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1. Introduction: history of
probabilistic Al in medicine



Probability in artificial intelligence

¢ A.l. was “born” in 1956, at the Dartmouth Conference

¢ In the first 25 or 30 years, many researchers guestioned that
probability could play a significant role in A.l.

# First reason (cf. [Sutton and Barto, 1998]):
» Computers were already good at arithmetic operations

> but could not perform “easy” tasks (easy for a little child):
vision (image understanding), natural language, planning...

> Those tasks could not be solved with arithmetic operations;
they require conceptual reasoning (symbol manipulation — LISP).

> Probabilistic “reasoning” consisted mainly in number crunching,
not in conceptual reasoning.

¢ Second reason: limitations of probabilistic methods.
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ABSTRACT

Medical decision making can be viewed along a spectrum, with categorical (or deterministic) reasoning
at one extreme and probabilistic (or evidential) reasoning at the other. In this paper we examine the
fowchart as the prototype of categorical reasoning and decision analysis as the prototype of probabil-
istic reasoning. Within this context we compare PIP, INTERNIST, CASNET, and M YCIN—four
of the present programs which apply the techniques of artificial intelligence to medicine. Although
these systems can exhibit impressive expert-like behavior, we believe that none of them is yet capable
of truly expert reasoning. We suggest that a program which can demonstrate expertise in the area
of medical consultation will have to use a judicious combination of categorical and probabilistic
reasoning—the former to establish a sufficiently narrow context and the latter to make comparisons
among hypotheses and eventually to recommend therapy.




Limitations of probability for Al in medicine

P. Szolovits. Atrtificial Intelligence in Medicine. Westview Press, 1982.

“The chief disadvantages_of the decision theoretic approach are the
difficulties of obtaining reasonable| estimates of probabilities and utilities for a
particular analysis. Although techniques such as| sensitivity analysislhelp
greatly to indicate which potential inaccuracies are unimportant, the lack of
adequate data often forces artificial simplifications of the problem and lowers
confidence in the outcome of the analysis. Attempts to extend these
techniqgues to large medical domains in which| multiple disorders|may co-occur,

temporal progressions|of findings may offer important diagnostic clues, or

partial effects of therapy can be used to guide further diagnostic reasoning,
have not been successful. The typical lanquage of probability and utility
theory is not rich enough to discuss such issues, and its extension within the
original spirit leads to untenably|large decision problems. [...]

A second difficulty for decision analysis is the relatively mysterious reasoning
of a decision theoretic program—an|explanation|of the results is to he
understood in terms of the numeric manipulations involved in expected value
computations, which is not a natural way of thinking for most people.”




Historic evolution of probabilistic Al

¢ 1960s and 1970s: naive-Bayes diagnostic systems
> able to diagnose better than physicians in restricted problems

¢ expert system Prospector (Hart and Duda, 1977)
> used approximate Bayesian reasoning
» found a molybdenum deposit valued in $1,000,000
> was the first commercial success of A.l.

¢ Bayesian networks (Pearl, 1982, 1986, 1988)
> overcame the limitations of the naive Bayes

¢ Nowadays: probabilistic graphical models (PGMSs)
are used more and more in A.l.
> tasks: diagnosis, planning, learning (incl. deep learning)...
> fields: medicine, robotics, computer vision, e-commerce...



2. Probabilistic diagnosis



2.1. Basic concepts
of probabilistic diagnosis



Probabilistic diagnosis with one finding

¢ Example:

> Prevalence of a disease: 14%

> Sensitivity of a test: 70%
> Specificity of the test: 91%

¢ Questions:

> What is the positive predictive value (PPV)?

- If the test is positive, what is the probability
that the patient has the disease?

> What is the negative predictive value (NPV)?

- If the test is negative, what is the probability
that the patient does not have the disease?




Basic concepts for medical diagnosis

& Disease E, resultof atest T

& Parameters of the model

> Prevalence: P(+e)

> Sensitivity: P(+t|+e)

> Specificity: P(-t|-e)

¢ Predictive values:
> Positive PV:  P(+el+t)
> Negative PV: P(-e|-t)




2.2. Bayes theorem



Bayes theorem

¢ We knew that

P(X,y) _
P(Xly) = by the definition of P(x
(4Y) =" y (x1y)
P(x,y)=P(X)-P(y|x) by the definition of P(y|x)
P(y) =D P(ylx)-P(x) by the theorem of total prob.

¢ Combining these results:

P(xy) _P(X)-P(yIX) __P(x)-P(y|X)
P(y) P(y) ZP(X')-P(yIX')

P(xly) =

¢ It means that knowing P(x) and P(y|x) we compute P(x]y).



Predictive value of a finding

¢ Positive predictive value: P(+e|+h)

P(+el+h) = P(+e)-P(+h|+e)

P(+e)-P(+hl+e) +P(—e)-P(+hl—e)

prev -sens
prev -sens + (1— prev) - (1— spec)

PPV =

¢ Negative predictive value: P(—e|+h)

P(—e)-P(=hi—e)

P(—€|—=h) = P(+e)-P(—=h[+e)+P(—e)-P(—=h[—e)

(1— prev) - spec
prev - (1—sens) + (1— prev) - spec

NPV =




Probabilistic diagnosis with two findings

¢ Example:
> Prevalence of the disease: 14%

> Sensitivity of test C: 70%
> Specificity of test C: 91%

> Sensitivity of test E: 90%
> Specificity of test E: 93%

¢ Questions:
> What is the posterior probability for each combination of findings?




2.3. The naive Bayes method



The naive Bayes method

¢ Two hypotheses:

» Diagnostics are mutually exclusive
= every patient has at most one disease

» Findings are conditionally independent
given the diagnostics

¢ Graphical representation:

Diagnostic D




Succesfull applications of the naive-Bayes

- Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone
tumors: A preliminary report” Radiology 80 (1963) 273-275.

- Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid
function” JAMA 183 (1963) 307-313.

- Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis
of congenital heart disease” Progress in Cardiovascular Diseases 5 (1963) 362-377.

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer
diagnosis of congenital heart disease” Annals New York Acad. Sciences 115 (1964)
558-567.

- de Dombal FT, Leaper JR, Staniland JR, et al., “Computer-aided diagnosis of acute
abdominal pain” BMJ 2 (1972) 9-13.

- Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for
computer-aided management of acute renal failure” Amer. J Med 55 (1973) 473-484.

- Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program
that considers clinical responses to digitalis” Amer. J. Med 64 (1978) 452-460.



Limitations of the naive Bayes

¢ In general the diagnostics are not mutually exclusive.

¢ In general, findings are not conditionally independent.

Bacterial infection i




Three cases

Disease

Disease

Anomaly

( Testc ) ( TestE )

TestC | TestE |

Test results are Correlation, even when
conditionally the disease
independent IS present

given the disease or absent

Disease

TestE

Test C

Test C is conditionally
independent of the
disease given test E

In the three cases the sensitivity and specificity
of the tests (wrt the disease) are the same,
but the posterior probabilities are different




Impact of correlation on the posterior prob.

¢ Extreme case:
test results are conditionally independent given the disease

> P(+d|+c,+e) =0.9421
> maximum increase in the posterior probability

¢ Opposite extreme case:
test C is conditionally independent of the disease given test E:

> P(+d|+c,+e) = 0.5587 = P(+d | +€)

> No increase in the posterior probability = no new information

¢ Intermediate cases:
correlation among findings

> 0.5587 < P(+d|+c, te) < 0.9421
> the bigger the correlation, the smaller the information contributed.



Prob. diagnosis with two findings (revisited)

¢ Example:
> Prevalence of the disease: 14%

> Sensitivity of test C: 70%
> Specificity of test C: 91%

> Sensitivity of test E: 90%
> Specificity of test E: 93%

¢ Questions:
> What is the posterior probability for each combination of findings?

¢ The problem is ill-specified
> The solution depends on the correlation among findings



Limitations of the naive Bayes

¢ In general the diagnostics are not mutually exclusive.

¢ In general, findings are not conditionally independent.

Bacterial infection i

» These limitations are rarely discussed in the books of
medical decision analysis and evidence-based medicine.

» This is the only method presented in those books.



3. Bayesian networks



Probabilistic graphical models

¢ Elements of a PGM
> Qualitative component (structure): a graph
- Links usually represent causal relations
> Quantitative components (parameters): potentials
- A conditional probability for each chance node

- A value function for each value node

€ Relation between the graph and the prob. distribution

> Every node in the graph represents a variable of the prob.

> The graph represents the dependencies of the prob. distr.



3.1. Definition of BN



Notions about graphs

GGG GO

¢ Basic concepts
» Definition: a set of nodes and links (vertices and edges)
» Two types of links: directed / undirected
» Open path (A-B, A-B-C-D), closed path (A-B-C-D-A),

¢ |In directed graphs:
» parent, child, ancestor, descendant.



Directed graphs: cycles and loops

¢ Cycles



Definition of Bayesian network

¢ Elements:
» a set of variables {X;}

» an acyclic directed graph
* every node in the graph represents a variable X

» a conditional probability distribution (usually a table)
for each variable: P(x; | pa(x;))

» for a node without parents: P(x; | pa(x;)) = P(x;)

¢ Result: join probabillity for the network

P(Xy, 1 %,) = ﬁp(xima(xi )




Naive Bayes

Diagnosis

Ecography

Vaccination

h

Symptom

Bayesian network

(virusa ) [ VirusB |

Vaccination

Disease 2

Anomaly

Symptom

( X-ray ) [ Ecography )




3.2. Examples of BNs



Examples of BNs

¢ Medical Bayesian networks we have built

» DIAVAL: echocardiography (valvulopathies)
F. J. DiezZ thesis, 1994

» Prostanet: urology (prostate cancer)
Carmen Lacave’s thesis, 2003

» Nasonet: nasopharyngeal cancer spread
Severino Galan’s thesis, 2003

» HEPAR II: liver diseases
Agnieszka Onisko’s thesis, 2003

» Catarnet: Cataract surgery
Nuria Alonso’s thesis, 2009




DIAVAL

=10lx|

archivo  Dakos previos  Hallazgos eco Diagnastico  Especial fyuda
I x
Eco nimero: 104382 Fecha: (29{10]e3] Transtoricico: SI
Cinta: E Hora grabacion: Transesofagico: HO
Hombre: |MHHIH |
Apellidos: [PEREZ |lcARCIA

Sexo: MUJER  DHNI: [123456 Edad: [51 |afios

Peso: [58 |Kg Estatura: [158 |cm  Sup. corporal: 1.58 m?

*_

Solicitante: [CARDIOLODGIA |

Situacidn: INGRESADD Sector: E Cama:

Continuar

Introducir los datos del paciente.




DIAVAL: numeric findings

Il INTRODUCIR ECO

Archivo  Datos prewios  Hallazogos eco Diagndstico Especial

Ayvida

Il PARAMETROS DEL ECO DOPPLER (M ¥ T) = II:IIEI

E 164 |cm/s
A [::::]chE

Cociente EFA

T.R.IU. [ ms
T. desaceleracidn [::::JNS

Grad. max. mitral 18.8 nnHg
Grad. med. mitral (7.8 |mmHg

T.H.P. mitral m5

Area mitral {(THP) 8.9 cm?

Uel. max. tric. [::::JENIS

Grad. max. tric. mmHg
Grad. med. tric. [::::]mmHg
Anmﬁurl

"+108%%" "‘mod. aumentada"

“pst. moderada™
"lev. aumentado™

"+183%" "'sev. aumentado™
n-Th%" "esten. critica™
Continuar

=101 x|

Pulsar 7' para obtener mas informacion sobre un parametro.




DIAVAL: qualitative findings

101 ]

archivo  Datos previos  Hallazgos eco Diagnostico Especial Syuda

Il ECO BIDIMENSIONAL: YALYULA MITRAL = ||:||E|

Ausente SCORE MITRAL: 9

Reduc. leve
Moderado

CALC. VALUAS EHGR. VALVAS HOUILIDAD

Ausente Simétrica

Fus. mod.

CALC. COMIS. FUS. COMIS.

Ho vegetaciones

Afect. moderada

APARATO SUBVALU.

Anterior Resto normal Continuar




DIAVAL.: diagnostics

M [=lES

Archivo  Dakos previos  Hallazgos eco Diagnostico Especial Ayuda

=

Estenosis mitral reumdtica moderada. (1008%)
Insuficiencia mitral leve. {96%)

Estenosis reumdtica severa de la valvula adrtica. (188%)
Insuficiencia tricuspidea funcional lewve. (72%)

Retraso de 1la relajacidn diastdlica. (65%)

Hipertensidon pulmonar moderada. (100%)

Anterior Festo normal Continuar




DIAVAL.:
final report

in a text editor

[P INFORME.TXT - Bloc de notas

archivo  Edicion  Formato  Wer  Awuda

=101 x|

Datos administrativos

M® eco: 104382, Fecha: 251043, <inta: 512.

MARIA GARCIA FPEREZ. DMI: 1234567,

Edad: 51 afios. Mujer.

Peso: 58 Kg. Estatura: 158 cm. sSup. corporal: 1,58 m®.
solicitante: CARDIOLOGIA.

Ingresada, sector 3, cama 512a.

Sintomas

Disnea de grado II.

valvula mitral

Area (eco 200: 1.2 cm=.

velocidad onda E: 184 cmfs.

