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Disclaimer

= We are the developers of OpenMarkov, an open-source
tool for probabilistic graphical models (PGMs), which we
will present in this course; so, we may be biased when
comparing it with other software tools.

=  We have founded DeciSupport Al, a spin-off that offers
consultancy about modeling for medical decision analysis
(especially with OpenMarkov and R), courses, software
development, etc.
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1. Introduction:
history of PGMs



“Born” in the field of A.l.

History of PGMs

Markov chains: A. Markov, 1906

Probabilistic models for genetics: S. Wright, 1921
Markov decision processes (MPDs): R. Bellman, 1957
Naive Bayes method: three independent papers, 1963
Partially observable MDPs (POMDPs): K. Astrém, 1965
Influence diagrams: R. Howard, J. Matheson, 1980, 1984

Bayesian networks: J. Pearl, 1982, 1986, 1988

Dynamic Bayesian networks: T. Dean, K. Kanazawa, 1989
Factored MDPs: C. Boutilier et al., 1995, 2000

Factored POMDPs: C. Boutilier, D. Poole, 1996

Decision analysis networks: F.J. Diez et al., 2012

Markov influence diagrams: F.J. Diez et al., 2015, 2017

~

>

Nowadays PGMs are one of the main techniques used in A.l.



Al

Some areas of Al

ML = machine learning
NNs = neural networks
DL = deep learning

PGMs = probabilistic
graphical models



2. Probabilistic diagnosis



2.1. Basic concepts
of probabilistic diagnosis



Basic concepts for medical diagnosis

% Disease E, result of atest T

< Probabllistic parameters (model inputs):

> Prevalence: P(+e)

> Sensitivity: P(+t|+e)

> Specificity: P(-t|-e)

< Predictive values, i.e., probability of the disease
when knowing the result of the test (model outputs):

> Positive PV: P(+e|+t)
> Negative PV: P(-e|-t)




2.1. Bayes theorem



Bayes theorem

> We knew that

P(X,y) _
P(Xx]y) = by the definition of P(x
(¥) =5 y (x1y)
P(x,y)=P(X)-P(y|Xx) by the definition of P(y|x)
P(y) =D P(y|x)-P(x) by the theorem of total prob.

> Combining these results:

P(xy) _P(X)-PyIX) _ P()-P(yX)
P(y) P(y) ZP(X')-P(yIX')

P(xly) =

> It means that knowing P(x) and P(y|x) we compute P(x|y).



Predictive value of a finding

< Positive predictive value: P(+e|+h)

P (+e+h) = P(+e) -P(+hl+e)

P(+e)-P(+hl+e) +P(—e)-P(+hl—e)

prev -sens
prev -sens + (1—prev) - (1—spec)

PPV =

< Negative predictive value: P(-e|+h)

P(—e)-P(=hi—e)

P(=el=N) = B e P (Chie) + P(—8) - P(ohi—e)

(1— prev) - spec
prev - (1—sens) + (1— prev) - spec

NPV =




Hands-on exercise 1

< Example:

> Prevalence of a disease: 14%

> Sensitivity of a test: 70%

> Specificity of the test: 91%

< Questions:

> What is the positive predictive value (PPV)?

- If the test is positive, what is the probability
that the patient has the disease?

> What is the negative predictive value (NPV)?

- If the test is negative, what is the probability
that the patient does not have the disease?




OpenMarkov

Espariol

Home
Users / Download

Developers
References

Acknowledgments

News

OpenMarkov

OpenMarkov is a software tool for probabilistic graphical models (PGMs) developed by the Research Centre for

Intelligent Decision-Support Systems of the UNED in Madrid, Spain.

It has been designed for:

¢ editing and evaluating several types of several types of PGMs, such as Bayesian networks, influence diagrams,
factored Markov models, etc.;

® |earning Bayesian networks from data interactively;

e cost-effectiveness analysis.

You can read the tutorial to have a glimpse of its capabilities.

Visit the users' page to download OpenMarkov and obtain additional information.

CISIAD. Research Center on Intelligent Decision-Support Systems. UNED. Madrid, Spain.



OpenMarkov. Main features

< Main advantage: open source

» Users can adapt it to their needs

» Software engineering tools:
JUnit, maven, mercurial (bitbucket), nexus, bugtracker, etc.

< Strengths
» Written iportability (Windows, linux, MacOsS...)
» Many types of models, potentials, etc.
» Algorithms not available in any other package

:(CEAwith IDs and DANS

* interactive learning
» Very active: new features are continuously added
» Support for users and developers: wiki, lists, mail...
» Well-documented format for encoding networks: ProbModelXML.



Prob
Model
XML

Home
Networks

Networks

Probabilistic networks encoded in the format ProbModelXML. They have been created with OpenMarkov's graphical user interface;
this program can be used to open and edit them. The technical report that specifies the ProbModelXML format contains references
for each type of network.

Bayesian networks

* Two diseases
s Asia [Lauritzen and Spiegelhalter, 1988]
s Alarm [Beinlich et al., 1989]

Decision analysis networks

» Decision about test (unicriterion)

* The used car buyer problem [Howard, 1984]

s The reactor problem [Covaliu et al., 1995]

¢ The dating problem [Nielsen et al., 2000]
* The king's problem [Jensen et al., 2002]
* The diabetes problem [Demirer et al., 2006]

* n-test problem: 3 tests, 4 tests, 5 tests, 6 tests, 7 tests

* Mediastinet (unicriterion) [Lugue, 2009]
Influence diagrams

* Decision about test (unicriterion)

* Cost-effectiveness of a test and two therapies

* Mediastinet (unicriterion) [Lugue, 2009]
* Mediastinet (cost-effectiveness) [Lugue, 2009]
e Arthronet (unicriterion) [Ledn, 2011]

s Arthronet (cost-effectiveness) [Ledn, 2011]
Markov influence diagrams

* Cost-effectiveness of two therapies for HIV [Chancellor et al., 1997], new version

e Cost-effectiveness of a new type of hip prosthesis [Briggs et al., 2004]

» Cost-effectiveness of HIV prophylaxis in children [Ryan et al., 2008]

* Cost-effectiveness of the HPV vaccine [Callejo et al., 2010], version without super-value nodes

s Cost-effectiveness of bilateral cochlear implantation [Pérez-Martin et al., 2016]

+ Cost-effectiveness of colorectal cancer screening [Lalana et al., 2016]

POMDPs



OpenMarkov. Limitations

< Main weakness

> Still needs debugging

< Other weaknesses
» Written in Java: relatively slow (in some cases)
» No on-line help, documentation still poor
» Support is limited, due to scarcity of human resources.



Probabilistic diagnosis with two findings

<+ Example:
> Prevalence of the disease: 14%

> Sensitivity of test C: 70%
> Specificity of test C: 91%

> Sensitivity of test E: 90%
> Specificity of test E: 93%

< Question:
> What is the posterior probability for each combination of findings?




2.2. The naive Bayes method



The naive Bayes method

< Two hypotheses:

» Diagnostics are mutually exclusive
= every patient has at most one disease

» Findings are conditionally independent
given the diagnostics

< Graphical representation:

Diagnostic D




Succesfull applications of the naive-Bayes
- Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone
tumors: A preliminary report” Radiology 80 (1963) 273-275.

- Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid
function” JAMA 183 (1963) 307-313.

- Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis
of congenital heart disease” Progress in Cardiovascular Diseases 5 (1963) 362-377.

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer
diagnosis of congenital heart disease” Annals New York Acad. Sciences 115 (1964)
558-567.

- de Dombal FT, Leaper JR, Staniland JR, et al., “Computer-aided diagnosis of acute
abdominal pain” BMJ 2 (1972) 9-13.

- Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for
computer-aided management of acute renal failure” Amer. J Med 55 (1973) 473-484.

- Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program
that considers clinical responses to digitalis” Amer. J. Med 64 (1978) 452-460.

More accurate than medical doctors (in restricted domains).



Limitations of the naive Bayes

< In general, the diagnostics are not mutually exclusive.

» The naive Bayes cannot diagnose that more than one
diseases are present

< In general, findings are not conditionally independent.

> The nailve Bayes gives wrong results when findings are
(conditionally) correlated.

We'll come back to this later on.

Let’s first see how Bayesian networks address this problem.



