov PGMs having one or more 

decisions per cycle: MDPs, POMDPs, DLIMIDs… 



How to bring PGMs  

from artificial intelligence  

into medical decision making 

 Dissemination 

 Seminars, short courses… 

 Tutorials and textbooks written in the language of clinicians, 

epidemiologists and health economists 

 Research 

 New methods for the representation of knowledge 

 New algorithms for CEA, sensitivity analysis… 

 User-friendly software tools 

 for building, debugging and maintaining the models 

 for displaying the results using charts, tables, etc. 



Future work 

 New models and algorithms 

 Markov DANs 

 CEA with models having one or several decisions per cycle 

 new methods for CEA, sensitivity analysis, explanation of 

“reasoning”… 

 Integration of PGMs, cost-effectiveness analysis,  

and Bayesian inference 

 integration of OpenMarkov with OpenBUGS and/or STAN. 



Thank you very much for your attention! 

 Links 

• www.cisiad.uned.es 

• www.OpenMarkov.org 

• www.ProbModelXML.org/networks 

 Contact: fjdiez@dia.uned.es 

 

http://www.probmodelxml.org/networks
mailto:fjdiez@dia.uned.es