Gradiente maximo: 10.8 mmHg.

Gradiente medio: 7.0 mmHg.

Tiempo de hemipresion: 255 ms.

Area (THPI: 0.9 cm®.

Engrosamiento moderado de las walwas.

Mo calcificacion de las wvalwas mitrales.
reduccian leve de la movilidad.

Contractilidad segmentaria normal.
Pericardio normal.

DIAGHOSTICO

Eztenosis mitral reumatica moderada.
Insuficiencia mitral Teve.

Estenosis reumatica severa de Ta valwula adrtica.
Insuficiencia tricuspidea funcional lewve.

Retraso de la relajacion diastolica.

Hipertension pulmonar moderada.

Dra. Elena Iturralde |




Prostanet (for prostate diseases)

m ( Pais de origen )
Microtraumatismos j

Obesidad

I- \ N1 Actividad sexual

’ Cisane ) j
‘ — Prostatitis crénica )\_{, D
Y L Congestion prostatica
‘ Antecedentes j
m-i.\

JCroiinons ZAANN
= ﬂ. TAC
(1pss ) (" Hematuria ‘f’m S

7
K
Sondaje

( Factores hormonales )

i PSA total
- Exploracidn rectal )
Masa supra

Perdida de Pe:f Y _( Gammagrafia ) ("Gleason )
, — r)Doli) PSAl IPSAt
( Afeccién higado ) ( Sindrome constitucional




Nasonet (nasopharyngeal cancer spread)

[ Primary inf( Primary infiltrating tumor on nasopharyngeal anterior wall )ateral wall ]Iateral wall Jrior wall _}riur wall Nasopharyngeal left lateral wall ]'3‘9"3' wiall j_( Primary vegetating tumor on nasopharynx J

AN

[Aﬂe'ﬂ‘?dce""'ca'|VmPh“Udes(Inf'ltralmgtumurspreadlunasupharyngealantenurwall lateral wall Jlateral wall Fiorwall }rior wall Jblems in left ear in right ear nasal fossa_hasal fossa mmnasupharyngealantenmwall)tetalwall}teralwall lmwall )lurwallj

RN

[ Hemorrhagic sputum l Nasal hemnrrhage

o “Hi7
JHL APT= Elevation of lef shoulder )oulde[ )ulhe left side )11 side jeft ear Jm right ear

[ Edema in leftam ifiltrating tumor spread to left magillary sinus Jarysinus Jite and tonsil )andlunsﬂ )JSSIHUS )“”5 sinus { Infection in nasopharynx ieft gar ),t ear_)
%,f -Ill #‘ Oturrhagla in left ear ]agm in right ear jhs1ru|:1mn on the left side jnghtsme L =T
( X "__,_————'—-' "".‘-—

Edema in face, neck, and supraclavicular region f ,l[
ALY ”' ‘W‘ Rhinorrhea Juffullmm in left ear Jight ear jthe left )he right th maxillary sinus )W sinus ]
( Infiltrating tumursple( Inf'ltratmg tumor spread to left anterior hase ufskull hse of skull ==y~

" i i ————— e
[ Infiltrating tumor spread to left middle ear )Idlﬂ& ear middle base of skull Jase of skull Eftside hiside |mus Vertigo Cephalalgia Jient sputum F'_Morrhea in left ear }a in right earJ
# ‘J hﬁ""-‘_‘

[ Infiltrating tumor spread to left posterior base of skull fase of skull

L N S N ‘-\-‘\
( Cavernous sinus syndrome on the left side )ight side )Ieftside }”i!]hl side Jleftside Jghl side )unlhe left side }ghtside )

N e oy e e

( Orhital apex syndrome on the left side ) right side Jun the left side }g right side ]E_)ht side j




Hepar |l (liver diseases)

surgery ( choledochelithotomy

hospital galistones
amylase
i fat le_cells
transfusion injections . =
diabetes “pper e ftBICNES hepatotoxic
vh_amn alcoholism
sex
fibrosis age
Cirrhosi RHepatitis
i irrhosis

obesity ChHepatitis -

PBC THepatitis
- nausea
Steatosis pain_ruq carcinoma :
Hyperbilirubinemia anorexia

triglycerides
pressure_ruq cholesterol hepatomegaly
inr
hbeag A ESR | albumin | proteins ggtp bilirubin hepatalgia
as

alt\ fatigue platelet
hbsag_anti
( 9- J ¥ ( palms) phosphatase itching
hbsag # U (encephalopathy) ¥y bleedlng
e (Jaundice )
(hcv_anti( hbc_anti edema | edge
|rregular Ilver ascnes (jaund symptoms m
urea

spiders

(jomts ( painj

( consciousness )




Catarnet (cataract surgery)

(retinopatia_diabetic maculopatias ambliopia neuropatias distrofia_fuchs opac_corneales
mlc[;?_qagna retinopatia_nd tipo_catarata patolo_RAND
( camara_estrecha [ ojo_hundido . " ncelu_RAND
av_sin_catar
catarata_contral
sinequias_post
i
omtec_baja_ RAND .
= = pupila_estrecha p RAND ) av_pre
\\ / agudepos_|
( pseudoexfoliacion ) ojo_vitrectomizado ) av_contral
Cdeslu_catar
\/ \ X agudepre_RAND
mala_colaboracion contrala_RAND

comtec_med_RAND
J / X)\ " (deslu_pre_no_catar
fvnd_contral

( sublux_cristalino )

deslu_pre otros_trast_fv

fibrosis_c_ant fvnd_pre_catar

laterali_RAND

¥
comtec_alta_RAND

/ N fynd_pre
mecha_vitrea =
ruptura_caps_post =

deslu_contral

despr_retina

( deslu_global_pre fv_deslu_pre fvnd_global_pre

endoftalmitis
alter_incision edema_corneal

despr_coroideo ), ©dema_mac_cist deslu_complic fv_global_pre

fyvnd_post

otros_trast_fvnd_complic fvnd_global_post

av_complic
deslu_post funcion_RAND
fv_global_post

av_post ° ganancia_deslu
ganancia_av /( deslu_global_post funcion_post

( v_ganancia_deslu )




(Tmi}

Historias clinicas
05 May 2070
Mueva Historia

Eliminar Historia

Buscar Paciente
Muevo Paciente
Eliminar Faciente

Cerrar la sesién del Paciente

Input: 1. General data

Prequirnirgico Recomendaciones
Formulario prequinirgico

Datos generales Comorbilidad ocular

Ojo que se recomienda cperar
Intervencion quirdrgica previa

Tipo de catarata ojo operar

Agudeza visual (comregida) ojo operar
Tipo de catarata contralateral

Agudeza visual contralateral (corregida)
Deslumbramiento ("glare™)

Efectos del deslumbramiento

Funcidn global

Agudeza visual esperada post-intervencidn (ojo
operar)

Comentarios

Postquinirgico

Revision mensual

Complejidad técnica

iZzouierdo *l

-
blanca |
0.3
blanca |
0.3

no puede precisar en qué Djl}j

no puede precisarlc =~

limitacidn para la vida diaria =

> 0,70 -

=

Siguiente | Ver recomendaciones |




Input: 2. Ocular comorbidity

Prequinirgico Recomendaciones Postquinirgico Revision mensual
Formulario prequinirgico

Datos generales Comorbilidad ocular Complejidad técnica

Ambliopia -

Distrofia de Fuchs Iaus&nte j
Maculopatias r

Neuropatias -

Opacidades corneales r

Retinopatia diabética Iaus&nte j
Retinopatia no diabética -

Laser argon previo r

Otras I :I

Siguiente | Ver recomendaciones |




Input: 3. Surgical complexity

Prequinirgico Recomendaciones Postquinirgico Revision mensual
Formulario prequirirgico
Datos generales Comorbilidad ocular Complejidad técnica

Camara estrecha

Fibrosis de la capsula anterior

Mala colaboracion del paciente (prevista)
Miopia magna

Ojo hundido

Ojo vitrectomizado

Pseudoexfoliacion

Fupila estrecha

Sinequias posteriores

(S I e e R R Y R R R

Subluxacion de cristalino
Otras I :I

Ver recomendaciones ‘




Output: 1. Expert panel’'s recommendations

Prequirdrgico Recomendaciones Postquirdrgico Revision mensual

Recomendaciones de SAD-Catar

Panel de expertos

Recomendacion: Facoemulsificacion apropiada
Mediana de las puntuaciones (1 a 9): 8.9
Grado de acuerdo: Acuerdo
¥ Escenario
Variable Valor
AN contralateral 20,2y=04

AN previa en el ojo a operar 202y=04

Patologia asociada a la catarata Catarata simple

Lateralidad de la catarata Bilateral

Complejidad técnica Moderada por presencia de:

miopia magna (leve)

catarata blanca (moderada)

Funcign visual Dificultades en las actividades de |3 vida diaria

Explicacion



Output: 2. BN recommendation

Red bayesiana CatarNet

Recomendacion: 9 (Totalmente recomendada)
Mejoria en AV, (max. 6): 5,2
Mejoria en deslumbramiento (max. 5): 1,7

¥ Probabiidades

Funcion visual post-intervencion Probabilidad
5in problemas 0,067
Dificultades para el ocic 0,830
Dificultades para la vida diaria 0,113
AV post-intervencion Probabilidad
= 0,15 0,029
>0,16y < 0,4 0,088
>04y=07 0,047
>07 0,836
Deslumbramiento post-intervencion Probabilidad
Deslumbramiento 0,544
Complicaciones Probabilidad
Desprendimiento de coroides 0,001
Desprendimiento de retina 0,080
Edema corneal 0,042
Edema macular cistoide 0,020

Erndrntftalimitic N N



3.3. BNs and causality



Two interpretations of BNs

¢ Semantics of a Bayesian network:
» As a mathematical model: probabilistic independencies
» As a model of the real world: they usually represent causality

¢ Two models are mathematically equivalent when they represent
the same set of independencies.

¢ But two different BNs can never have the same causal meaning.

¢ Example 1

OROMOS0

¢ Example 2

OnO 0RO 0002020



Correlation does not imply causality

logical
implication

causal correlation
relation (statistical)




Correlation does not imply causality (example 1)




Correlation does not imply causality (example 2)

w Teracola

Teracola

Swim. pool




Correlation does not imply causality (example 3)




Several types of correlation

0 Direct cause

4B

/0 Selection bias

\\ (example: Berkson bias)

~

¢ Common cause

Correlation
without
direct causality




CAUSALITY

——  SECOND EDITION

s
3 / l;)
b

MODELS, REASONING,
AND INFERENCE

JUDEA PEARL



O HARVARD

SCHOOL OF PUBLIC HEALTH Email Peaple Cepartments Calendlar Careers Give my.harvare

TH.CHAN

ABOUT FACULTY & RESEARCH

Miguel Hernan

fr=m iguel Hernan = Causal Inference Book

MIGUEL HERMAN

Search this section n

Harme
Teaching he
Resesarch ~

Causal Inference Book

Editorial Posts and
Commentaries

Scientific Meetings v
HIV-CAUSAL Collaboration

Positions Available

ADMISSIONS & AID ACADEMICS EXECUTIVE/CONTINUING ED NEWS

Causal Inference Book

My colleague Jamie Robins and I are working on a book that provides a cohesive presentation of concepts of, and methods
for, causal inference. Much of this material is currently scattered across journals in several disciplines or confined to
technical articles. We expect that the book will be of interest to anyone interested in causal inference, e.g., epidemiologists,
statisticians, psychologists, economists, sociologists, political scientists, computer scientists... The book is divided in 3 parts
of increasing difficulty: causal inference without models, causal inference with models, and causal inference from complex

longitudinal data.

We are making drafts of selected book sections available on this website. The idea is that interested readers can submit
suggestions or criticisms before the book is published. To share anv comments, please email me or visit @causalinference on
Facebook. To cite the book, please use “Herndn MA, Robins JM (2018). Causal Inference. Boca Raton: Chapman & Hall/CRC,

forthcoming.”
Follow the links below to access different parts of the book:

e Part I, Chapters 1-10 (updated 4 October 2017)

a Dart TT Chantare 1117 NHiinAdatad © Marcrh 2017

www.hsph.harvard.edu/miquel-hernan/causal-inference-book



http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book

3.4. Building BNs



How to build a Bayesian network

¢ From a database

Data algorithm . Bayesian
base network

» There are many algorithms, several new algorithms every year
» Similar to statistical methods (logistic regression, neural nets...)

¢ With a human expert’s help

Causal modeling | Causal probabilities Bayesian

>

knowledge graph network

¢ Hybrid methods:

» experts — structure; database — probabilities
» experts — initial model; new cases — refine the probabilities



3.4.1. Building BNs
with causal knowledge



Building BNs with causal knowledge

Graph
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Where do the probabilities come from?

¢ Epidemiological studies
» advantage: we obtain directly the parameters we need
» disadvantage: time and cost; biases

¢ Medical literature
» advantage: reliable, inexpensive

» disadvantage: few qualitative data, few direct probabilities,
different criteria, population-dependent, biases

¢ Databases
» advantage: fast, inexpensive
» disadvantage: small databases, selection biases

¢ Subjective estimates
» advantage: relatively inexpensive
» disadvantage: unavailability of experts, psychological biases



3.4.1.1. Canonical models



Canonical models

General model Noisy OR
¢ Probability table: ¢ Efficiency of each link:
P(ylxla 9Xn) Ci

¢ Causes that
can produce X

& Factors that
iInfluence the prob. of X




The noisy OR (hypotheses)

Each cause, by itself, is able to produce the effect,
with a certain probability

» Wwhich is less than 100% when there are inhibitors.