3. Bayesian networks



Definition of Bayesian network

<+ Elements:
» a set of variables {X}

» an acyclic directed graph
* every node in the graph represents a variable X
» a conditional probability distribution (usually a table)
for each variable: P(x; | pa(x;))
» for a node without parents: P(x; | pa(x;)) = P(X;)

< Result: join probability for the network

P(Xl’ ’Xn) — HP(Xilpa(Xi ))




Naive Bayes

Diagnhosis

Ecography

Vaccination

¥

Symptom

Bayesian network

[ Yirus A ) [ Yirus B jl

Vaccination

Disease 2

Anomaly

=

[ Ecography ]I




3.2. Examples of BNs



Examples of BNs

< Medical Bayesian networks we have built

» DIAVAL: echocardiography (valvulopathies)
F. J. DiezZ thesis, 1994

» Prostanet: urology (prostate cancer)
Carmen Lacave’s thesis, 2003

» Nasonet: nasopharyngeal cancer spread
Severino Galan’s thesis, 2003

» HEPAR II: liver diseases
Agnieszka Onisko’s thesis, 2003

» Catarnet: Cataract surgery
Nuria Alonso’s thesis, 2009




DIAVAL

Il INTRODUCIR ECO

archivo  Dakos previos  Hallazgos eco Diagnastico  Especial fyuda

Bl DATOS ADMINISTRATIVOS _ o] x|

Eco nimero: 184382 Fecha: [29]10]e3] Transtoracico:

Cinta: El Hora grabacion: Transesofagico: HO

Hombre: |tr||:||:g1|:| |

=10l x|

51

Apellidos: [PEREZ |[cARCIA

Sexo: WUJER  DHNI: [123456 Edad: [51 |afios

Peso: Hg Estatura: [:m Sup. corporal: 1.58 m?

*_

Solicitante: [CARDIOLODGIA |

Situacidn: IMGRESADD Sector: El Cama:

~ Continuar

Introducir los datos del paciente.




DIAVAL: numeric findings

Il INTRODUCIR ECO

Archivo  Datos prewios  Hallazogos eco Diagndstico Especial

Ayvida

Il PARAMETROS DEL ECO DOPPLER. (M ¥ T) = II:IIEI

E 164 |cm/s
A [::::]chE

Cociente EFA

T.R.IU. [ ms
T. desaceleracidn [::::]mE

Grad. max. mitral 18.8 nnHg
Grad. med. mitral (7.8 |mmHg

T.H.P. mitral m5

Area mitral (THP) 6.9 cm?

Uel. max. tric. [::::JENIE

Grad. max. tric. mmHg
Grad. med. tric. [::::]mmHg
Anmﬁurl

"+108%%" "‘mod. aumentada"

“pst. moderada™
"lev. aumentado™

"+183%" "'sev. aumentado™
ey YA "esten. critica™
Continuar

=101 x|

Pulsar 7' para obtener mas informacidn sobre un parametro.




DIAVAL.: qualitative findings

-1olx|

archivo  Datos previos  Hallazgos eco Diagndstico Especial Ayviida

Il ECO BIDIMENSIONAL: YALYULA MITRAL = ||:||i|

Ausente SCORE MITRAL: 9

Reduc. leue
Moderado

CALC. VALUAS EHGR. VALVAS HOUILIDAD

Ausente Simétrica

Fus. mod.

CALC. COMIS. FUS. COMIS.

Ho vegetaciones

Afect. moderada

APARATO SUBVALU.

Anterior Resto normal Continuar




DIAVAL.: diagnostics

=|o| x|

grchivo  Dakos previos  Hallazgos eco  Djagnostico  Especial Ayuda

_lpix

Estenosis mitral reumatica moderada. (1008%)
Insuficiencia mitral lewve. {96%)

Estenosis reumdtica severa de la valvula adrtica. (188%)
Insuficiencia tricuspidea funcional leve. (72%)

Retraso de la relajacion diastolica. (65%)

Hipertensidon pulmonar moderada. (1008%)

Anterior Festo normal Continuar




DIAVAL.:
final report

in a text editor

[P INFORME.TXT - Bloc de notas

archivo  Edicion  Formato  Yer  #yuda

=10l x|

Datos administrativos

M® eco: 104382, Fecha: 251043, <Cinta: 512.

MARIA GARCIA FPEREZ. DMI: 1234567,

Edad: 51 afios. Mujer.

Peso: 58 Kg. Estatura: 158 cm. sup. corporal: 1,58 m=.
solicitante: CARDIOLOGIA.

Ingresada, sector 3, cama 512a.

Sintomas

Disnea de grado II.

valvula mitral

Area feco 2D0: 1.2 cm®.

velocidad onda E: 184 cm/s.

Gradiente maximo: 10.8 mmHg.

Gradiente medio: 7.0 mmHg.

Tiempo de hemipresion: 255 ms.

Area (THPDI: 0.9 cm=.

Engrosamiento moderado de las walwas.

Mo calcificacion de las walwas mitrales.
reduccian leve de la mowilidad.

Contractilidad segmentaria normal.
Pericardio narmal.

DIAGHOSTICO

Eztenosis mitral reumatica moderada.
Insuficiencia mitral leve.

Estenosis reumatica severa de Ta walwula adrtica.
Insuficiencia tricuspidea funcional Tewe.

Retraso de la relajacion diastolica.

Hipertension pulmonar moderada.

Dra. Elena Iturralde |




Prostanet (for prostate diseases)

m ( Pais de origen j
Microtraumatismos ]

Obesidad

\‘ Actividad sexual

K
Sondaje

’ (hwsuno ) j
’ ‘ Prostatitis crénica L_{, -
Ve i\ L Congestion prostatica
Antecedentes )

m"‘b. ‘

‘/‘\ " Cistiti — A
' ‘ Céncer/dr {Tata\;.- ;
‘( J— ap Q‘ TAC

PSA total
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Perdida de peso + ( Gammagrafia )

¥ L Dolor
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m PSAI IPSAtL




Nasonet (nasopharyngeal cancer spread)

fats

g tumor on pharynx J

[Primary inf( Primary infiltrating tumor on nasopharyngeal anterior wall )ateral wall |lateral wall )riurwall _}riur wall Iasnpharyngeal left lateral wall |lateral wall | Primary veg

//\\\

[Aﬁeded cervical lymph “Udes(lnfltralmg tumorspreadlo nasopharyngeal anterior wall Jlateral wall lateral wall )lurwall )nurwall blers in left ear Jin right ear ¥ nasal fossa }'asal fossa )mm nasopharyngeal anterior wall )teral wall }teral wall mrwall )ID[WB" j

s : ﬂ‘ — MM
o e
( Affected supraclavicular lymph nodes 0"( Liver metastasis ]spread to Ieft nasal fossa hsal fossa )amtld space de space ]yngeal PEEs [Hemorrhaglc sputum lNasaI hemorrhage J
N -

i
[ Edema in leftam ifiltrating tumor spread to left magillary sinus ary sinus )ate and tonsil )andlunsﬂ )JSSIHUS )“”5 sinus { Infection in nasopharynx ieft gar ),t ear_)
%,f -Ill #‘ Oturrhagla in left ear ]agm in right ear jhs1ru|:1mn on the left side jnghtsme L =T
L "__,_————'—-' "".‘-—

Edema in face, neck, and supraclavicular region f ,l[
( L | 4 Mr/
TEN = IR ‘W‘ Rhinorrhea Joﬁullnes in left ear Jight ear )the left )he right )ﬂ maxillary sinus ]l}' sinus ]
( Infiltrating tumursple( Infiltrating tumor spread to left anterior hase ufskull hse of skull ==~

I [, P
[ Infiltrating tumor spread to left middle ear )lddle ear |middle base of skull )ase of skull pfi side |t side |mus Vertigo Cephalalyia |lent sputum I )torrhea in left ear }a in right earJ
#/ ‘J '!"ﬂh-.'--..__‘

[ Infiltrating tumor spread to left posterior base of skull fase of skull

L N e - \
( Cavernous sinus syndrome on the left side }ight side )Ieftside )zrighl side Jleftside jghl side Junlhe left side TthSidE )

N w oy e e

( Orhital apex syndrome on the left side ) right side Jun the left side }3 right side je_)qht side j




Hepar | (liver diseases)

surgery ( choledocholithotomy

hospital galistones
amylase
i fat le_cells
transfusion injections p—— -
diabetes — HENIERES hepatotoxic
vh_amn alcoholism
sex
fibrosis age
P RHepatitis
i irrhosis
obesity ChHepatitis S
PBC THepatitis
: nausea
Steatosls pain_ruq carcinoma .
Hyperbilirubinemia anorex’a
triglycerides pressure_ruq cholesterol hepatomegaly
inr
hbeag ESR | albumin | proteins ggtp bilirubin hepatalgia
o ait| fatigue platelet ¢

(hbsag_antl J / ( palms) phosphatase itching

hbsag # U (encephalopathy) y bleeding ,& \ . m

( hcv_an'ti( hbe_anti edema | _edge ( irregular_liver I ascites ) ( jaund_symptoms m

density

( consciousness ) spiders

(jointsj ( pain j




Catarnet (cataract surgery)