The effect is absent when no cause has produced it
> 1.e., when every cause is either absent or inhibited

If a cause has produced the effect, then the effect is
present (regardless of the other causes)

Independence of causal influences

— there is no interaction between the causes (or its inhibitors)
when producing the effect

— the probability of the effect is the probability that the first cause
has produced it, plus the probability that the second cause
produces it when the first has not, plus...



Application of the noisy OR
when building BNs

¢ Advantages of the noisy OR

» Easier to build, because it requires fewer parameters

« from a database: more cases to estimate each parameter
« from a human expert: fewer parameters and more intuitive

» The computation of probability is more efficient (faster)

» Possiblility of explaining the reasoning:
differencial diagnosis (explaining away)

¢ Two ways to establish the noisy OR
» From a statistical study

» Knowing the causal mechanisms
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as Bayesian networks and influence diagrams, is obtaining their numerical parameters,
Models based on acyelic directed graphs and composed of discrete variables, eurrently most
common in practice, require for every variable a nmumber of parameters that is exponential
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of canonical models (the OR/MAX, the AND/MIN, and the noisy XOR), generalizing
them and offering criteria for applying them in practice. We also briefly review temporal
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3.4.2. Learning BNs from data



Learning BNs from data

¢ Two possibilities of learning
» automatic, interactive

¢ Two main algorithms:

» Search-and-score
e search
— depart from a network with no links
— add/remove/invert a link in each iteration

* ScCore

— use a metric (there are several metrics available) to quantify how well
the model matches the data

> PC
 depart from a fully-connected undirected graph
» when two variables are independent, remove the link
— more precisely, when the correlation is not statistically significant (p < o)
» when two variables are conditionally indep., remove the link
« orient the remaining links to obtain a directed graph



The role of significance in the PC algorithm

¢ We set the value of the significance, a

¢ For each link, when p > o we assume that the correlation in the
database is spurious (i.e., due randomness) and remove the link

¢ Low value of o = removing many links = sparse network

¢ High value of a = keeping many links = dense network

w
o

8 completely
g 20 7 connected
S 15 sparse netwprk
o networks
[+1] 1[] N
£ E )
3
Z 5

U I I I

0,000 0,200 0,400 0,600 0,800 1,000

Nivel de Significacion (o)



Advantages of interactive learning

¢ The system proposes, the user decides
> Very useful for tuition
> Useful for combining data with expert knowledge
> Useful for debugging new algorithms (workbench)

¢ See www.openmarkov.org/docs/tutorial.




A comparison of both methods for building BNs

¢ Automatic learning from databases
» Advantage: faster (graph + probabilities)

» Limitation: medical databases are usually incomplete
« Missing values — problem of imputation (rarely missing at random)
« Missing variables — spurious correlations

» Blackbox algorithm that returns non-causal models
— Human experts are reluctant to accept their advice

¢ With expert knowledge (“manual” method)
» Only method possible when there is not a good-enough database
» Difficulty in practice: getting the collaboration of experts
» Building the structure of the causal is sometimes difficult
» Obtaining the probabilities is even more difficult.



Summary: BNs vs. the naive Bayes

¢ BNs can diagnose several diseases simultaneously.

¢ BNs do not assume conditional independence of findings.

¢ BNs are usually causal models
> closer to doctors’ reasoning: explanation of reasoning
> probabilities are in general easier to obtain

¢ Three types of reasoning: abductive, deductive, inter-causal.

¢ They can combine data (from databases),
epidemiological studies (scientific literature)
and_expert knowledge (doctors).

In spite of these advantages,
BNs are almost unknown in medicine.

No book for medical doctors mentions them!




4. Unicriterion decision analysis



4.1. Introductory examples



Medical example (1)

¢ Three variables
» Chance variable: X — bacterial infection; P(+x) =0.14

» Decision: D — give antibiotics
» Utility (value): U — effectiveness
u (x, d)

+X —1X
+d 8 D 9 D
—d 3 10

¢ When making the decision we do not know whether
the patient is infected with the bacteria.

¢ Question: Should we give antibiotics?



Decision tree (1)

infection (ox, +) = B
u (X, =
antibiotics ®/ P(+x) = 0.14
o \ no infection
P(-x) = 0.86

u(-x,+d)=9

Doy = ~d infection 0 (5 =) = 3
/ P(+x) = 0.14 ’

no antibiotics @
U(-d) =9.02

no infection
P(-x) = 0.86

u (-x, ~d) =10

Optimal decision: D, =-d = do not give antibiotics
Prognosis: U = max (U(+d), U(=d)) = max (8.86, 9.02) = 9.02



Influence diagram DAN
(decision analysis network)

Disease

Therapy

Disease

Therapy

Health state

Health state

¢ Both models are identical.

¢ They generate the same decision tree.



Utility as a function of prevalence

U(d)=>Y u(x,d)-P(x)
D, =arg m)zalx(U (+d),U(—d))

U = max(U (+d),U(—d))

P(+x) | U(+d) | U(=d) | Do U
000 | 900 | 1000 [ -d | 10°00
005 | 895 | 965 | -d | 979
014 | 886 | 902 | -d | 902 | gecision

017 | 883 | 881 | +d | 883 | threshold
040 | 860 | 720 | +d | 860
075 | 825 | 475 | +d | 825
100 | 800 | 300 | +d | 800




Utility as a function of prevalence

& OpenMarkov - Sensitivity analysis - 1D-1a-no-finding-uncert.pgmx X

Plot (one-way analysis)
User defined interval
Scope one decision

10.0 4
9.5 1
9.0
8.5
8.0
7.5
2.0
5.3
5.0 -
5.5
5.0
4.5
4.0
3.5

Global utility

0.000 0,100 0.200 0,200 0.400 0,500 0.600 0,700 0.200 0,900 1.001
prevalence

==Therapy = no & Therapy = yes




Medical example (2)

¢ In the previous scenario, what should we do if we knew
with certainty whether the patient has the disease?

» Question 1: What to do when infection is present?
» Question 2: What to do when infection is absent?

¢ What is the average utility in this sub-population?



Decision tree (2)

antibiotics

u (+x, +d) =8
infection S /
P(+x) =0.14 -
no antibiotics
Dopt (+x)= +d \ u(+x, ~d) =3
U(+x) =8
U=29.72 ihioti
/ antibiotics 0 (=, +d) = 9
no infection D (
P(-x) = 0.86 .
Doyt (<) = —d \no antibiotics U (ox ~d)=110
U(-x) =10

Optimal decision: infection (+x) = give antibiotics (+d)
no infection (-x) = do not give antibiotics (—d)

Expected utility: U =8x0.14+ 10x0.86 =9.72



Influence diagram DAN
Disease »| Therapy Therapy
/
{ Realtn / { Realtn state
We have added an We have marked Disease as
information link. always-observed.

¢ Two different ways of saying that the value of Disease is known
when making the decision Therapy.

¢ Both models are equivalent: they generate the same decision tree.



Medical example (3):
The value of information

¢ Test Y for detecting X

» sensitivity: P(+y|+x) = 0.91

» specificity: P(-y|-x) = 0.97

» COst: Urest(X, d) = U test(X, d) — 0.2
u(x,d)| =+x =X

+d 7’8 8’8
-d 2'8 9'8

¢ When making the decision we do know the result
of the test.

¢ Question: Should we give antibiotics?



U=9.43

positive

infection

antibiotics P(+x|+y) = 0.832

P(+y) = 0.153
Dot (+y)=+d
U(+y) = 7.97

negative

UGrd |+y) = 7.97 no infection

P(—|X|+y) =0.168

infection

no antibiotics P(+x|+y) = 0.832

U(=d|+y) =3.98 no infection

P(—|X|+y) =0.168

infection

antibiotics P(+x|—y) = 0.015

P(—y) = 0.847

Dopt (-y) =~d
U(-y) =9.70

Ul+d |-y) =8.79 no infection

P(-x|—y) = 0.985

infection

no antibiotics P(+x|—y) = 0.015

U=d | 2y) =970 no infection

P(—|X|—|y) =0.985

u(+x, +d) = 7.8

u (-x, +d) = 8.8

u(+x, -d) =2.8

u(-x, ~d) =9.8

u(+x, +d)=7.8

u (-x, +d) = 8.8

u(+x, -d) =2.8

u (—IX, —|d) = 98



Policy and prognosis

¢ Policy:
> When Y is positive: give antibiotics
» When Y is negative: do not give antibiotics

¢ Prognosis
» When Y is positive: U(+y) = 7.97
» When 'Y is negative: U(-y) =9.70

» Global prognosis (average utility)
UWith test - U(+y) X P(+y) + U(_'y) X P(ﬁy)
= 7.97 x 0.153 + 9.69 x 0.847
=043



Influence diagram

Disease

Result of test

N

Therapy

< Cost of test >

Health state

An information link
from Result of test to Therapy

DAN

Disease

Result of test < Cost of test >

Therapy

Health state

Result of test Is marked as
always-observed.

¢ Different ways of indicating the flow of information.

¢ Both models generate the same decision tree.



Medical example (4):
deciding about a test

¢ JestY
» Advantage: gives information
» Disadvantage: has a cost

¢ Is it worth doing the test?

¢ Three possible policies:
1. Give the therapy to all patients, preventively
2. Never apply the therapy
3. Do test Y; apply the therapy only when it is positive



do not test

antibiotics

infection

Dopt = —d
U(=t) = 9.02

U=9.43

do test

/ U(+d) = 8.86

U(+t) = 9.43

Y

no antibiotics

P(+x)=0.14
ol
no infection

P(-x) = 0.86
infection

U(~d) = 9.02

P(+x)=0.14
X
no infection

P(-x) = 0.86

antibiotics

o]
X

U(+d|+y) = 7.97

Y positive

P(+y)=0.153
Dopt = +d
U(+y) =7.97

no antibiotics

U(-d |+y) = 3.98

antibiotics

U(+d |y) = 8.79

Y negative

P(—ly)20.847
Dopt = —d
U(-y) = 9.68

no antibiotics

P
X

P
X

U(~d |y) = 9.70

u (+x, +d, -t) =8

u(-x, +d, at) =9

u (+x, -d, =t) =3

u (=x, -d, =t) =10

infection

(+x|+y) = 0.832

no infection

P(—x|+y) = 0.168
infection

@< P(+x|+y) = 0.832
no infection

P(—x|+y) = 0.168
infection

(+x|=y) = 0.015

no infection

P(—x|y) = 0.985
infection

(+x|~y) = 0.015

no infection

P(—x|—y) = 0.985

u(+x, +d, +t)=7.8

u(-x, +d, +t) = 8.8

u(+x,d, +t)=2.8

u(-x,-d,+t)=9.8

u(+x, +d, +t)=7.8

u(-x, +d, +t) =8.8

u(+x,-d, +t)=2.8

u(-x,-d,+t)=9.8



Influence diagram DAN
Do test? Do test?
(Resultoftest )  { Costoftest ) ("Result f{\: ((Costoftest )
\
Therapy Therapy
/ /
{ Health state ) { Health state )

An information link. Restrictions. Revelation link.
Total ordering of the decisions The decisions are not ordered.

¢ Different ways of indicating the flow of information.

& The decision trees are different but equivalent:
the same probabillities, utilities, and policies.




Decision tree
generated by the ID

— U=9.4312
=Y Do test?

—}{ Do test?=no / U=9.0200 ‘

~{Result of test)

| Result of test=not done / P=1.0000 / U=9.0200 |

- Therapy
—t Result of test=negative / P=0.0000 / U=0.0000 ‘

+{ Therapy
—t Result of test=positive / P=0.0000 / U=0.0000 ‘

£ Therapy
= ] po testr=yes / u=0.4312 ‘

~{Result of test)

- Result of test=not done / P=0.0000 / U=0.0000 |

+- Therapy
—} Result of test=negative / P=0.8468 / U=9.6958 ‘

+{ Therapy
=t Result of test=positive / P=0.1532 [ U=7.9684 ‘

= Therapy

symmetric

Decision tree
generated by the DAN

= U=8.4312

ussaan |

— Do test?=no / U=9.0200 ‘

- Therapy
] vo testr=yes / u=0.4312 ‘

—{Result of test)

— Result of test=negative / P=0.8468 / U=9.6958 ‘

[ Therapy
-} Result of test=positive [ P=0.1532 / U=7.9684 ‘

- Therapy

asymmetric



Conditional prob. for Result of test

in the ID

in the DAN

) Mode Potential: Result of test

) MNode Potential: Result of test

Relation Type: |Table | """ 't v | | Reor Relation Type: |{Table v || Reor
Do test? no no YEs WEE Do test? no no YEs WEE
Disease absent present absent present Disease absent present absent present
positve ] ] 0.03 0.91 positve 1] 1] 0.03 0.91
negatve ] ] 0.97 0.09 negatve 1] 1] 0.97 0.09
not done 1 1 0 0

e dummy value:
test not done

* restrictions
* no dummy value



Hands-on exercise 3



Exercise: Optimal stratety for two tests

Test sensitivity specificity discomfort
A 0.60 0.92 0.0003 QALY
B 0.80 0.91 0.0001 QALY

Disease = absent present
therapy 38 QALY 30 QALY
no therapy 40 QALY 20 QALY

¢ QALY is a unit of effectiveness

¢ Question: What is the most effective strategy?