(retinopatia_diabetic maculopatias ambliopia neuropatias distrofia_fuchs opac_comeales
mlo[;(a_riagna retinopatia_nd tipo_catarata patolo_RAND
[ camara_estrecha ( ojo_hundido . ” ncelu_RAND
av_sin_catar
catarata_contral
sinequias_post
i
(comtec baja_RAND .
= = pupila_estrecha 4 RAND ) av_pre
\\ / agudepos_|
( pseudoexfoliacion ) ojo_vitrectomizado ) av_contral
Cdeslu_catar
\/~X agudepre_RAND
mala_colaboracion contrala_RAND

comtec_med_RAND
J / X)\ " (deslu_pre_no_catar
fvnd_contral

( sublux_cristalino )

deslu_pre otros_trast_fv

fibrosis_c_ant fvnd_pre_catar

laterali_RAND

¥
comtec_alta_ RAND

/ - fyvnd_pre
mecha_vitrea
ruptura_caps_post =

deslu_contral

despr_retina

( deslu_global_pre fv_deslu_pre fyvnd_global_pre

endoftalmitis
alter_incision edema_corneal

despr_coroideo ), ©dema_mac_cist deslu_complic fv_global_pre

fvnd_post

otros_trast_fvnd_complic fvnd_global_post

av_complic
deslu_post funcion_RAND
fv_global_post

av_post : ganancia_deslu
ganancia_av /( deslu_global_post funcion_post

( v_ganancia_deslu )




BN vs. a panel of experts (Delphi)

< Comparison in 429 clinical scenarios

9 - o ie:z
s o P
[
. . :fogf‘ - 3
® @
x ’0. ...
570000 §:§.
¢ _~ e
E * e o °* "3/
O 2 S¥ 33— s :
SR
C5 iv. :
ks - by
8453 i‘cti *
> t .
c63
2
1 T T T T T
1 2 3 4 5 6 7 8 9

expert panel (median)

+ Result: ICC=0.83 [IC95%: 0.80 — 0.86] (p<0.001)



3.3. BNs and causality



Two interpretations of BNs

< Semantics of a Bayesian network:
» As a mathematical model: probabilistic independencies
» As a model of the real world: they usually represent causality

< Two BNs are mathematically equivalent when they represent the
same set of independencies.

< But two different BNs can never have the same causal meaning.

> Example 1

OROMOS0

> Example 2

OaOs 0RO 0002050



Correlation does not imply causality

logical
implication

causal correlation
relation (statistical)




Several types of correlation

< Direct cause

/.:. Selection bias

\\ (example: Berkson bias)

~

% Common cause

L

Correlation
without
direct causality

[Hernan and Robins, 2020]
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MIGUEL HERNAN

Causal Inference Book

Search this sectiol n Jamie Robins and I have written a book that provides a cohesive presentation of concepts of, and methods for, causal
inference. Much of this material is currently scattered across journals in several disciplines or confined to technical
Home articles. We expect that the book will be of interest to anyone interested in causal inference, e.g., epidemiologists,
Research v statisticians, psychologists, economists, sociologists, political scientists, computer scienfists... The book is divided in
Teaching o 3 parts of increasing difficulty: causal inference without models, causal inference with models, and causal inference

from complex longitudinal data.
Causal Inference Book

U.S. National Academies
reports
To cite the book, please use “Hernan MA, Robins JM (2020). Causal Inference: What If. Boca Raton:

Chapman & Hall/CRC.”

Editorial Posts
Scientific Meetings ~
Contact

The components of the book can be accessed by clicking on the links below:

» The Causal Inference book (updated 31July 2020)

a NHEFRQ Aata

www.hsph.harvard.edu/miquel-hernan/causal-inference-book
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3.4. Building BNs



How to build a Bayesian network

<+ From a database

Data algorithm X Bayesian
base network

» There are many algorithms, several new algorithms every year
» Similar to statistical methods (logistic regression, neural nets...

N

<+ With a human expert’'s help

N

Causal modeling | Causal probabilities Bayesian
knowledge graph network

< Hybrid methods:

» experts — structure; database — probabilities
» experts — initial model; new cases — refine the probabilities



3.4.1. Building BNs
with causal knowledge



Where do the probabilities come from?

< Epidemiological studies
» advantage: we obtain directly the parameters we need
» difficulties: time and cost; biases (e.g. selection biases)

< Medical literature
» advantages: reliable, relatively inexpensive

> difficulties: few qualitative data, few direct probabilities, different
criteria, population-dependent, publication biases

< Databases
» advantages: fast, inexpensive
> difficulties: small databases, selection biases

< Subjective estimates
» advantage: relatively inexpensive
» difficulties: unavailability of experts, psychological biases



3.4.1.1. Canonical models



Canonical models

General model Noisy OR
< Probability table: < Efficiency of each link:
P(y|X1, 9Xn) Ci

<% Causes that
can produce X

< Factors that
iInfluence the prob. of X

Pneumonia




Technical Report CISTAD-06-01 Version 0.9 (April 28, 2007

Canonical Probabilistic Models
for Knowledge Engineering

Francisco J. Diez FIDIEZODIA UNED.ES
Dept. Inteligencia Artificial, UNED
Juan del Rosal, 16, 28040 Madrid, Spain

Marek J. Druzdzel MAREK@SIS. PITT.EDU
Decision Systems Laboratory, School of Information Sciences and Intelligent Systems Program
Urneversity of Pittshurgh, Piftshurgh, PA 15260, 754

Abstract

The hardest task in knowledge engineering for probabilistic graphical models, such
as Bayesian networks and influence diagrams, is obtaining their mumerical parameters,
Models based on acyclic directed graphs and composed of discrete variables, currently most
common in practice, require for every variable a number of parameters that is exponential
in the number of its parents in the graph, which makes elicitation from experts or learning
fromn databases a daunting task. In this paper, we review the so called canonieal models,
whose main advantage is that they require much fewer parameters. We propose a general
framework for them, based on three categories: deterministic models, ICT models, and
simple canonical models. ICT models rely on the concept of independence of cansal influence
and can be subdivided into noisy and leaky. We then analyze the most common families
of canonical models {the OR/MAX, the AND/MIN, and the noisy XOR), generalizing
them and offering eriteria for applying them in practice. We also briefly review temparal
canonical models,

Contents
1 Introduction 3
1.1  Overview of the paper . . .. ... ... ....... 4
2 Preliminaries 5
21 Notablon . . . . . o e e e e e e e e 5
2.2 Systems, models, variables, and probability distributions . . . . . . . .. .. i3
2.3 Bayesian networks and influence diagrams . . . .. .. ... 0oL T
24 Causality and network structure . . . . .. ... L 8
3 General framework 10
3.1 Determimistic models . . 0 .0 0L L Lo 10
3.2 ICTmodels . . . o .0 o e 12
321 Noisy ICTmodels . 0 00000000000 12
3.22 Leaky ICTmodels . . . 0 00 0000000 o Lo 14
3.2.3  Probabilistic ICT models . . . . . ... ... ... . .. ... 17

a9 Qivanls carncnieal ywmoddole 1



3.4.2. Learning BNs from data



Learning BNs from data

< Two possibilities of learning
» automatic, interactive

< Two main algorithms:

» Search-and-score
« search
— depart from a network with no links
— one edit (add/remove/invert a link) in each iteration

* SCore
— use a metric (there are several metrics available) to quantify how well

the model fits the data
» PC
 depart from a fully-connected undirected graph
» when two variables are independent, remove the link
— more precisely, when the correlation is not statistically significant (p < o)
» when two variables are conditionally indep., remove the link
« orient the remaining links to obtain a directed graph



Hands-on exercise 2



Advantages of interactive learning

< The system proposes, the user decides
> Very useful for tuition
> Useful for combining data with expert knowledge
> Useful for debugging new algorithms (workbench)

% See www.openmarkov.org/docs/tutorial.




A comparison of both methods for building BNs

« Automatic learning from databases
» Advantage: faster (graph + probabilities)

» Limitation: medical databases are usually incomplete
» Missing values — problem of imputation (rarely missing at random)
« Missing variables — spurious correlations

» Black-box algorithm that returns non-causal models
— Human experts are reluctant to accept their advice

<+ With expert knowledge (“manual” method)
» Only method possible when there is not a good-enough database
» Difficulty in practice: getting the collaboration of experts
» Building the causal graph is usually difficult
» Obtaining the probabilities is much more difficult.



Summary: BNs vs. the naive Bayes

< BNSs can diagnose several diseases simultaneously.

< BNs do not assume conditional independence of findings.

< BNs are usually causal models
> closer to doctors’ reasoning: explanation of reasoning
> probabilities are in general easier to obtain

< Three types of reasoning: abductive, deductive, inter-causal.

<+ They can combine data (from databases),
epidemiological studies (scientific literature)
and expert knowledge (doctors).

Despite these advantages,
BNs are almost unknown in medicine.

No book for medical doctors mentions them!