The N-test problem

Dlsease

Symptom
Dec: Test4 Test Result 4
Dec: Test 0
Dec: Test1 Dec: Test 2 el ML E Cost of test 4
5 Test Result 3
Test Result 0 Test Result 1 Test Result 2
y
Therapy
Quality of life

¢ Computationally hard: n! possible orderings of the tests.
¢ We have developed an any-space algorithm for this problem
¢ and a fast algorithm (9 minutes for the 7-test problem).

¢ We are developing more efficient algorithms.



4.2. Examples of decision models
for real-world problems



Mediastinet, an ID for lung cancer

ecision_ ecision_|

C: TBNA TBNA_Morbidity

EUS_Morbidity

C: Treatment
QALE ¥

Equivalent to a decision tree containing ~104 branches.



Mediastinet (DAN version)

M2 N3 .—L"J CT scan '

b =

S [ oecuep |

N e
i y J
{ TBNA Morbidity (_Evs ) ' (_MED )
CostEUS (_MED Survival |

{ EBUS Morbidity ) EUS Morbidity

MED Morbidity

Treatment

| Treatment |
' ( Immediate survival jl
( Effectiveness )

Effectiveneass

Decisions are partially ordered.



Arthronet, an ID for total knee arthroplasty

IMC Diabetes ) [ Alergia ATB )

‘ Realizar Implante
l - CC_Drenaje
Infecclon PTR

S ‘\*

Realizar Gammagraf'as

aG? Tc99
Reallzar Biopsia Sinovial
EVAC Implante X
[ Cortes Congelados
Molestias Gammagraf"a

Tratar Infeccion PTR
Coste Implante Coste Gammagrafia

Molestias Biopsia Sinovial

!

Coste Biopsia Sinovial

Mejora Tratamiento

Y
Coste Tratamiento

Equivalent to a decision tree containing ~10* branches.



4.3. Advantages and limitations
of influence diagrams



Advantages of influence diagrams (1/3)

¢ |IDs are more compact than decision trees
> An ID having n binary nodes ~ a DT having 2" branches

¢ IDs transform automatically into decision trees
> ... but the reverse is not true (no general algorithm)

> If you build a decision tree, you only have a decision tree.
> If you build an ID, you have both.

¢ |IDs are much easier to build than decision trees

> IDs use direct probabilities (prevalence, sensitivity, specificity...)
and costs (mortality, morbidity, economic cost...)

> ID can use canonical models (noisy OR, noisy AND, etc.)

> Each parameter appears only once in the ID
- INn many cases it is not necessary to have parametric variables

> IDs can have several value nodes: more clarity, separate criteria



Advantages of influence diagrams (2/3)

¢ No external pre-calculation of probabilities is required

¢ Having all the information, no debugging is usually needed
> On the contrary, “all trees have bugs” (Primer on MDA, at MDM journal)

¢ |IDs are much easier to modify than decision trees
> Refine the model with new decisions and chance variables
> Structural sensitivity analysis
» Can adapt to different regional settings
> Can adapt to patient’s medical characteristics and preferences

¢ Explicit representation of causality
> a link indicates causal influence
> the absence of a link means “no causal influence” (hypothesis)




Advantages of influence diagrams (3/3)

¢ Two possiblilities of evaluation:

1. expansion of an equivalent decision tree
- exponential complexity (time and space)
- equivalent to the brute-force method for Bayesian networks
-many problems can not be solved with this method

2. operations on the ID (recursive reduction of the ID)
- direct manipulation of the graph and/or potentials of the ID
-similar to the best algorithms for Bayesian networks

- canonical models and the separation of utility nodes can lead to
more efficient evaluations

¢ More possibilities of explanation of reasoning
» computation of posterior probabilities on the ID (as if it were a BN)
> value of information (EVPI and other measures) can be computed easily
> other methods from Bayesian networks and qualitative prob. networks.
These methods can be used to debug/refine IDs.
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oward and Matheson’s (1984/2005) “Influence  vision (Binford and Levitt 2003), dialog management,

Diagrams” has had a profound impact on devel- user interface design, multiagent systems, and game
opments in artificial intelligence. Some of these influ-  theory (Koller and Milch 2003), to name but a few.
ences have been quite direct; others are more indi- Another reasonably direct impact of “Influence Dia-

rect, but in many ways, more substantial. The paper  grams” derives from its role in the development
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Introduction

Two decades after Howard’s landmark paper
(Howard and Matheson 1984/2005) that introduced
the concept of the influence diagram and three
decades since Miller’s initial report (Miller et al.
1976), Decision Analysis reproduced that paper in
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modeling paradigm slowly spread from Stanford,
both with courses offered at meetings of the Soci-
ety for Medical Decision Making (Society for Medical
Decision Making 2005) and with the development of
software that could conveniently capture and evalu-
ate such models.



Clinical practice guidelines (CPGs)

¢ Construction of CPGs
» Usually: expert opinion or consensus of experts

» Another possibility: probabilistic graphical models
- Sanders, Nease, Owens: several papers on building CPGs from IDs.

¢ Advantages of a PGM wirt a traditional CPG

» explicit decision model
« combines expert opinions and evidence (statistical data)

 helps in difficult cases, in which the policy is not evident for experts

> flexibility: can be extended and adapted, as mentioned above

» can include patients’ preferences

» the physician plays an active role,
he/she is not a passive user of CPGs developed by others.



A proverb

¢ Don’t give a man a fish;
give him a rod
and teach him how to fish.

¢ Don’t give a doctor a written CPG;
give him/her a DAN
and teach him/her how to use OpenMarkov.



IDs in the literature on MDM (1/3)

¢ Books that mention decision trees but do not mention IDs

Weinstein, Fineberg. Clinical Decision Making. 1980.

Sloan (ed.). Valuing Health Care. 1995.

Gold et al. Cost-Effectiveness in Health and Medicine. 1996.

Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).
Petitti. Meta-Analysis, Decision Analysis and CEA. 2" ed., 2000.
Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.
Levin and McEwan. Cost-Effectiveness Analysis. 2" ed., 2001.

Parmigiani. Modelling in Medical Decision Making. 2002.

Haddix et al. Prevention Effectiveness. 2" ed., 2003.

Fox-Rushby and Cairns. Economic Evaluation. 2005.

Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.
Alemi and Gustafson. Decision Analysis for Healthcare Managers, 2006.
Arnold. Pharmacoeconomics: From Theory to Practice. 2009.

Kassirer et al. Learning Clinical Reasoning. 2"? ed., 2010.

Mushlin and Greene. Decision Making in Medicine. 3" ed., 2010.
(cont’'d)



IDs in the literature on MDM (2/3)

¢ Books that mention decision trees but do not mention IDs (cont.)

Gray et al. Applied Methods of CEA in Health Care, 2011.
Alfaro-LeFevre. Critical Thinking, Clinical Reasoning... 5" ed., 2013.
Morris et al. Economic Analysis in Healthcare. 2" ed., 2012.

Rascati. Essentials of Pharmacoeconomics. 2" ed., 2013.

Sox et al. Medical Decision Making. Latest ed., 2013.

Hunink et al. Decision Making in Health and Medicine. 2" ed., 2014.
Drummond et al. Methods for the Economic Evaluation of... 4" ed. 2015.
Edlin et al. Cost Effectiveness Modelling for HTA... 2015.

Neumann et al. Cost-Effectiveness in Health and Medicine. 2016

Caro et al. Discrete Event Simulation for HTA. 2016

¢ One book that mentioned IDs

Muennig. Designing and Conducting Cost-Effectiveness Analyses in
Medicine and Health Care. 2002, page 242:
“An influence diagram (also known as a tornado diagram) ...”

The 2nd edition (2007) and the 3 (2016) do not mention them.



IDs in the literature on MDM (3/3)

& Three books that describe IDs

Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000
(5 pages out of 421, in a chapter authored by Mark Roberts)

Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.
(2 pages out of 230)

Kattan. Encyclopedia of Medical Decision Making. 2009
(4 pages out of 1200+).

¢ Summary of the informal survey of books on MDM and EBM
> 26 books published after 1984
> All of them explain DTs but only 3 describe IDs, very briefly.

¢ Some books on medical informatics mention IDs:
- Shortliffe and Cimino. Biomedical Informatics. 4™ ed., 2013 (2.5 pages out of 991).
- Kalet. Principles of Biomedical Informatics. 2" ed., 2013 (3 pages out of 708).

¢ Why are IDs so little known in health sciences after 30+ years?



Limitations of IDs

. The “reasoning” of an ID is not easy to understand
. The evaluation returns large policy tables

. IDs can only model symmetric problems
> IDs require a total ordering of the decisions

> IDs cannot represent incompatibilities between values

- Non-standard versions of IDs partially solve this problem,
but none of the alternatives was completely satisfactory.

. Algorithms could only evaluate unicriterion IDs
> They could not perform cost-effectiveness analysis

. Temporal reasoning was not possible with IDs
» Dynamic IDs are computationally unfeasible.



Solutions we have proposed

. Explanation in influence diagrams

» showing the posterior probabilities and expected values
» Introduction of evidence
» hypothetical reasoning (what if) by means of imposed policies

. Synthesizing the optimal intervention
> In the form of a compact tree

. Decision analysis networks

» an alternative to IDs for asymmetric decision problems.
. Cost-effectiveness analysis with IDs

. Markov influence diagrams
> including cost-effectiveness analysis
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build than decision trees and can represent conditional independencies. In fact, for every ID
there is an equivalent symmetric DAN, but DANs can also represent asymmetric problems
involving partial orderings of the decisions (order asymmetry), restrictions between the
values of the variables (domain asymmetry), and conditional observability (information

giﬁ?;f;nalysis asymmetry). Symmetric DANs can be evaluated with the same algorithms as 1Ds. Every
Decision trees asymmetric DAN can be evaluated by converting it into an equivalent decision tree or,
Influence diagrams much more efficiently, by decomposing it into a tree of symmetric DANs. Given that DANs
Probabilistic graphical models can solve symmetric problems as easily and as efficiently as IDs, and are more appropriate
Asymmetric decision problems for asymmetric problems—which include virtually all real-world problems—DANs might

replace IDs as the standard type of probabilistic graphical model for decision support
and decision analysis. We also argue that DANs compare favorably with other formalisms
propased for asymmetric decision problems. In practice, DANs can be built and evaluated
with OpenMarkov, a Java open-source package for probabilistic graphical models.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The two formalisms most widely used for the representation and analysis of decision problems are decision trees (DTs)
[31] and influence diagrams (IDs) [15]. DTs have the advantage of almost absolute flexibility, but also have three drawbacks:
the1r 5|ze grows exponennally w1th the number of variables, they cannot represent mndltlonal independencies, and they
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DANS vs. IDs

¢ A DAN is symmetric if:
> It has no restrictions
> If a value of X reveals Y, then every value of X reveals Y

¢ DANSs can replace IDs as the standard decision analysis tool
(in Al, MDM, operations research...) because:

> For every ID there is an equivalent symmetric DAN
- but for many DANSs there is no equivalent ID

> Virtually all real-world problems are asymmetric.
> There many problems that cannot be modeled with IDs.

> Even if a problem can be modeled with an ID, a DAN is
usually better because it does not need dummy states.



DANS vs. IDs

¢ DANSs can replace IDs as the standard decision analysis tool
(in Al, MDM, operations research...) because:

> For every ID there is an equivalent symmetric DAN
- but for many DANSs there is no equivalent ID

> Virtually all real-world problems are asymmetric.
> There many problems that cannot be modeled with IDs.

> Even if a problem can be modeled with an ID, a DAN is
usually better because it does not need dummy states.



5. Multicriteria decision making



5.1. Effectiveness and utility
in medicine



Economic evaluation in medicine

¢ Objective:

to decide whether the benefit of an intervention outweighs
Its economic cost.

¢ Three types of analysis:

» Cost-benefit
 Health benefits are converted into monetary units

» Cost-effectiveness

* Benefits are measured in medical units, such as lives
saved, life years gained, detected cases, etc.

» Cost-utility
» Benefit is measured in guality-adjusted life years (QALYS).




Quantity and quality of life

¢ Effectiveness (in cost-utility studies):

eff = j QoL(t) - dt

QoL (t)

> 1 QALY = effectiveness accrued in one year of perfect health

Time: t



QoL is subjective: how can we measure it?

» Visual analog scale (VAS)

Worst 0 10 20 30 40 50 60 70 80 90 100 Best

quality of life quality of life

« does not measure quantitative preferences
« cannot be directly used in cost-utility analyses

» Standard gamble

* “Do you prefer to live in state s or to enter a lottery with probability p of recovering
perfect health and (1- p) of dying?”

» Time trade-off (TTO)

* “Do you prefer to live in state s for 50 years or do you prefer to live with perfect health
for 45 years?”

* “lmagine you are in state s and your life expectancy is 50 years. How many years of
your life expectancy would you give up to recover perfect health?



Trade-off between quantity and quality of life

Perfect health
for less time
hi=|
Health
Index
(Utility) Imperfect health
for more time

hn-l
hn=0Q |_|7
Yo X P Time—>

Torrance, Thomas and Sackett (1972)



Quality of life indexes (indices)

» Every index considers a reduced number of attributes (dimensions)

» HUI-3 has 8 attributes: sight, hearing, ability to converse, ability to walk, manual
dexterity, emotional status, cognitive ability and pain

» Every attribute has a limited number of states
* “Hearing” in the HUI-3 has 6 states (see next slide)

» Every individual is characterized by a tuple of states
* In HUI-3, it is an 8-tuple. Example: (4,5,5,6,4,3,4,5).

» A mathematical function maps each configuration onto a number
. (4,5,5,6,4,3,4,5) = 0.742.

» Function f, specific for each index, is calibrated using a preference-
elicitation method: standard gamble or time trade-off.



QoL tables

Health state Utility
Healthy (reference state) %@
Life with menopausal symptoms (judgment) .
Side effects of hypertension treatment (judgment) 0.95-0.99
Mild angina (Judgment) 0.90
Kidney transplant (TTO, Hamilton, patients with transplants) 0.84
Moderate angina (judgment) 0.70
Some physical and role limitation with occasional pain (TTO) 0.67
Hospital dialysis (TTO, Hamilton, dialysis patients) 0.59
Hospital dialysis (TTO, St John's, dialysis patients) 0.57
Hospital dialysis (TTO, general public) 0.56
Severe angina (judgment) 0.50
Anxious/depressed and lonely much of the time (TTO) 0.45
Being blind or deaf or dumb (TTO) 0.39
Hospital confinement (TTO) 0.33
Mechanical aids to walk and learning disabled (TTO) [
Dead (reference state)
Quadriplegic, blind and depressed (TTO) < 0.00
Confined to bed with severe pain (ratio) <0.00
Unconscious (ratio) <0.00

From: Torrance (1987). Utility approach to measuring...



An example with two criteria

¢ Two therapies

» Effectiveness (QALY)

No therapy | Therapy 1 | Therapy 2
Disease present 1.2 4.0 6.5
Disease absent 10 9.9 9.3

» Therapy 1 cost = 20,000 €
» Therapy 2 cost = 70,000 €

¢ Questions:

» What therapy to apply when the disease is present
» What therapy to apply when the disease is absent

¢ Problem: how to compare health and money




5.2. Combining cost and effectiveness
into a single criterion



Net benefit

¢ Net monetary benefit: | NMB=A-E-C

« E = effectiveness, usually measured in QALY (utility)

« C = cost, in monetary units (€, £, $...)

« A=willingness to pay = cost-effectiveness threshold
» )\ is usually measured in $/QALY, €/QALY, £/QALY...
» It converts effectiveness into monetary units

> It is specific for each decision maker

¢ When comparing two or more interventions/strategies,
which one is more beneficial?
— It may depend on A



NMB as a function of A

¢ If A = 6,000 €/QALY:

¢ If 2 = 30,000 €/QALY:

NMB No therapy | Therapy 1 | Therapy 2
Disease present @O@ 4,000 € -31,000 €
Disease absent |(60,000€)| 39400€ | -14,200€

& If L = 15,000 €/QALY:

NMB No therapy | Therapy 1 | Therapy 2
Disease present 18,000 € 40,00@ 27,500 €
Disease absent @OOO €)| 128,500 € 69,500 €

NMB No therapy | Therapy 1 | Therapy 2
Disease present 36,000 € 100,000 € @OOO €
Disease absent @O@ 277,000 € | 209,000 €




Problem: difficult to estimate the WTP

® ) Is different for each decision maker:

- USA $50,000-100,000 / QALY

- UK £20,000-30,000 / QALY

- Spain, Italy ~€30,000/QALY

- Norway ~ €70,000/QALY

- WHO ~3 x (annual per capita GDP) / DALY

> In some countries the range of variation is very wide.
¢ How to estimate it?
1. Shadow threshold: what interventions are covered in a country
2. Econometric methods
> No consensus among health economists

¢ What value of A should we use in our analyses?

¢ Solution (partial solution): cost-effectiveness analysis



5.3. Cost-effectiveness analysis



5.3.1. Deterministic CEA



Cost-effectiveness plane

‘.[lncreased Cost]
Costs Money ?
Worsens Health GastMeiisy
x Improves Health

QALYs
Gained

QALYs
Lost J

Saves Money

Worsens Health saves Money
? ImRroves Health
| Decreased Cost

standard intervention



Incremental cost-effectiveness ratio (ICER)

¢ One intervention is more effective but more expensive
NHB, = A x E; - C,

Cz_C1<

NHB,>NHB, <
EZ_El

A

¢ Def.: Incremental cost-effectiveness ratio (ICER)

ICERZngiigi
E,-E

¢ Conclusion
NHB, > NHB; < ICER,; <A

¢ ), the WTP, determines which option is more beneficial



Why does the ICER matter?

cost (€)

300000,00

250000,00

200000,00

150000,00

100000,00

50000,00

,00

,00

2,00

4,00 6,00

effectiveness (QALY)

8,00

10,00




Why does the ICER matter?

cost (€)

300000,00

250000,00

200000,00

150000,00

100000,00

50000,00

,00

C
ill

,00 2,00 4,00 6,00 8,00 10,00

effectiveness (QALY)
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ngness to pay)




Why does the ICER matter?

300000,00 CE threshold
not cost-effective (willingness to pay)
250000,00 -+
200000,00 -+
. 150000,00 -
@)
%
3 :
100000,00 - cost-effective
50000,00 -
,OO T T T T 1
00 2.00 4,00 6,00 8,00 10,00
effectiveness (QALY)

¢ Two of the interventions are cost-effective wrt no intervention.



Why does the ICER matter?

300000,00 1 CE threshold
(willingness to pay)
250000,00
200000,00
__150000,00 - apparently
L cost-effective
(72}
o
©  100000,00 -
50000,00 - cost-effective
,OO T T T T 1
,00 2,00 4,00 6,00 8,00 10,00
effectiveness (QALY)

¢ If they are mutually exclusive, they must be compared pairwise.



Why does the ICER matter?

300000,00 -
C
250000,00 -+ .
(will
200000,00 not cost-effective
when compared to
the other intervention
. 150000,00 -
v
3
3
100000,00 -
hcremental
50000,00 effectiveness
,OO T T T T 1
,00 2,00 4,00 6,00 8,00 10,00
effectiveness (QALY)

E threshold
ngness to pay)

¢ It is essential to select the right comparator.



5.3.1.1. Deterministic CEA
for the previous example



The example we are considering

¢ Two therapies
» Effectiveness (QALY)

No therapy | Therapy 1 | Therapy 2

Disease present 1.2 4.0 6.5

Disease absent 10 9.9 9.3

» Therapy 1 cost = 20,000 €
» Therapy 2 cost = 70,000 €

¢ Questions:

» What therapy to apply|when the disease is present
» What therapy to apply when the disease is absent

¢ Problem: how to compare health and money



When we know that the disease is present

70,000

5,000 £
60,000 ’
55,000 ’

50,000 7

45,000 ¢

ARl / ® notherapy

35,000 L ® therapy 1

30,000 7 therapy 2
/, — = Frontier interventions

Cost

25,000 7

20,000 F |
15,000 -
10,000 -

5,000 -

o+ =
oo 0.5 1.0 15 20 25 a0 a5 40 45 50 85 G.0 6.5

Effectiveness

Interval for A Cost Effect. Best therapy
(0, 7,143) 0 1.2 no-therapy
(7,143, 13,208) | 20.000 4.0 therapy-1
(13,208, +0) 70.000 6.5 therapy-2

7,402 13,208

>



The example we are considering

¢ Two therapies
» Effectiveness (QALY)

No therapy | Therapy 1 | Therapy 2

Disease present 1.2 4.0 6.5

Disease absent 10 9.9 9.3

» Therapy 1 cost = 20,000 €
» Therapy 2 cost = 70,000 €

¢ Questions:

» What therapy to apply when the disease is present
» What therapy to apply|when the disease is absent

¢ Problem: how to compare health and money



When we know that the disease is absent

70,000
85,000
80,000
55,000
50,000

45,000

sl ® notherapy

35,000 @ therapy 1

30,000 therapy 2
= = Frontier interventions

Cost

25,000

20,000 L]
15,000
10,000

5,000

Effectiveness

Interval for A Cost Effect. Best therapy
(0, +) 0 10 no-therapy




5.3.2. CEA with uncertain outcomes



Example with uncertain outcomes:
cost-effectiveness of a test

¢ The costs and effectiveness of the two therapies
are the same as in the previous example

¢ But there Is uncertainty (probabilities):
» prevalence of the disease: 0.14

» test: sensitivity 0.90
specificity 0.93

¢ Also the test has a cost: 150 €

¢ Questions:
» When is the test cost-effective? = What is its ICER?

» What is the most beneficial therapy for each value of A?




Effectiveness as a function of prevalence

) OpenMarkov - Sensitivity analysis - 2a-1D-decide-therapy.pgmx

Plot (one-way analysis)
User defined interval
Scope one decision

Global utility

0,800

0,900

1.00(

0,000 0,100 0,200 0,300 0,400

0.500 0.600 0.700
prevalence

==Therapy = no therapy # Therapy = therapy 1 -+ Therapy = therapy 2




A decision tree for this example

cost-effectiveness

cost_test=150
cost_ther_1=20000
cost_ther_2=70000
elabs=10
eOpres=1,2
elabs=9,9
elpres=4,0
e2abs=9,3
e2pres=6,5
prev=0,14

_________ present
therapy-2 prevsensit/_pJ_5
7 absent
1
1
]

_1 present

therapy-1 0 prevsensit/_pJ_5

negative

absent
present

no-therapy prevtsensit/_pJ 5
absent

present
therapy-2 prev¥_pJ_3/_pJ 6
absent
_pJ_4*spec/_pJ_6
present
therapy-1

|

'9) prev*_pJ_3/_pJ_6

no_test

absent
_pJ_4*spec/_pJ_6
present

no-therapy prev¥_pJ_3/_pJ 6
absent
_pJ_4*spec/_pJ_6
present

therapy-2 prev
absent
#
present
0 therapy-1 o prev

absent

present

#
no-therapy prev
absent

#

(cost_test+cost_ther_2) / e2pres
(cost_test+cost_ther_2) / e2abs
(cost_test+cost_ther_1) / elpres
(cost_test+cost_ther_1) / elabs
oost_test/ eOpres

oost_test/ eOabs
(cost_test+cost_ther_2) / e2pres
(cost_test+cost_ther_2) / e2abs
(cost_test+cost_ther_1) / elpres
(cost_test+cost_ther_1) / elabs
oost_test/ eOpres

oost_test/ eOabs

oost_ther_2/ e2pres
oost_ther_2/ e2abs
oost_ther_1/elpres
oost_ther_1/ elabs

0/ eOpres

0/ eOabs

Problem: the standard algorithm only works for the unicriterion

case



A warning and a (rudimentary) solution

“‘Embedded, or downstream, decision nodes are not useful in
cost-effectiveness analysis because the optimal branch
cannot be determined when folding back the tree without an
explicit decision rule for comparing costs and consequences.

Cost-effectiveness analyses can be performed with

a decision tree that has one decision node at the root.
The branches of the initial decision node represent

all of the strateqgies that are to be compared.”

Kuntz and Weinstein [2001]



How many strategies for this example?

¢ Without testing
» No therapy in any case
» Always therapy 1
» Always therapy 2

¢ With testing

> If positive, therapy 1; if negative, no therapy.
> If positive, therapy 1; if negative, therapy 2.
> If positive, therapy 2; if negative, no therapy.
> If positive, therapy 2; if negative, therapy 1.



cost_test = 150
cosl_ther_1 =
goooo
cos_ther_2 =
roooo
effdabs =10,
efflpres= 1.2
efflabs =99
effipres= 4,
effZabs =923
effZpres= 8.5
prev =014
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&
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Interv_n2 prev - - P
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&
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positive therapy 1 prevtsensitiprevis .
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&
negative no therapy
.,
&
positive therapy 2
L}
previsenstH1-pre .
negative no therapy
{1
Ed
positive therapy 2
previsenstH(1-pre. . -
negative therapyl
{F
Ed
positive therapy 1
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negative therapy2 prew*(1-s=nsit)/(pre...

absent
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1 Introduction

Cost-effectiveness analysis (CEA) is increasingly used to
inform health policies. Decision trees are the standard
method for decision analysis in non-temporal domains. A
decision node that is not the root of the tree is said to be
embedded.

All books on medical decision analysis discuss both
CEA and decision trees [1-11], but few explain how to
conduct a CEA with decision trees [1, 2, 10, 11], and only

build a decision tree with one decision node at the root,
which represents all the strategies to be evaluated, as
proposed by Kuntz and Weinstein; the other is to apply the
algorithm presented in Arias and Diez [13].

As a case study, we consider the common problem of
finding the incremental cost-effectiveness ratio (ICER) of a
test:

Example 1 For a disease with a prevalence of 0.14, there
are two possible therapies, the effectiveness of which

denendce nn whether ar not the diceace 1 nrecent ag chnwn
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Abstract

In this paper we present a new method for performing cost-efectiveness analysis of problems that involve multiple decisions and
probabilistic outcomes. This problem has been ignored by most of the literature on medical decision making, and the few solutions
proposed so far are either wrong or unfeasible except for very small problems. The method proposed in this paper consists of building a
decision tree with several decision nodes and evaluating it with a modified roll-back algorithm that operates with partitions of intervals.