4. Unicriterion decision analysis



4.1. Introductory examples



Medical example (1)

< Suspicion of infection
» Prior probability: 0.14

<+ Effectiveness:

» No disease, no treatment: 10
» Disease, not treated: 3
» Disease, treated: 8

» No disease, treatment (by mistake): 9



Decision tree (1)

infection (ox, +) = 8
u (X, =
antibiotics @/ P(+x) = 0.14
o \ no infection
P(-x) = 0.86

u(-x,+d)=9

Doy = ~d infection 0 (%, ) = 3
/ P(+x) = 0.14 ’

no antibiotics @
U(-d) =9.02

no infection
P(-x) = 0.86

u (-x, ~d) =10

Optimal decision: D, =—-d = do not give antibiotics
Prognosis: U = max (U(+d), U(~d)) = max (8.86, 9.02) = 9.02



Influence diagram DAN
(decision analysis network)

Disease Therapy Disease Therapy

Health state

Health state

<+ Both models are identical.

< They generate the same decision tree.



Utility as a function of prevalence

U(d)=>Y u(x,d)-P(x)
D, =arg m)zalx(U (+d),U(—d))

U = max(U (+d),U(—d))

P(+x) | U(+d) | U(—d) Dopt U
0'00 | 900 10°00 —d 10°00
0'05 | 895 9'65 —d 979
014 | 886 9'02 —d 902 decision
017 | 883 8'81 +d 8'83 threshold
0'40 | 860 7’20 +d 8'60
075 | 825 475 +d 825
1’00 | 800 300 +d 8'00




Utility as a function of prevalence

% OpenMarkov - Sensitivity analysis - 1D-1a-no-finding-uncert.pgmx >

Plot (one-way analysis)
User defined interval
Scope one decision

10.0 4
9.5
9.0 1
8.5
8.0
7.5
7.0
5.5
5.0 -
5.5
5.0
4.5
4.0
3.5

Global utility

0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0.800 0,900 1,001
prevalence

==Therapy = no & Therapy = yes




Medical example (2)

< In the previous scenario, what should we do if we knew
with certainty whether the patient has the disease?

» Question 1: What to do when infection is present?
» Question 2: What to do when infection is absent?

< What is the average utility in this sub-population?



Decision tree (2)

antibiotics

u (+x, +d) =8
infection b /
P(+x) =0.14
no antibiotics
Dopt (+x)= +d \ u(+x,-d) =3
U(+x) =8
U=9.72 ‘Minfti
/ antibiotics 0 (=, +d) = 9
no infection D
P(-x) =0.86 S
Doy (<) = —d \no antibiotics U (=, =d) = 10
U(-x) =10

Optimal decision: infection (+x) = give antibiotics (+d)
no infection (-x) = do not give antibiotics (—d)

Expected utility: U=8x0.14 +10x0.86 =9.72



Influence diagram DAN
Disease »| Therapy Therapy
{ Realth state ) { Realth state )
We have added an We have marked Disease as
iInformation link. always-observed.

< Two different ways of saying that the value of Disease is known
when making the decision Therapy.

< Both models are equivalent: they generate the same decision tree.



Medical example (3)

<+ ThereisatestY
» Sensitivity: 70%
» Specificity: 90%
» Cost (effectiveness decrease): 0.2
< Questions:
» What to do when the test is positive?
» What to do when it is negative?



U=9.43

positive

infection

antibiotics P(+x|+y) = 0.832

P(+y) = 0.153
Dot (+y)=+d
U(+y) = 7.97

negative

UGrd |+y) = 7.97 no infection

P(—|X|+y) =0.168

infection

no antibiotics P(+x|+y) = 0.832

U(=d|+y) =3.98 no infection

P(—|X|+y) =0.168

infection

antibiotics P(+x|—y) = 0.015

P(—y) = 0.847

Dopt (-y) =~d
U(-y) =9.70

Ul+d |-y) =8.79 no infection

P(-x|—y) = 0.985

infection

no antibiotics P(+x|-y) = 0.015

U(=d |=y) =9.70 no infection

P(-x|—y) = 0.985

u (+x, +d) = 7.8

u (-x, +d) = 8.8

u(+x, -d) =2.8

u (=x, -d) = 9.8

u (+x, +d) = 7.8

u (-x, +d) = 8.8

u(+x, -d) =2.8

u (-x, -d) =9.8



Policy and prognosis

<+ Policy:
> When Y is positive: give antibiotics
» When Y is negative: do not give antibiotics

< Prognosis
» When Y is positive: U(+y) = 7.97
» When 'Y is negative: U(-y) =9.70

» Global prognosis (average utility)
UWith test - U(+y) X P(+y) + U(_'y) X P(_'y)
= 7.97 x 0.153 + 9.69 x 0.847
=043



Influence diagram

Disease

Result of test

N

Therapy

< Cost of test >

Health state

An information link
from Result of test to Therapy

DAN

Disease

Result of test < Cost of test >

Therapy

Health state

Result of test is marked as
always-observed.

< Different ways of indicating the flow of information.

< Both models generate the same decision tree.



Bayesian networks

Disease

( Result of test )

< Only chance nodes
< Used for diagnosis

< Can be learned from data

IDs / DANSs

Disease

Result of test < Cost of test >

Therapy

Health state

< Three types of nodes:
chance, decision, utility

< Used for decision analysis

< Require causal knowledge



Medical example (4):
deciding about a test

<+ TestY
» Advantage: gives information
» Disadvantage: has a cost

< Is it worth doing the test?
< Three possible policies:
1. Give the therapy to all patients, preventively
2. Never apply the therapy
3. Do testY; apply the therapy only when it is positive



do not test

antibiotics

infection

Dopt = —d
U(=t) = 9.02

U=943

do test

/ U(+d) = 8.86

U(+t) = 9.43

Y

no antibiotics

P(+x)=0.14
ol
no infection

u(+x, +d, =t) =8

P(-x)=0.86 U (% *d =9

infection

U(~d) = 9.02

P(+x)=0.14
X
no infection

u (+x, -d, =t) =3

P(-x)=0.86 Y (7% ~d, =0 =10

infection
antibiotics

Y positive

P(+y)=0.153
Dopt = +d
U(+y) =7.97

C< P(+x|+y) = 0.832
B X
A = 132 no infection

P(—x|+y) = 0.168
infection

no antibiotics (+x|+y) = 0.832

P
X

U(=d |+y) = 3.98 no infection

P(—x|+y) = 0.168

Y negative

P(~y)=0.847
Dopt = —d
U(-y) = 9.68

infection
antibiotics » P(+x|-y) = 0.015
S ) ek no infection
P(—x|—y) = 0.985
infection
no antibiotics ” P(+x|-y) = 0.015

UG = L no infection

P(—x|—y) = 0.985

u(+x, +d, +t)=7.8

u (=x, +d, +t) = 8.8

u(+x,d, +t)=2.8

u(-x,d, +t)=9.8

u(+x, +d, +t)=7.8

u(-x, +d, +t) =8.8

u(+x,-d, +t)=2.8

u(-x,-d,+t)=9.8



Influence diagram DAN
Do test? Do test?
(‘Resultoftest )  { Costoftest ) [ Result of{:s:g { Cost of test )
\
Therapy Therapy
./ ./
{ Realth stats ) {"Realth stats )

An information link. Restrictions. Revelation link.
Total ordering of the decisions The decisions are not ordered.

< Different ways of indicating the flow of information.

< The decision trees are different but equivalent:
the same probabillities, utilities, and policies.




Conditional prob. for Result of test

in the ID

in the DAN

) Mode Potential: Result of test

) MNode Potential: Result of test

Relation Type: |{Table """ "t v | | Reor Relation Type: |{Table v || Reor
Do test? no no YEs WEE Do test? no no YEs WEE
Disease absent present absent present Disease absent present absent present
positve ] ] 0.03 0.91 positive 1] 1] 0.03 0.91
negatve ] ] 0.97 0.09 negative 1] 1] 0.97 0.09
not done 1 1 0 0

e dummy value:
test not done

* restrictions
* no dummy value



Decision tree
generated by the ID

-} U=9.4312
—| Do test?

— Do test?=no [ U=9.0200 ‘

~{Result of test)

1 Result of test=not done / P=1.0000 / U=9.0200 |

£ Therapy
—t Result of test=negative / P=0.0000 / U=0.0000 ‘

+{ Therapy
—}{ Result of test=positive / P=0.0000 / U=0.0000 ‘

& Therapy
=[] Do testr=yes / u=0.4312 ‘

~{Result of test)

—} Result of test=not done ( F=0.0000 / U=0.0000 |

£ Therapy
—t Result of test=negative [ P=0.8468 / U=9.6958 ‘

+{ Therapy
=t Result of test=positive / P=0.1532 / U=7.9684 ‘

= Therapy

symmetric

Decision tree
generated by the DAN

=t U=8.4312

=] Do test?

— Do test?=no / U=9.0200 |

- [ Therapy
_. Do test?=yes / U=0.4312 ‘

—{ Result of test)

—+ Result of test=negative / P=0.8468 / U=9.6958 ‘

+- Therapy
—}! Result of test=positive / P=0.1532 / U=7.96584 ‘

- Therapy

asymmetric



Hands-on exercise 3



Exercise: Optimal stratety for two tests

Test sensitivity specificity discomfort
A 0.60 0.92 0.0003 QALY
B 0.80 0.91 0.0001 QALY

Disease = absent present
therapy 38 QALY 30 QALY
no therapy 40 QALY 20 QALY

< Question: What is the most effective strategy?




Solution with influence diagrams

< |Ds require a total ordering of the decisions

< It IS not possible to represent this problem with one 1D

< Trick: use two influence diagrams

< We choose the order (the ID) with the higher expected utility.

< This trick does not work for more than two tests.



Solution with a DAN

Do test A?

/

< Discomfort A >

Do testB?

S

< Discomfort B )

Costof B

Disease

Result B

Therapy

Healt state

< Cost of therapy >

<+ Advantages wrt IDs
» one network is sufficient
» no dummy states, such as “test not done”
» can accommodate any number of tests



The N-test problem

Dlsease

Symptom
Dec: Test4 Test Result 4
Dec: Test 0
Dec: Test1 Dec: Test 2 et MY Cost of test 4
5 Test Result 3
Test Result 0 Test Result 1 Test Result 2
y
Therapy
Quality of life

< Computationally hard: n! possible orderings of the tests.
<+ We have developed an any-space algorithm for this problem
< and a fast algorithm (9 minutes for the 7-test problem).

< Itis possible to develop even more efficient algorithms.
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1. Introduction

The two formalisms most widely used for the representation and analysis of decision problems are decision trees (DTs)
[31] and influence diagrams (IDs) [15]. DTs have the advantage of almost absolute flexibility, but also have three drawbacks:
their size grows exponentially with the number of variables, they cannot represent conditional independencies, and they
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DANSs vs. IDs

< DANS can replace IDs as the standard decision analysis tool
(in Al, MDM, operations research...) because:

> For every ID there is an equivalent symmetric DAN
- but for many DANSs there is no equivalent ID

> Virtually all real-world problems are asymmetric.
> There many problems that cannot be modeled with IDs.

> Even if a problem can be modeled with an ID, a DAN is
usually better because it does not need dummy states.



4.2. Examples of decision models
for real-world problems



Mediastinet, an ID for lung cancer

C: TBNA TBNA_Morbidity

EUS_Morbidity

QALE

Equivalent to a decision tree containing ~104 branches.



Mediastinet (DAN version)

M2 N3 .—L"J CT scan '
Dec:TBNA M
Dec:PET

e ~
i TBNA PET
Cost:TENA - - ‘ # A ‘ Cost:MED

{ TBNA Morbidity Cost:PET - [ MED )
CostEBUS ¢ SecHIG Y [ MED Survival )

EBUS Morbidity EUS Morbidity

MED Morbidity

Treatment

| Treatment |
' ( Immediate survival )
( Effectiveness )

Effectiveness

Decisions are partially ordered.



Arthronet, an ID for total knee arthroplasty

(IMC }—»{ Diabetes )  ( AlergiaATB )

S a

P it (e e

!

aG? Tco9
‘ Realizar Biopsia Sinovial |
EVAC Implante
Molestias Gammagrafia

Coste Implante Coste Gammagrafia

[ Cortes Congelados
Tratar Infeccion PTR

Molestias Biopsia Sinovial

!

Coste Biopsia Sinovial

Mejora Tratamiento

Y
Coste Tratamiento

Equivalent to a decision tree containing ~104 branches.



4.3. Advantages and limitations
of influence diagrams



Advantages of influence diagrams (1/3)

<+ |Ds are more compact than decision trees
> An ID having n binary nodes ~ a DT having 2" branches

< IDs transform automatically into decision trees
> ... but the reverse is not true (no general algorithm)

> If you build a decision tree, you only have a decision tree.
> If you build an ID, you have both.

<+ |IDs are much easier to build than decision trees

> IDs use direct probabilities (prevalence, sensitivity, specificity...)
and costs (mortality, morbidity, economic cost...)

> ID can use canonical models (noisy OR, noisy AND, etc.)

» Each parameter appears only once in the ID
- INn many cases it is not necessary to have parametric variables

> IDs can have several value nodes: more clarity, separate criteria



Advantages of influence diagrams (2/3)
< No pre-calculation of probabillities is required

< Having all the information, no debugging is usually needed
> On the contrary, “all trees have bugs” (Primer on MDA, in MDM journal)

< IDs are much easier to modify than decision trees
> Refine the model with new decisions and chance variables
> Structural sensitivity analysis
» Can adapt to different regional settings
> Can adapt to patient’s medical characteristics and preferences

< Explicit representation of causality
> a link indicates causal influence
> the absence of a link means “no causal influence” (hypothesis)




Advantages of influence diagrams (3/3)

< Two possiblilities of evaluation:

1. expansion of an equivalent decision tree
- exponential complexity (time and space)
- equivalent to the brute-force method for Bayesian networks
-many problems can not be solved with this method

2. operations on the ID (recursive reduction of the ID)
- direct manipulation of the graph and/or potentials of the ID
-similar to the best algorithms for Bayesian networks

«canonical models and the separation of utility nodes can lead to
more efficient evaluations

< More possibilities of explanation of reasoning
» computation of posterior probabilities on the ID (as if it were a BN)
> value of information (EVPI and other measures) can be computed easily
> other methods from Bayesian networks and qualitative prob. networks.
These methods can be used to debug/refine IDs.
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Howard and Matheson’s article “Influence Diagrams” has had a substantial impact on research in artificial
intelligence (AI). In this perspective, I briefly discuss the importance of influence diagrams as a model for
decision making under uncertainty in the AI research community; but I also identify some of the less direct,
but no less important, influences this work has had on the field.

Key words: influence diagrams; decision theory; artificial intelligence; value of information; graphical models;
perspective, the focus on graphical modeling research
History: Received on November 14, 2005. Accepted by Eric Horvitz on November 23, 2005, without revision.

oward and Matheson’s (1984/2005) “Influence  vision (Binford and Levitt 2003), dialog management,

Diagrams” has had a profound impact on devel- user interface design, multiagent systems, and game
opments in artificial intelligence. Some of these influ-  theory (Koller and Milch 2003), to name but a few.
ences have been quite direct; others are more indi- Another reasonably direct impact of “Influence Dia-

rect, but in many ways, more substantial. The paper = grams” derives from its role in the development
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Ithough influence diagrams have used medical examples almost from their inception, that graphical repre-
sentation of decision problems has disseminated surprisingly slowly in the medical literature and among
clinicians performing decision analyses. Clinicians appear to prefer decision trees as their primary modeling
metaphor. This perspective examines the use of influence diagrams in medicine and offers explanations and

suggestions for accelerating their dissemination.
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Introduction

Two decades after Howard’s landmark paper
(Howard and Matheson 1984/2005) that introduced
the concept of the influence diagram and three
decades since Miller’s initial report (Miller et al.
1976), Decision Analysis reproduced that paper in
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modeling paradigm slowly spread from Stanford,
both with courses offered at meetings of the Soci-
ety for Medical Decision Making (Society for Medical
Decision Making 2005) and with the development of
software that could conveniently capture and evalu-
ate such models.



IDs in the literature on MDM (1/3)

< Books that mention decision trees but do not mention IDs

Weinstein, Fineberg. Clinical Decision Making. 1980.

Sloan (ed.). Valuing Health Care. 1995.

Gold et al. Cost-Effectiveness in Health and Medicine. 1996.

Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).
Petitti. Meta-Analysis, Decision Analysis and CEA. 2" ed., 2000.
Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.
Levin and McEwan. Cost-Effectiveness Analysis. 2" ed., 2001.

Parmigiani. Modelling in Medical Decision Making. 2002.

Haddix et al. Prevention Effectiveness. 2"d ed., 2003.

Fox-Rushby and Cairns. Economic Evaluation. 2005.

Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.
Alemi and Gustafson. Decision Analysis for Healthcare Managers, 2006.
Arnold. Pharmacoeconomics: From Theory to Practice. 2009.

Kassirer et al. Learning Clinical Reasoning. 2"? ed., 2010.

Mushlin and Greene. Decision Making in Medicine. 3 ed., 2010.
(cont’'d)



IDs in the literature on MDM (2/3)

< Books that mention decision trees but do not mention IDs (cont.)