Decision trees
See the technical report for an explanation of these examples.

e natural tree (WinDM)

¢ natural tree (TreeAge Pro)

¢ all-strategies tree (TreeAge Pro)

Additional information

¢ Slides presented at SMDM-2007.

* Cost-effectiveness analysis in OpenMarkov.

CISIAD. Research Center on Intelligent Decision-Support Systems. UNED. Madrid, Spain.



5.3.3. CEA with IDs and DANs



Influence diagram DAN

Do test? Do test?
(‘Resultoftest )  { Costoftest ) (Resultoftest )  ( Costoftest )
\
Therapy Therapy
/ /
{ Health state { Health state )

& The same structure as in the unicriterion case

& but now we have two criteria; cost and effectiveness
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Summary

Background: Cost-effectiveness analysis
(CEA) is used increasingly in medicine to de-
termine whether the health benefit of an in-
tervention is worth the economic cost. De-
cision trees, the standard decision modeling
technique for non-temporal domains, can
only perform CEA for very small problems.
Objective: To develop a method for CEA in
problems involving several dozen variables.
Methods: We explain how to build influence
diagrams (IDs) that explicitly represent cost
and effectiveness. We propose an algorithm
for evaluating cost-effectiveness IDs directly,

Pa asithaiit dvimandina an ascdvialane daal

Results: The evaluation of an ID returns a set
of intervals for the willingness to pay — sep-
arated by cost-effectiveness thresholds —
and, for each interval, the cost, the effective-
ness, and the optimal intervention. The algo-
rithm that evaluates the ID directly is in gen-
eral much more efficient than the brute-force
method, which is in turn more efficient than
the expansion of an equivalent decision tree.
Using OpenMarkov, an open-source software
tool that implements this algorithm, we have
been able to perform CEAs on several IDs
whose equivalent decision trees contain mil-
lions of branches.

Conclusion: IDs can perform CEA on large
problems that cannot be analyzed with deci-
sion trees.

units divided by cost units; for example, in
dollars per death avoided or euros per
quality-adjusted life year (QALY) [4]. As
the willingness to pay is different for each
decision maker, CEA must consider all its
possible values. The result of the analysis is
usually a set of intervals for A, each one
having an optimal intervention.

When the consequences of the interven-
tions are not deterministic, it is necessary
to model the probability of each outcome.
Decision trees are the tool used most fre-
quently for this task, especially in medicine
[5]. Their main drawback is that their size
grows exponentially with the number of
variables®. In the medical literature, trees
usually have 3 or 4 variables and between
6 and 10 leaf nodes. A tree of 5 variables
typically contains around 20 leaf nodes,
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@ Elements of a DAN @ Representing the flowof information

+ |n influencediagrams {IDs)
» information links
» temporal-order links between decisions
» requisite (by definition):. a total ordering of the decisions

+ Structural information: graph

= three types of nodes; chance, decision, value

= links connecting nodes; usually represent causality
+ Quantitative information

= probabilities: prevalence, sensitivities, specificities__

= value functions:

+ effectiveness (life years, QALYs ) = revelation links
» the decisions may be partially ordered

+ economiccosts{in% € £ )
The same as in influence diagrams. = the evaluation algorithm will determine the optimal order

@ Example

+ |n DANs
» always observed variables

Two |Ds with different orderings of the decisions about the tests

[ Demmct | [ OeinmE? | Al laene CatenE? |
: N : N
{Comett ComtalE )
P P P - \ y . * PR . Lol
neemtert s e € T A { Dicomtors dun e C Rewnalc Raviof € |
T . f
Eanalt - F (ComalE - P
! STy 1| : | Teerey |
R 1 . | Y
Efactiansn ) Comial turary ( Efectivensns o

An 1D that considers both orderings of the tests A DAN for the same problem

[ Comraint ) DatastC? | [ Divease | DotestE? |

[ Fon | v ] N (Coner)

i » A w s WEEEES
| M . & . { Discomfort dus ta € [ Resuksrc ) [ Resuntere |
{ Discsmbort dun b first ) | (" Firstresut | | |_Secend ressit || | Discomfort dus to second |
L] . _—
{ Costoffint ; / (| Castef second { ;
e (e ]
J ~ ) ¥ “a
{ EMectivandss ) {_Cest of therapy |

- R .
{ Effwctiveneas ) { Contoftherapy

4 Result of evaluatingthe DAN
+ The optimal policy depends on ., the willingness to pay: 5 ICER thresholds = 6 intervals




Hands-on exercise 4



Exercise: Optimal stratety for two tests

Test sensitivity specificity discomfort cost
A 0.60 0.92 0.0003 QALY $100
B 0.80 0.91 0.0001 QALY $200

Disease - absent present

therapy 38 QALY 30 QALY
no therapy 40 QALY 20 QALY

cost of therapy = $7,000

¢ The same probabilities and effectiveness as in exercise 3
¢ but now we also considering economic costs.

¢ Question: What is the most beneficial strategy?




6. Temporal models



Temporal PGMs

¢ Markov models

> The future is independent of the past given the present
- “Markov models do not have memory”

> Key concept: state

> Types of models: Markov chains, HMMs, MDPs,
POMDPs, DBNs, MIDs, DLIMIDs...

¢ Temporal non-Markov models

> The future is not determined by the current state
- for example, birth occurs around 9 months after conception

> An type of non-Markov model: event networks

- Galan, Aguado, Diez, Mira. NasoNet: Modelling the spread of nasopharyngeal
cancer with temporal Bayesian networks. Al in Med, 2002.



6.1. Types of Markov models



Markov chain

XD

4 One variable that evolves over time

¢ Transition probabilities: P(xi,4|x;)



Hidden Markov model (HMM)

(XD <D X [2]
rop Qo e o)

& Observed variable: Y

¢ Non-observed (hidden) variable: X
¢ Transition probabilities: P(X;,[X;)

+ Probability of each observation: P(y;x;)



Markov decision process (MDP)

¢ Observed variable: X

¢ Decision: D

¢ Transition probabilities: P(X;.4|X;)
¢ Reward: U(x;, d)



Partially observable MDP (POMDP)

X [0] X[1] (X120
PO
D [0] D[1] D[2]
¢ Hidden variable: X # Observation prob.: P(y;|x;)
¢ Observed variable : 'Y ¢ Transition prob.: P(X;,4/X;)

& Decision: D ¢ Reward: U(x;, d;)



Dynamic Bayesian network (DBN)

X [0] X[1] (X120

/|

Y [0] Y [1] @
(zD ) G

¢ Markov chain or hidden Markov model:
— one variable, X
— one conditional probability: P(Xi,4|X;)

¢ Dynamic Bayesian network:
—several variables, {X, Y, Z...}
—factored probability: P(yi|x:), P(zi|X;, Yi), P(Xi11|Xi, ¥;)- . -



Factored extensions of Markov models

Flat model Factored model

Markov chain : :
Dynamic Bayesian network

[Dean and Kanazawa, 1989]

Hidden Markov model

Markov decision process |Factored MDP
(MDP) [Boutilier et al., 1995, 2000]

Partially-observable MDP | Factored POMDP
(POMDP) [Boutilier and Poole, 1996]




Markov influence diagrams

/

X [0] X [1] R X121
8

oew)  [s}(em)

]

(Yo D <&

(o )(cm )  (emyem) (em)(cm)

¢ Can be used for cost-effectiveness analysis



Dynamic limited-memory IDs (DLIMIDs)

+ * \\\\\\$ |

¢ Differences wrt POMDPs
> Several decisions in each time slice.

> Limited memory: the decision maker only knows the observations
made at the current and the previous time slices

> Memory variables summarize the past.



A DLIMID for a carcinoid tumors

GENDER w @ L
AGE AGE

GH P{ GHS ]—P CHEMO

]
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1
CHEMO »
BMDHIST BMDHIST

T

!

> Therapy selection for high-grade carcinoid tumors (van Gerven et al., 2007)
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Barcelona, July 2011

MDPs in Medicine: Opportunities and Challenges

F.J.Diez M. A. Palacios M. Arias
Dept. Artificial Intelligence. UNED
Madrid, Spain

Abstract

In the last three decades hundreds of Markov mod-
els have been built for medical applications, but
most of them fall under the paradigm of what we
call simple Markov models (SMMs). Markov de-
cision processes (MDPs) are much more powerful
as a decision analysis tool, but they are ignored
in medical decision analysis books and the num-
ber of medical applications based on them is still
very small. In this paper we compare both types
of models and discuss the challenges that MDPs
must overcome before they can be widely accepted
in medicine. We present a software tool, Open-
Markov, that addresses those challenges and has
been used to build a Markov model for analyzing
the cost-effectiveness of the HPV vaccine.

1 Introduction

Markov models were introduced in the beginning of the 20-
th century by the Russian mathematician Andrei Andreye-
vich Markov [1906]. In the three decades passed since the
pioneering work of Beck and Pauker [1983], hundreds of

the emergence of partially observable Markov decision pro-
cesses (POMDPs) [Astrom, 19651, in which the state of the
system is not directly observable, but there is a variable that
correlates probabilistically with it. POMDPs were developed
in the field of automatic control as an extension of MDPs,
but currently most of the research about them is carried out
in artificial intelligence (Al), again as a tool for planning, es-
pecially in robotics [Ghallab ef al., 2004]. The main con-
tribution of Al to this field comes from the area of proba-
bilistic graphical models: Bayesian networks [Pearl, 1988]
led to the development of dynamic Bayesian networks [Dean
and Kanazawa, 19891, which generalize Markov chains and
hidden Markov models [Murphy, 2002]. The idea of using
several variables to represent the state of the system, instead
of only one, led to factored MDPs [Boutilier er al., 1995;
2000] and factored POMDPs [Boutilier and Poole, 1996],
which can model efficiently many problems that were un-
manageable with flat (i.e., non-factored) representations; cor-
respondingly, there are new algorithms that can solve prob-
lems several orders of magnitude bigger than in the recent
past [Hoey er al., 1999; Poupart, 2005; Spaan and Vlassis,
2005].

In the rest of the paper, we use the acronym MDPs to re-

fer to both fully observable and partially observable models
(BNAAMDe and DNOAATNID:  vacmantisala



6.2. Markov influence diagrams



Medical Decision Making 2017; 37:183-195

ORIGINAL ARTICLE

Markov Influence Diagrams: A Graphical
Tool for Cost-Effectiveness Analysis

Francisco ]. Diez, PhD, Mar Yebra, MEng, Iriigo Bermejo, PhD,
Miguel A. Palacios-Alonso, MSc, Manuel Arias Calleja, PhD,
Manuel Luque, PhD, Jorge Perez-Martin, MEng

Markov influence diagrams (MIDs) are a new type of prob-
abilistic graphical model that extends influence diagrams
in the same way that Markov decision trees extend
decision trees. They have been designed to build state-
transition models, mainly in medicine, and perform cost-
effectiveness analyses. Using a causal graph that may
contain several variables per cycle, MIDs can model vari-
ous patient characteristics without multiplying the number
of states; in particular, they can represent the history of the
patient without using tunnel states. OpenMarkov, an
open-source tool, allows the decision analyst to build and
evaluate MIDs—including cost-effectiveness analysis and

several types of deterministic and probabilistic sensitivily
analysis—with a graphical user interface, without writing
any code. This way, MIDs can be used to easily build and
evaluate complex models whose implementation as
spreadsheets or decision trees would be cumbersome or
unfeasible in practice. Furthermore, many problems that
previously required discrete event simulation can be
solved with MIDs; i.e., within the paradigm of state-
transition models, in which many health economists feel
more comfortable. Key words: Markov models; influence
diagrams; cost-effectiveness analysis; outcomes research.
(Med Decis Making XXXX; XX:xx-xx)




6.2.1. Example:
Chancellor's model for HIV



Case study: HIV/AIDS
(Chancellor et al.,1997)
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Modelling the Cost Effectiveness of
Lamivudine/Zidovudine Combination
Therapy in HIV Infection

Jeremy V. Chancellor,' Andrew M. Hill,? Caroline A. Sabin,® Kit N. Simpson* and
Mike Youle®

Glaxo Wellcome UK Ltd, Uxbridge, Middlesex, England

Glaxo Wellcome Research and Development Ltd, Greenford, Middlesex, England
Department of Primary Care and Population Sciences, Royal Free Hospital, London, England
University of North Carolina, Chapel Hill, North Carolina, USA

HIV/GUM Research Unit, Chelsea and Westminster Hospital, London, England
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¢ State-transition diagram: 4 states

C[State A: 200 < cd4 < 500 oells.fmm:’]

Death

(Szate B: cdd4 < 200 cells,'mm?)f

State C: AIDS

¢ Two therapies:
> monotherapy: only AZT
» combined therapy: AZT + lamivudine for 2 years; then only AZT




A MID version of the HIV model

[Chancellor et al., 1997]

Therapy type

( Time in treatment [0] j >( Time in treatment [1] )

State [0]

< Life years [0] > < Life years [1] >

Drug cost [0] Drug cost [1]