Gray et al. Applied Methods of CEA in Health Care, 2011.
Alfaro-LeFevre. Critical Thinking, Clinical Reasoning... 5" ed., 2013.
Morris et al. Economic Analysis in Healthcare. 2" ed., 2012.

Rascati. Essentials of Pharmacoeconomics. 2" ed., 2013.

Sox et al. Medical Decision Making. Latest ed., 2013.

Hunink et al. Decision Making in Health and Medicine. 2" ed., 2014.
Drummond et al. Methods for the Economic Evaluation of... 4" ed. 2015.
Edlin et al. Cost Effectiveness Modelling for HTA... 2015.

Neumann et al. Cost-Effectiveness in Health and Medicine. 2016

Caro et al. Discrete Event Simulation for HTA. 2016

<+ One book that mentioned IDs

Muennig. Designing and Conducting Cost-Effectiveness Analyses in
Medicine and Health Care. 2002, page 242:
“An influence diagram (also known as a tornado diagram) ...”

The 2nd edition (2007) and the 3 (2016) do not mention them.



IDs in the literature on MDM (3/3)

<+ Three books that describe IDs

Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000
(5 pages out of 421, in a chapter by Mark Roberts)

Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.
(2 pages out of 230)

Kattan. Encyclopedia of Medical Decision Making. 2009
(4 pages out of 1200+).

< Summary of the informal survey of books on MDM and EBM
> 26 books published after 1984
> All of them explain DTs but only 3 describe IDs, very briefly.

< Some books on medical informatics mention IDs:
- Shortliffe and Cimino. Biomedical Informatics. 4" ed., 2013 (2.5 pages out of 991).
- Kalet. Principles of Biomedical Informatics. 2" ed., 2013 (3 pages out of 708).

<+ Why are IDs so little known in health sciences after 35+ years?



Limitations of IDs

. The “reasoning” of an ID is not easy to understand
. The evaluation returns large policy tables

. IDs can only model symmetric problems
> IDs require a total ordering of the decisions

> IDs cannot represent incompatibilities between values

- Non-standard versions of IDs partially solve this problem,
but none of the alternatives was completely satisfactory.

. Algorithms could only evaluate unicriterion IDs
> They could not perform cost-effectiveness analysis

. Temporal reasoning was not possible with IDs
> Dynamic IDs are computationally unfeasible.



Solutions we have proposed

. Explanation in influence diagrams

» showing the posterior probabilities and expected values
» Introduction of evidence
» hypothetical reasoning (what if) by means of imposed policies

. Synthesizing the optimal intervention
> In the form of a compact tree

. Decision analysis networks (DANS)
» an alternative to IDs for asymmetric decision problems.

\

. Cost-effectiveness analysis with IDs

. Markov influence diagrams ~ after the break

> Including cost-effectiveness analysis




Break: 20 minutes



5. Cost-effectiveness analysis



5.1. Deterministic CEA



An example with costs and effectiveness

< Two therapies
» Therapy 1. cost =€ 20,000
» Therapy 2: cost =€ 70,000
» Effectiveness (QALY)

No therapy | Therapy 1 | Therapy 2

Disease present 1.2 4.0 6.5

Disease absent 10 9.9 9.3

< Questions:

» Which therapy to apply when the disease is present
» Which therapy to apply when the disease is absent

< The answer may depend on A, the willingness to pay (WTP)



When we know that the disease is present

70,000
5,000
0,000 ’
55,000 p

50,000 y

45,000 ’

CC ’ u notherapy

35,000 ,’ o therapy 1
30,000 ’ therapy 2

Cost

’ = = Frontiar interventions

25,000 7
20,000 F |
15,000 -
10,000 -

5,000 -

o -
o0.o 0.5 1.0 15 2.0 2.5 30 35 40 4.5 5.0 55 6.0 6.5

Effectiveness

Interval for A Cost Effect. Best therapy
(0, 7,143) 0 1.2 no-therapy
(7,143, 13,208) | 20.000 4.0 therapy-1
(13,208, +0) 70.000 6.5 therapy-2

7,143 13,208
. : : -




When we know that the disease is absent

70,000
G65,000
60,000
55,000
50,000

45,000

sl ® notherapy

35,000 @ therapy 1

30,000 therapy 2
= - Frontier interventions

Cost

25,000

20,000 L]
15,000
10,000

5,000

Effectiveness

Interval for A Cost Effect. Best therapy
(0, +o0) 0 10 no-therapy




5.2. CEA with uncertainty
about the disease



Cost-effectiveness of a test

< Prevalence of the disease: 0.14

< There Is a test
» sensitivity:  0.90
» specificity  0.93
» COSt: € 150

< Questions:
> |Is the test cost-effective?
» The answer depends on A
» What is the most beneficial therapy for each value of A?
» What is the ICER of the test?




Effectiveness as a function of probability

< Before doing the test, it only depends on the prevalence:

*

) OpenMarkov - Sensitivity analysis - 2a-1D-decide-therapy.pgmx

Plot (one-way analysis)
User defined interval
Scope one decision
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- The result of the test changes the probability of the disease.
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A decision tree for this example

 Therapy |
therapy-2
I‘ """ il
1Result |
| of test !
positive —/ therapy-1 o
J
pJ_5
DeciTest| noherepy
I
do_test
therapy-2
negave  _/  therapyl o
J
_pJ_6
cost-effectiveness
cost_test=150 no-therapy
cost_ther_1=20000
cost_ther_2=70000
eOabs=10
eOpres=1,2
elabs=9,9 ther: 2
elpres=4,0 any
e2abs=9,3
e2pres=6,5
prev=0,14
no_test —/ therapy-1 o
J

Problem: the standard algorithm only works for the unicriterion case

#
no-therapy prev
absent

present
prev*sensit/_pJ_5
absent

present
prev*sensit/_pJ_5
absent

present

prev*_pJ 3/_pJ_6
absent
_pJ_4*spec/_pJ_6
present

prev*_pJ 3/_pJ_6
absent
_pJ_4*spec/_pJ_6
present

prev*_pJ 3/_pJ_6
absent
_pJ_4*spec/_pJ_6
present

prev
absent
#

present
prev

absent

present

#

(cost_test+cost_ther_2) / e2pres
(cost_test+cost_ther_2) / e2abs
(cost_test+cost_ther_1) / elpres
(cost_test+cost_ther_1) / elabs
oost_test/ eOpres

oost_test/ eOabs
(cost_test+cost_ther_2) / e2pres
(cost_test+cost_ther_2) / e2abs
(cost_test+cost_ther 1) / elpres
(cost_test+cost_ther_1) / elabs
oost_test/ eOpres

oost_test/ eOabs

oost_ther_2/ e2pres
oost_ther_2/ e2abs
oost_ther_1/elpres
oost_ther_1/elabs

0/ eQpres

0/ eCabs



A warning and a (rudimentary) solution

“Embedded, or downstream, decision nodes are not useful in
cost-effectiveness analysis because the optimal branch
cannot be determined when folding back the tree without an
explicit decision rule for comparing costs and consequences.

Cost-effectiveness analyses can be performed with

a decision tree that has one decision node at the root.
The branches of the initial decision node represent
all of the strategies that are to be compared.”

[Kuntz and Weinstein, 2001]



How many strategies for this example?

< Without testing
» No therapy in any case
» Always therapy 1
» Always therapy 2

< With testing
> If positive, therapy 1, if negative, no therapy.
> If positive, therapy 1, if negative, therapy 2.
> If positive, therapy 2; if negative, no therapy.
> If positive, therapy 2; if negative, therapy 1.



cost_test = 150
cosl_ther_1 =
goooo
cos_ther_2 =
Fooon
effdabs = 10,
efflpres= 1.2
efflabs =99
effipres= 4,
effZabs =92
effZpres= 5.5
prev =014

0\ efi0pres

0\ efilabs

cost_ther_1\effpres

cost_ther_1\efflabs

&
present 1_ther_2\eff2
cost_ther_2 \ efi2pres
Interv_n2 prev -~ P
absent
cost_ther_2 \eff2abs
&
present
positive therapy 1 prevtsensitipreves .
prevesenst+H1-pre_. = absent
&
negative no therapy
.,
&
positive therapy 2
L}
previsenstH1-pre .
negative no therapy
{1
Ed
positive therapy 2
previsenstH(1-pre. . -
negative therapyl
{F
Ed
positive therapy 1
previsenstH(i-pre. -
negative therapy2 prev*(1-s=nsit)/(pre...

absent

[cost_test+cost_ther_1]\effipres

[cost_test+cost_ther_1]\efi1abs

cosi_test\efflpres

cost_test\ eff0abs

[cost_testscost_ther_2]\ efi2pres

[cost_test+cost_ther_Z2]'\efi2abs

cost_test\ effdpras

cosf_test\efflabs

[cost_test=cost_ther_2]\ efi2pres

[cost_test+cost_ther_2]\effi2abs

[cost_test=cosi_ther_1]\effpres

[cost_test+cost_ther_1]\eff1abs

[cost_test=cosi_ther_1]\effipres

[cost_test+cost ther_1]\effabs

[cosft_test+cost_ther_2]\ eff2pres

[cost_test+cost ther_2]\effi2abs
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1 Introduction

Cost-effectiveness analysis (CEA) is increasingly used to
inform health policies. Decision trees are the standard
method for decision analysis in non-temporal domains. A
decision node that is not the root of the tree is said to be
embedded.

All books on medical decision analysis discuss both
CEA and decision trees [1-11], but few explain how to
conduct a CEA wirh decision trees [1, 2, 10, 11], and only

build a decision tree with one decision node at the root,
which represents all the strategies to be evaluated, as
proposed by Kuntz and Weinstein; the other is to apply the
algorithm presented in Arias and Diez [13].

As a case study, we consider the common problem of
finding the incremental cost-effectiveness ratio (ICER) of a
test:

Example 1 For a disease with a prevalence of (.14, there
are two possible therapies, the effectiveness of which

denende an whather ar not the diceace ic nrecent ae choawn
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Abstract

In this paper we present a new method for performing cost-efectiveness analysis of problems that invelve multiple decisions and
probabilistic outcomes. This problem has been ignored by most of the literature on medical decision making, and the few solutions
proposed so far are either wrong or unfeasible except for very small problems. The method proposed in this paper consists of building a
decision tree with several decision nodes and evaluating it with a modified roll-back algorithm that operates with partitions of intervals.

Decision trees
See the technical report for an explanation of these examples.

e natural tree (WinDM)

e natural tree (TreeAge Pro)

e all-strategies tree (TreeAge Pro)

Additional information

e Slides presented at SMDM-2007.

* Cost-effectiveness analysis in OpenMarkov.

CISIAD. Research Center on Intelligent Decision-Support Systems. UNED. Madrid, Spain.



5.3. CEA with IDs and DANs



Influence diagram

Disease

Do test?

o

[ Result of test ) < Cost of test >

Therapy

A

< Effectiveness > < Cost of therapy >

DAN

Disease

Do test?

ST

[ Result of test ) < Cost of test >

Therapy

N

< Effectiveness > < Cost of therapy >

<+ The same structure as in the unicriterion case

< but now we have two criteria;: cost and effectiveness




An example with two tests

<+ The same disease and therapies as in the previous example.

< Test E (the same as in the previous example)
» sensitivity: 0.90
» specificity: 0.93
» cost: €150

<+ Test C
» sensitivity: 0.78
» specificity: 0.91
» cost: €18
» discomfort: 0.001 QALY

< What is the optimal policy (for each value of A)?



It is a difficult problem

< Impossible to solve this problem with an ID
» |IDs require a total ordering of the decisions

» The trick of using two IDs does not work in this case
because it does not return all the ICERSs

< Difficult to build a decision tree with embedded dec. nodes
» It would have 90 leaves
» Computing the probability of each scenario is cumbersome

< Much more difficult to build a decision tree
without embedded decision nodes

» Finding the possible interventions is a daunting task



... that can be easily solved with a DAN

Do test C?

< Discomfort due to C >

|

F

{ Costof C

Result of C

Disease Do test E?

Therapy

SN

< Effectiveness > < Cost of therapy >

Minf Tusup cost effect. .
(E/QALY) (€/QALY) (€) (QALY) policy
0| 7,747 0 8.768 | do nothing
7,747 | 21,385 2,120 9.046 | do test C; if positive {do test E; if positive, therapy 1}
21,385 | 24,090 7,305 9.284 | do test C; if positive {do test E; if positive, therapy 2}
24,090 | 74,131 9,062 9.357 | do test E; if positive {do test C; if negative, therapy 1; if positive, therapy 2}
74,131 | 112,564 10,735 9.380 | do both tests; if both are positive, therapy 2; if only one is positive, therapy 1
112,564 | +e 14,857 9.416 | do test E; if positive, therapy 2; if negative {do test C; if positive, therapy 1}




Original Articles

Methods of Information in Medicine 2015;54:353-358.

Cost-effectiveness Analysis
with Influence Diagrams*

M. Arias; F. ). Diez
Department of Artificial Intelligence, UNED, Madrid, Spain

Keywords
Cost-benefit  analysis,  cost-effectiveness
analysis, decision trees, influence diagrams

Summary

Background: Cost-effectiveness analysis
(CEA) is used increasingly in medicine to de-
termine whether the health benefit of an in-
tervention is worth the economic cost. De-
cision trees, the standard decision modeling
technique for non-temporal domains, can
only perform CEA for very small problems.
Objective: To develop a method for CEA in
problems involving several dozen variables.
Methods: We explain how to build influence
diagrams (IDs) that explicitly represent cost
and effectiveness. We propose an algorithm
for evaluating cost-effectiveness IDs directly,

Pa waiithaiid mvimandina an ascdivialane daad

Results: The evaluation of an ID returns a set
of intervals for the willingness to pay — sep-
arated by cost-effectiveness thresholds —
and, for each interval, the cost, the effective-
ness, and the optimal intervention. The algo-
rithm that evaluates the ID directly is in gen-
eral much more efficient than the brute-force
method, which is in turn more efficient than
the expansion of an equivalent decision tree.
Using OpenMarkov, an open-source software
tool that implements this algorithm, we have
been able to perform CEAs on several IDs
whose equivalent decision trees contain mil-
lions of branches.

Conclusion: IDs can perform CEA on large
problems that cannot be analyzed with deci-
sion trees.

units divided by cost units; for example, in
dollars per death avoided or euros per
quality-adjusted life year (QALY) [4]. As
the willingness to pay is different for each
decision maker, CEA must consider all its
possible values. The result of the analysis is
usually a set of intervals for A, each one
having an optimal intervention.

When the consequences of the interven-
tions are not deterministic, it is necessary
to model the probability of each outcome.
Decision trees are the tool used most fre-
quently for this task, especially in medicine
[5]. Their main drawback is that their size
grows exponentially with the number of
variables’. In the medical literature, trees
usually have 3 or 4 variables and between
6 and 10 leaf nodes. A tree of 5 variables
typically contains around 20 leaf nodes,
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Cost-effectiveness analysis with unordered decisions s
Francisco Javier Diez *, Manuel Luque, Manuel Arias, Jorge Pérez-Martin
Department of Artificial Intelligence, Universidad Nacional de Educacion a Distancia (UNED), Madrid, Spain
ARTICLE INFO ABSTRACT
Keywords: Introduction: Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health
Cost-effectiveness analysis benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique

Decision trees for non-temporal domains, can only perform CEAs for very small problems. Influence diagrams can model much

larger problems, but only when the decisions are totally ordered.

Objective: To develop a CEA method for problems with unordered or partially ordered decisions, such as finding
the optimal sequence of tests for diagnosing a disease.

Methods: We explain how to model those problems using decision analysis networks (DANs), a new type of
probabilistic graphical model, somewhat similar to Bayesian networks and influence diagrams. We present an

Probabilistic graphical models
Influence diagrams
Decision analysis networks

algorithm for evaluating DANs with two criteria, cost and effectiveness, and perform some experiments to study
its computational efficiency. We illustrate the representation framework and the algorithm using a hypothetical
example involving two therapies and several tests and then present a DAN for a real-world problem, the
mediastinal staging of non-small cell lung cancer.

Results: The evaluation of a DAN with two criteria, cost and effectiveness, returns a set of intervals for the
willingness to pay, separated by incremental cost-effectiveness ratios (ICERs). The cost, the effectiveness, and the
optimal intervention are specific for each interval, i.e., they depend on the willingness to pay.

Conclusion: Problems invelving several unordered decisions can be modeled with DANs and evaluated in a
reasonable amount of time, OpenMarkov, an open-source software tool developed by our research group, can be
used to build the models and evaluate them using a graphical user interface.



Hands-on exercise 4



Exercise: cost-effectiveness for two tests

Test sensitivity specificity discomfort | cost
A 0.60 0.92 0.0003 QALY $100
B 0.80 0.91 0.0001 QALY |{_ $200 )
Disease - absent present
therapy 38 QALY 30 QALY
no therapy 40 QALY 20 QALY

[cost of therapy = $7,000]

<+ The same probabilities and effectiveness as in exercise 3

< but now we are also considering economic costs.

< Question: What is the most beneficial strategy?




6. Temporal models



Temporal PGMs

< Markov models

> The future is independent of the past given the present
- “Markov models do not have memory”

> Key concept: state

> Types of models: Markov chains, HMMs, MDPs,
POMDPs, DBNs, MIDs, DLIMIDs...