< Direct medical cost [0] > < Direct medical cost [1] >

< Community care cost [0] > < Community care cost [1] >




Representing the patient history (1)

¢ Transition probabilities that depend on the time spent in
current state:

» State-transition model with tunnel states

)
C( j"{( t ]>:( j:>

)
Q
r’u’
oy
@




Representing the patient history (1)

¢ Transition probabilities that depend on the time spent in
current state:

) Memory variable

( Time in current state [0] )—»( Time in current state [1] )

( Time in treatment [0] H Time in treatment [1] )\

Only 4 states

State change [1] )

State [0]

Therapy choice

Life years [0
< Y 1 < Direct medical cost [0] >

< Community care cost [0] >

( Therapy applied [0] ) »{ Transition inhibited [1] )

L

{ costAZT [0] ) { Cost lamivudine [0]




Representing the patient history (2)

¢ Transition probabilities that depend on the number of
relapses:




Representing the patient history (2)

¢ Transition probabilities that depend on the number of
relapses:

Memory variable

( Number of relapses [0] ]—»( Number of relapses [1] )

(Time in treatment [0] }—»{_Time in treatment [1])\ (EnterinADS [1] )

Only 4 states

Therapy choice State [0]
Life years [0
< L A < Direct medical cost [0] >
< Community care cost [0] >
( Therapy applied [0] | »{ Transition inhibited [1] |

/O

{ costAZT [0] ) { Cost lamivudine [0] )




6.2.2. Other MIDs for real-world problems



Case study: Hip replacement
(Briggs et al., 2004)

AR"CLE Appi Heal'h Econ Heatn Policy 2004; 3 (2): 79-89
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The Use of Probabilistic Decision Models in

Technology Assessment
The Case of Total Hip Replacement
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A MID version of the hip replacement model
[Briggs et al., 2004]

( Age at entry ) k
Death OC [1]

Prosthesis type
Death THR [1] )

State [0]

Failure [1]

< Prosthesis cost >




Case study: HPV vaccine
(Insinga et al., 2009)
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A MID version of the HPV vaccination model
[Callejo et al., 2010]

Dec:Vaccine Bl Dec:Test type

Vaccinated

[ Effective vaccine )

Ever screened

Cost of vaccine

Age [0]

P »{ Age[1] )

Cost of cy‘tology [0]

Screening [0]

Cost of HC2 [0]

[ Infection 16-18 [0] )

P

Health state [0] \ ’/ H Health state [1]

Screening result [0] J
Symptoms [0] B

( Do colposcopy & biopsy [0] J
( Hlsterectomy [0] )
[ Chemotherapy

\< Cost colposcopy [0] >

Radiotherapy [0] J Conization [0]

< Cost of hlsterectomy [0] > \ < Cost of chemo [0] \

< Cost of radiotherapy [0] >< Cost of conization [0] > Treatment [0]




Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21;8; TRUE)*(((BI5+BJ5)+BK5*u
CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC
+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*UCIN1+SUM(BL4:BP4)*uCIN2_
3+(BQ4+BR4)*uLCC+(BS4+BT4)*uURCC+(BU4+BV4)*uDCC)*VLOOKU
P($C4;Variables!$A$4:$H$21:2; TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(
$C4;Variables!$A$4:$H$21;4; TRUE)+(BS4+BT4)*uRCC*VLOOKUP($
C4;Variables!$A$4:$H$21;5; TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C
4:Variables!$A$4:$H$21;2; TRUE))



Case study: AIDS in Africa
(Ryan et al., 2009)

The cost-effectiveness of cotrimoxazole prophylaxis in
HIV-infected children in Zambia

Mairin Ryan®, Susan Griffin®, Bona Chitah®, A. Sarah Walker?,
Veronica Mulenga®, Donald Kalolo®, Neil Hawkins®, Concepta Merry?,
Michael G. Barry?, Chifumbe Chintu®, Mark J. Sculpher®
and Diana M. Gibb“

Objective: To assess the cost-effectiveness of cotrimoxazole prophylaxis in HIV-
infected children in Zambia, as implementation at the local health centre level has
yet to be undertaken in many resource-limited countries despite recommendations in
recent updated World Health Organization (WHO) guidelines.

Design: A probabilistic decision analytical model of HIV/AIDS progression in children
based on the CD4 cell percentage (CD4%) was populated with data from the placebo-
controlled Children with HIV Antibiotic Prophylaxis trial that had reported a 43%
reduction in mortality with cotrimoxazole prophylaxis in HIV-infected children aged
1-14 years.

Methods: Unit costs (USS in 2006) were measured at University TE?&{Zhing Hospital,
Lusaka. Cost-effectiveness expressed as cost per life-year saved, cost per quality adjusted
life-year (QALY) saved, cost per disability adjusted life-year (DALY) averted was calculated

L Ry w LY « R S, U N SRt LS . S Ty Y R —



A MID version of the CHAP model
[Ryan et al., 2008]

(" Time in state [0 —{ Time in state [1] )

( Age at state entry [0] )

A m

CD4% 8-15 [0] ) ition [1]

Inpatient costs [0] ‘

N
< QOutpatient costs [0] QALYs [0]

\‘\< Sk )

{ Total cost [0] ) HIV test cost

Therapy




Our model for malignant pleural effusion

\T Initial treatment >

( Time in treatment [0] H Time in treatment 11 )

[ Death (cancer) [1]

Treatment

Complication [0]

\ Infected [0])\ \\ / Infected [1]
[ Patient state [0] j \ \ Patient state [1]
y \ \( Resolved [0] B Resolved [1] )

< Admission for infection [0] >

[ Death cancer now [1] )

< Nurse visit [0] >

> Meeting of the Society for Medical Decision Making (SMDM 2015),
St. Louis, October 2015.



Our model for colorectal cancer screening

= Age[1] )

OC death [0]

= State [1]

‘\\ A\ Time since last FOB test [1] )
"\
[ Screening policy “ \“’\

o FOBT [0]
i

B (et

FOB test result [0]

Do colonoscopy [0] } \ /( Symtomatic [0] ) GloL [0]

[ Colonoscopy result [0]

[ Time since colonoscopy [1] ) \C:\Treatment ]

[ Time since neg. colonosc. [0] )—»( Time since neg. colonosc. [1] J

C: Colonoscopy [0]

> European Conference of the Society for Medical Decision Making,
London, UK, June 2015.



Our model for bilateral cochlear implantation

( Device price J ( Discount (%) J

CS: Surgery
CS: |nitial tuning

Work hours lost

Traveling
CF: Surgery

Death [0]

Alive [1]
Elective non use 2

Internal device age 1 [1] )

Implants used [0] & Implants used [1]

Major complic 1 [0] Explant 1 [0] '
Major complic 2 [0] Explant 2 [0] '
( Revision surgery [0] Surgery death [0]

CF: Mainteinance [0]

CS: Tuning [0]

F
{ QoL [0]
3
< CS: Revision surgery [0] >
"
[ External device failure 2 [0] J A /

\ ={ Internal device age 2 [1] )
» Processor2 age [1] ) \ /
\ [ Internal device failure 2 [0] J

< CS: Processor 2 replace [0] > CF: Processor 2 fix [0] >

CS: Internal device 2 replace [0] >

> Cochlear Implant Symposium, Washington DC, October 2015.



Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

(Gender ) (QHGEIID > Ao 1)

Intervention

Work hours lost

Traveling
CF: Surgery

Blive [1]

Internal device age 1[1] ]

Implants used [0] » Implants used [1]

"

CF: Mainteinance [0]

Major complic 1 [0]

CS: Tuning [0]

Major complic 2 [0]

Revision surgen,r [0] Surgery death [0]

. — "

:[ Internal device age 2 [1] j
:.— Processor2age [1] | \ /
\ ( Internal device failure 2 [0] )

CS: Processor 2 replace [0] CF: Processor 2 fix [0]

CS: Internal device 2 replace [0]




Our model for bilateral cochlear implantation

/

Intervention

Work hours lost

Traveling
\ CF: Surgery

CF: Mainteinance [0]

CS: Tuning [(

gl

[ External device failur

( Device price ] ( Discount (%) j

a s

Node propertief: Intervention

| Deﬁnition| Domain | Parentsl Other properties|

Variable type :Finite states

l

l

States: .
BCI simultaneous l Standard domains
BCI sequential .
Unilateral l Add
= Delete
4+ Up
¥ Down

l []ok H X Cancel ]

icessoﬂ age [1]

CS: Processor 2 replace [0]

CF: Processer 2 fix [0]

( Internal device failure 2 [0] )

CS: Internal device 2 replace [0]

Elective non use 2

Implants used [1]

)

device age 2 [1]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Surgery
CS: Initial tuning

Intervention

Work hours lost

Traveling
CF: Surgery

Death [0]

Alive [1]

Elective nonuse2 |

Internal device age 1[1] ]

]

Implants used [0] o —
CF: Mainteinance
e Tuning D] both implants P m
i 2 only first implant

only second implant *complic 2 [0]
{ QoL [0] »
Revision surgary [0] Surgery death [0]

i

Implants used [1]

CS: Revision surgery [0]

|
/ L/

o Internal device age 2 [1] j

P

( Internal device failure 2 [0] )

i

CS: Internal device 2 replace [0]

[ External device failure 2 [0] j

\;Processoﬂ age[] |

CS: Processor 2 replace [0] CF: Processor 2 fix [0]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

Intervention

Work hours lost

Traveling
CF: Surgery

\ Aliv‘e [] /

Internal device age 1[1] ]

Elective non use 2

Implants used [0] » Implants used [1]

CF: Mainteinance [0]

Major complic 1 [0]

CS: Tuning [0]

Major complic 2 [0]

Revision surgen,r [0] Surgery death [0]

CS: Revision surgery [0]

|
/ L/

o Internal device age 2 [1] j

P

( Internal device failure 2 [0] )

i

CS: Internal device 2 replace [0]

[ External device failure 2 [0] j

\;Processoﬂ age[] |

CS: Processor 2 replace [0] CF: Processor 2 fix [0]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

Intervention

Work hours lost

Traveling
CF: Surgery

Death [0]

Alive [1]

Elective non use 2

Internal device age 1[1] ]

Implants used [0]

CF: Mainteinance [0]

CS: Tuning [0]

CS: Revision surgery [0]

|
/ L/

o Internal device age 2 [1] j

P

( Internal device failure 2 [0] )

[ External device failure 2 [0] j

:.— Processor2age [1] |

CS: Processor 2 replace [0] CF: Processor 2 fix [0] /
CS: Internal device 2 replace [0]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

(Gender ) (QHGEIID > Ao 1)

Intervention

Work hours lost

Traveling
CF: Surgery

Blive [1]

Internal device age 1[1] ]

Implants used [0] I » Implants used [1]
CF: Mainteinance [0]
Major complic 1 [0] Explant 1 [0]
CS: Tuning [0]

Major complic 2 [0] Explant 2 [0]

Revision surgary [0] Surgery death [0]

i

. — "

:[ Internal device age 2 [1] j
:.— Processor2age [1] | \ /
\ ( Internal device failure 2 [0] )

CS: Processor 2 replace [0] CF: Processor 2 fix [0]

CS: Internal device 2 replace [0]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

(Gender ) (QHGEIID > Ao 1)

Intervention

Work hours lost

Traveling
CF: Surgery

Elective nonuse2 |

Internal device age 1[1] ]

Implants used [0] » Implants used [1]

"

CF: Mainteinance [0]

Major complic 1 [0]

CS: Tuning [0]

Major complic 2 [0]

Revision surgen,r [0] Surgery death [0]

. — "

:[ Internal device age 2 [1] j
:.— Processor2age [1] | \ /
\ ( Internal device failure 2 [0] )

CS: Processor 2 replace [0] CF: Processor 2 fix [0]

CS: Internal device 2 replace [0]




Our model for bilateral cochlear implantation

( Device price ] ( Discount (%) j

CS: Initial tuning

(Gender ) (QHGEIID > Ao 1)

Intervention

Work hours lost

Traveling
CF: Surgery

Blive [1]

Internal device age 1[1] ]

Implants used [0] » Implants used [1]

"

CF: Mainteinance [0]

Major complic 1 [0]

CS: Tuning [0]

Major complic 2 [0]

Revision surgen,r [0] Surgery death [0]

C8: Revision surgery [0]
' / ) /N ~
[ External device failure 2 [0] j /

:[ Internal device age 2 [1] j
:.— Processor2age [1] | \ /
\ ( Internal device failure 2 [0] )

CS: Processor 2 replace [0] CF: Processor 2 fix [0]

CS: Internal device 2 replace [0]




A MID with several decisions
Adapted from [Walker et al., 2013]

(Health condition ) »(_Significant stenosis Eligible PCI

Eligible ETT

Death CA

\ /m (_state [1] )
i
{ QALE [0] }

QALE [0]

{ ¢: Follow-up [0]

> This model evaluates all the possible interventions.
> It can cope with heterogeneity: sex, age, grade.
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ORIGINAL ARTICLE

Cost-effectiveness of cardiovascular magnetic
resonance in the diagnosis of coronary heart
disease: an economic evaluation using data from

the CE-MARC study

Simon Walker," Francois Girardin, "% Claire McKenna,' Stephen G Ball,*
Jane Nixon, Sven Plein,* John P Greenwood,® Mark Sculpher'

ABSTRACT

Objective To evaluate the cost-effectiveness of
diagnostic strategies for coronary heart disease (CHD)
derived from the CE-MARC study.

Design Cost-effectiveness analysis using a decision
analytic model to compare eight strategies for the
diagnosis of CHD.

Setting Secondary care out-patients (Cardiology
Department).

Patients Patients referred to cardiologists for the
further evaluation of symptoms thought to be angina
pectoris.

Interventions Eight different strategies were
considered, including different combinations of exercise
treadmill testing (ETT), single-photon emission CT
(SPECT), cardiovascular magnetic resonance (CMR) and
coronary angiography (CA).

Main outcome measures Costs expressed as UK
sterling in 2010-2011 prices and health outcomes in
quality-adjusted life-years (QALYs). The time horizon was
50 years.

Results Based on the characteristics of patients in the
CE-MARC study, only two strategies appear potentially
cost-effective for diagnosis of CHD, both including CMR.
The choice is between two strategies: one in which CMR
follows a positive or inconclusive ETT, followed by CA if
CMR. is positive or inconclusive (Strategy 3 in the
model): and the other where CMR is followed by CA if

INTRODUCTION
Coronary heart disease (CHD) is a leading cause of
death and disability worldwide. In the UK, over 2
million people are living with CHD and, in 2007,
it was estimated to account for over 94 000 deaths,
of which over 31 000 were considered premature.'

A variety of investigations may be used to diag-
nose CHD and identify patients who require cor-
onary revascularisation; all these tests, however,
have their limitations. Increasingly, non-invasive
imaging has replaced exercise treadmill testing
(ETT), with single-photon emission CT (SPECT)
being the most commonly used test for myocardial
ischaemia worldwide.” Cardiovascular magnetic
resonance (CMR) imaging is increasingly used
for the diagnosis of CHD as a result of its safety
(no ionising radiation), high spatial resolution
and ability to assess multiple aspects of CHD path-
ology in both the stable and unstable clinical set-
tings.” ™

The diagnosis of CHD has no direct health benefit
in itself; instead, any improved accuracy in diagnosis
should result in more appropriate treatment which
can confer health benefits on patients. The optimal
management of patients with CHD continues to be
debated, but options include medical therapy, percu-
taneous coronary intervention (PCI) or coronary
artery bypass erafting (CABG). Many patients with



Model structure

To conduct the economic evaluation a decision analytic model
was developed. For the initial diagnosis a decision tree allocates
patients to the appropriate diagnostic group. The prognostic
implications of being in one of these groups are then quantified
using three distinct Markov models. An example of the decision
tree for Strategy 2 (ETT, followed by CA if ETT is positive or
inconclusive) is shown in figure 1.

Positive ) .
and alive True I)OS.ItIVe
[ CHD patient
. with PCI
ETT positive O'-CA/PCI

. inconclusive
Proportion of r

CHD patients ETT Death <

eligible for PCI .
False negative patient ) »
_. T requiring PCI Alive Truepositive
CABG

Prior negative CHD patient
koo ot , ETpositiveor cp  CAPosiive (@) WithAnG
disease Proportion incondusive
of CHD .
‘—< patients ETT < Dead
eligible for .— Death Death‘ Dead

CABG Fal . :
. alse negative patient
Prior ETT <

: requiring CABG
likelihood of | negative uirng

no disease (Anegative< True negative
ETT EfTpositiveor,, and alive
‘ inconclusive k
ETT Death < Dead

negative ‘True negative patient

Figure 1 Structure of decision tree using Strategy 2 as an example. CA, coronary angiography; CABG, coronary artery bypass grafting;
CHD, coronary heart disease; ETT, exercise treadmill testing; PCl, percutaneous coronary intervention.
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6.2.3. MIDs vs. other types of models



Advantages of MIDs for CEA

¢ For model builders
> No programming is required, not even for sensitivity analysis
> The construction of the model is much faster and easier.

> Itis possible to accomplish each phase (structure, numeric
parameters, deterministic analysis, sensitivity analysis)
without thinking of the next one

> Debugging consists only of refining the knowledge contained in
the model: it is not necessary to debug formulas and macros.
¢ For the recipients of the model (agencies: NICE, etc.)

> Just by observing the graph it is possible to find out the basic
structure of the model its main hypotheses.

> Itis not necessary to check that the code (formulas, macros...)
IS correct.



Comparison of MIDs with other techniques

¢ MIDs vs. spreadsheets (Excel)
» no need to write any formulas nor VisualBasic macros
» no need to multiply the number of states

¢ MIDs vs. Markov decision trees
» much more compact = possible to build much larger models
» no need to add tracking variables (microsimulation)

¢ MIDs vs. a programming language (R, C++, MATLAB...)
» no need to write any code, not even for sensitivity analysis
» but programming languages are much more flexible

¢ MIDs vs. discrete event simulation
» cohort propagation (exact algorithm) is often much faster

¢ MIDs vs. all the others: may contain several decisions.



7. Sensitivity analysis



Types of sensitivity analysis

¢ Two main types
> structural (qualitative)
> parametric (qQuantitative)

¢ Depending on the effect analyzed
> analysis of utility
> analysis of decisions / policies

¢ Depending on how many parameters are varied
> one-way analysis
> n-way analysis (independent or join analysis)

¢ Depending on how the parameters are varied
> range (interval)
> probability distribution
> look for thresholds



7.1. Unicriterion sensitivity analysis



Tornado diagram
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Spider diagram

8 OpenMarkov - Sensitivity analysis - ID-decide-2tests-2therapies-uncert.pgmx
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Plot (one-way sensitivity analysis)

) OpenMarkov - Sensitivity analysis - |ID-decide-2tests-2therapies-uncert.pgmx
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7.2. Cost-effectiveness
sensitivity analysis



Scatter plot
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Acceptability curve

) OpenMarkov - Sensitivity analysis - ID-decide-2tests-2therapies-uncert.pgmx

Cost-effectiveness plot Acceptability curve

WTP of reference Acceptability Curve
. 3ooo0] | P v :

1.0 P— .................... ......................................... ..... ......
. 0,0 - | ................... ........................................ .................... ..................... ......
H | | | | |
E D|8 1 .................... ........................................ .................... ..................... ......
= : : : : :
‘P (1.7 | ——— frmmme e o e oo b foemeen
g : : : : :
0 0.5 | [EEEEEEE .................... ........................................ .................... ..................... ......
=}
= !
Tosib
s 0.5
= ] / ] ] ]
- (0,2} | [ S - .................... ........................................ .................... ..................... ......
= i i : i i
_% 03 = e e
I Lu|
E 02 | = e e N
(o T I U NSNS || YU W [ I S ——————————————— N——
0.0

— no therapy
— therapy 1
— therapy 2

0 10,000 20,000 30,000 40,000 50,000 60,000
willingness to pay

ped

Showi/hide intervent...
no therapy
therapy 1

therapy 2




Some sensitivity analysis options

unicriterion cost-effectiveness

tornado / spider diagram (global)
deterministic

plot (global / for a decision) o C.E. spider diagram (global)

map (global / for a decision)

acceptability (for a decision) e scatter pIc_;t_+ acceptability curve
probabilistic (for a decision)

EVPI (global) » EVPI curve (global)




8. Overview of software tools



Software Packages for Graphical Models

Written by Kevin Murphy.
Last updated 16 June 2014.
(Thanks to Alex Gorban for helping me with the switch to Google Sheets.)

Review articles

List of GM code at MLOSS

Click here for a short article T wrote for the ISBA (International Society for Bayesian Analysis) Newsletter, December 2007, sumarizing some of the packages below.
Click here for a more detailed discussion of some of these packages written by Ann Nicholson and Kevin Korb in 2004.

Click here for a French version of my comparison table (not necessarily up-to-date).

What do the headers in the table mean?

s Src = source code included? (N=no) If so, what language?

Cts = are continuous (latent) nodes supported? G = (conditionally) Gaussians nodes supported analytically, Cs = continuous nodes supported by sampling, Cd = continuous nodes

supported by discretization, Cx = continuous nodes supported by some unspecified method, D = only discrete nodes supported.

GUI = Graphical User Interface included?

Learns parameters?

Learns structure? CI = means uses conditional independency tests

Utility = utility and decision nodes (i.e., influence diagrams) supported?

Free? 0 = free (although possibly only for academic use). § = commercial software (although most have free versions which are restricted in various ways, e.g., the model size is limite

or models cannot be saved, or there is no APL)

Undir? What kind of graphs are supported? U = only undirected graphs, D = only directed graphs, UD = both undirected and directed, CG = chain graphs (mixed directed/undirected).

» Inference = which inference algorithm is used? jtree = junction tree, varelim = variable (bucket) elimination, MH = Metropols Hastings, G = Gibbs sampling, IS = importance sampling
sampling = some other Monte Carlo method, polytree = Pearl's algorithm restricted to a graph with no cycles, VMP = variational message passing, EP = expectation propagation, SL =
the program is designed for structure learning from completely observed data, not state estimation

» Comments. It in "quotes", I am quoting the authors at their request.

If you want your package to be listed, please fill out this form.

MName Authors Src Cts Gul Params Struct Utility Free Undir Inference Comments

<

AgenaRisk Agena N Cx Y Y N N $ D JTree Simulation by Dynamic discretisatior
Analytica Lumina M G Y M N Y $ D sampling spread sheet compatible

B-course U. Helsinki N Cd Y Y Y N 0D ? Runs on their server: view results us
Banjo Hartemink Java Cd M M Y N 0D none structure learning of static or dynam
Pmmmint L1 U il o ~ N v " " nn i P b 14 Fre RAORAC (N e

69 packages!



Open-source tools for PGMs

g
2 % o <

g e 2 = 9 & g g = 2 B

5 = = z, Z = 2. z z, Z, @

= ) 25 aa] 2 = - M 2B aa] o
Start 1993 | 1996 | 1997 1999 2000 | 2000 | 2002 2003 2003 | 2004 2006
Stopped (_— 22001 [2010 | 2007 | 2004 |2014 (( — ) 2003 | 2005 | 2004 | 2007
Programming language Java | Java | Java | Matlab | Java | Java | Java Java C++ Java | Python
License GPL | GPL ? GPL GPL | GPL | GPL | LGPL | IOSL | GPL GPL
Bayesian networks yes ves ves ves yes yves ves yes ves yes yes
Influence diagrams no no yes ves no yves ves no no no no
Dynamic,/Markov models no no no yes no no yes no no no no
User manuals ves yes ves ves ves yes ves no no ves ves
Developer manuals yes no no no no ves yes no no no no
Users list /forum yes no no ves yes yes yves yes no ves yes
Developers list /forum yes no ves yes yes ves yes yes no yves yes
Source HTML docs yes yes yes no ves yes yes yes no no no
Version control yes no yes no yes yes ves yes no ves yes
Bug tracker yes yes no no ves ves ves yes no ves yes

¢ Only BNT and OpenMarkov can represent Markov models.

¢ Among the tools having a GUI for editing PGMSs, only
Weka and OpenMarkov are still under active development.




OpenMarkov. Main features

¢ Main advantage: open source

» Users can adapt it to their needs

» Software engineering tools:
JUnit, maven, mercurial (bitbucket), nexus, bugtracker, etc.

¢ Strengths
> Written iportability (Windows, linux, MacOS...)
» Many types of models, potentials, etc.

» Algorithms not available in any other package
« CEA with IDs
* interactive learning

» Very active: new features are continuously added
» Support for users and developers: wiki, lists, mail...
» Well-documented format for encoding networks: ProbModelXML.



OpenMarkov. Limitations

¢ Main weakness

> Sill needs debugging

¢ Other weaknesses
» Written in Java: relatively slow (in some cases)
» No on-line help, documentation still poor
» Support is limited, due to scarcity of human resources.



8. Conclusions



Conclusions

¢ BNs overcame the limitations of the naive Bayes method.

¢ |IDs have several advantages over decision trees,
but also have serious limitations for medical decision making.

¢ DANSs are similar to IDs, but more suitable for asymmetric
decision problems.

¢ It is possible to do cost-effectiveness analysis with IDs.
¢ and also with Markov IDs (MIDs) if all decisions are atemporal.

¢ There are other types of Markov PGMs having one or more
decisions per cycle: MDPs, POMDPs, DLIMIDs...



How to bring PGMs
from artificial intelligence
into medical decision making

¢ Dissemination
> Seminars, short courses...

> Tutorials and textbooks written in the language of clinicians,
epidemiologists and health economists

& Research

> New methods for the representation of knowledge
> New algorithms for CEA, sensitivity analysis...

¢ User-friendly software tools
> for building, debugging and maintaining the models
> for displaying the results using charts, tables, etc.



Future work

¢ New models and algorithms
» Markov DANSs
» CEA with models having one or several decisions per cycle

» new methods for CEA, sensitivity analysis, explanation of
“reasoning”...

¢ Integration of PGMs, cost-effectiveness analysis,
and Bayesian inference

» Integration of OpenMarkov with OpenBUGS and/or STAN.



Thank you very much for your attention!

¢ Links
o Wwww.cislad.uned.es

 www.OpenMarkov.org

o www.ProbModelXML.org/networks

¢ Contact: fidiez@dia.uned.es



http://www.probmodelxml.org/networks
mailto:fjdiez@dia.uned.es