< Temporal non-Markovian models

> The future is not determined by the current state
- for example, birth occurs around 9 months after conception

> An type of non-Markov model: event networks

- Galan, Aguado, Diez, Mira. NasoNet: Modelling the spread of nasopharyngeal
cancer with temporal Bayesian networks. Al in Med, 2002.



6.1. Types of Markov models



Markov chain

D

<+ One variable that evolves over time

< Transition probabilities: P(X;,|x;)



Hidden Markov model (HMM)

DX X2
Qrp - Qoo QeD YD

Observed variable: Y

>

‘0

Non-observed (hidden) variable: X

0‘0

Transition probabilities: P(x;.,[x:)

>

Probability of each observation: P(yi|x;)



Markov decision process (MDP)

<% Observed variable: X

< Decision: D
» Transition probabilities: P(x.,|x;, d.)
» Reward: U(x;, d.)



Partially observable MDP (POMDP)

X [0] X0l (xepD
TN T
D [0] D[1] D [2]
(V)
< Hidden variable: X <+ Observation prob.: P(y;[x;)
<+ Observed variable : Y < Transition prob.: P(X;,4|X, d;)

< Decision: D < Reward: U(Xi, di)



Dynamic Bayesian network (DBN)

X [0] X[1] @

/|

Y [0] Y [1] @
(zoD @D e

<+ Markov chain or hidden Markov model:
— one variable, X
— one conditional probability: P(Xi,,|x;)

<+ Dynamic Bayesian network:
—several variables, {X, Y, Z...}
—factored probability: P(yi|x:), P(zi|X;, Yi), P(Xi11|Xi, ¥;)- . -



Factored extensions of Markov models

Flat model Factored model

Markov chain , ,
Dynamic Bayesian network

[Dean and Kanazawa, 1989]

Hidden Markov model

Markov decision process |Factored MDP
(MDP) [Boutilier et al., 1995, 2000]

Partially-observable MDP |Factored POMDP
(POMDP) [Boutilier and Poole, 1996]




IJCAI Workshop Decision Making in Partially Observable,
Uncertain Worlds: Exploring Insights from Multiple Communities
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MDPs in Medicine: Opportunities and Challenges

F.J.Diez M. A. Palacios M. Arias
Dept. Artificial Intelligence. UNED
Madrid, Spain

Abstract

In the last three decades hundreds of Markov mod-
els have been built for medical applications, but
most of them fall under the paradigm of what we
call simple Markov models (SMMs). Markov de-
cision processes (MDPs) are much more powerful
as a decision analysis tool, but they are ignored
in medical decision analysis books and the num-
ber of medical applications based on them is still
very small. In this paper we compare both types
of models and discuss the challenges that MDPs
must overcome before they can be widely accepted
in medicine. We present a software tool, Open-
Markov, that addresses those challenges and has
been used to build a Markov model for analyzing
the cost-effectiveness of the HPV vaccine.

1 Introduction

Markov models were introduced in the beginning of the 20-
th century by the Russian mathematician Andrei Andreye-
vich Markov [1906]. In the three decades passed since the
pioneering work of Beck and Pauker [1983], hundreds of

the emergence of partially observable Markov decision pro-
cesses (POMDPs) [Astrom, 19651, in which the state of the
system is not directly observable, but there is a variable that
correlates probabilistically with it. POMDPs were developed
in the field of automatic control as an extension of MDPs,
but currently most of the research about them is carried out
in artificial intelligence (Al), again as a tool for planning, es-
pecially in robotics [Ghallab er al., 2004]. The main con-
tribution of Al to this field comes from the area of proba-
bilistic graphical models: Bayesian networks [Pearl, 1988]
led to the development of dynamic Bayesian networks [Dean
and Kanazawa, 19891, which generalize Markov chains and
hidden Markov models [Murphy, 2002]. The idea of using
several variables to represent the state of the system, instead
of only one, led to factored MDPs [Boutilier er al., 1995;
2000] and factored POMDPs [Boutilier and Poole, 1996],
which can model efficiently many problems that were un-
manageable with flat (i.e., non-factored) representations; cor-
respondingly, there are new algorithms that can solve prob-
lems several orders of magnitude bigger than in the recent
past [Hoey et al., 1999; Poupart, 2005; Spaan and Vlassis,
2005].

In the rest of the paper, we use the acronym MDPs to re-

fer to both fully observable and partially observable models
(EMNAATID: anAd DOAATID:  sacmantialah



6.2. Markov influence diagrams



Markov influence diagrams

Joo(em)  [e}(em)

(E@ )(co )  (Emy(em)  (Em ){cm)

< Tractable only when decisions are atemporal, I.e.,

policies do not change over time

< Can be used for cost-effectiveness analysis



Medical Decision Making 2017; 37:183-195

ORIGINAL ARTICLE

Markov Influence Diagrams: A Graphical
Tool for Cost-Effectiveness Analysis

Francisco ]. Diez, PhD, Mar Yebra, MEng, Iriigo Bermejo, PhD,
Miguel A. Palacios-Alonso, MSc, Manuel Arias Calleja, PhD,
Manuel Luque, PhD, Jorge Perez-Martin, MEng

Markov influence diagrams (MIDs) are a new type of prob-
abilistic graphical model that extends influence diagrams
in the same way that Markov decision trees extend
decision trees. They have been designed to build state-
transition models, mainly in medicine, and perform cost-
effectiveness analyses. Using a causal graph that may
contain several variables per cycle, MIDs can model vari-
ous patient characteristics without multiplying the number
of states; in particular, they can represent the history of the
patient without using tunnel states. OpenMarkov, an
open-source tool, allows the decision analyst to build and
evaluate MIDs—including cost-effectiveness analysis and

several types of deterministic and probabilistic sensitivily
analysis—with a graphical user inferface, without writing
any code. This way, MIDs can be used to easily build and
evaluate complex models whose implementation as
spreadsheets or decision trees would be cumbersome or
unfeasible in practice. Furthermore, many problems that
previously required discrete event simulation can be
solved with MIDs; i.e., within the paradigm of state-
transition models, in which many health economists feel
more comfortable. Key words: Markov models; influence
diagrams; cost-effectiveness analysis; outcomes research.
(Med Decis Making XXXX; XX:xx-xx)




Hands-on exercise 5



A small Markov mode/

< A disease can be latent (QoL = 0.9) or active (QoL = 0.7).

< Two therapies

»> standard: $150/month when latent
$2,500/month when active

» new therapy, only effective when latent: $950/month

< Monthly transition probabilities

» active — dead: 15%
» latent — dead.: 2%
» latent — active, standard therapy: 11%

_ } effect of the new therapy
» latent — active, new therapy: 8%

» active — latent 0% (no regression)

<+ Annual discount rate: 3.5% for cost and effectiveness

< |s the new therapy cost-effective?



6.2.1. Example:
Chancellor’'s model for HIV



Case study: HIV/AIDS

(Chancellor et al.,1997)
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< State-transition diagram: 4 states

C[State A: 200 < cd4 <500 oe!ls.fmm?]

Death

(State B: cdd4 <200 cells.'mmihf

State C: AIDS

< Two therapies:
> monotherapy: AZT only
> combined therapy: AZT + lamivudine for 2 years; then only AZT




A MID version of the HIV model

[Chancellor et al., 1997]

Therapy type

( Time in treatment [0] ) b( Time in treatment [1] )

State [0]

< Life years [0] > < Life years [1] >

Drug cost [0] Drug cost [1]

< Direct medical cost [0] > < Direct medical cost [1] >

< Community care cost [0] > < Community care cost [1] >




Representing the patient history (1)

< Transition probabilities that depend on the time spent in

current state
» We can build a state-transition model with tunnel states




Representing the patient history (1)

< Transition probabilities that depend on the time spent in
current state

) Memory variable

E Time in current state [0] )—P( Time in current state [1] )

( Time in treatment [0] H Time in treatment [1] )\

Only 4 states

State change [1] )

State [0]

Therapy choice

Life years [0
< Y 1 < Direct medical cost [0] >

< Community care cost [0] >

( Therapy applied [0] ) »{ Transition inhibited [1] )

/

{ cost AZT [0] ) { Cost lamivudine [0] )




Representing the patient history (2)

< Transition probabilities that depend on the number of

relapses
> We can add states to keep track of the number of relapses




Representing the patient history (2)

< Transition probabilities that depend on the number of
relapses:

Memory variable

( Number of relapses [0] ]—b( Number of relapses [1] )

( Time in treatment [0] H Time in treatment [1] )\ [’ Enter in AIDS [1] )

Only 4 states

Therapy choice State [0]
Life years [0
< Y v < Direct medical cost [0] >
< Community care cost [0] >
( Therapy applied [0] | »{ Transition inhibited [1] |

4

( cost AZT [0] ) {_ Costlamivudine [0] )




6.2.2. Other MIDs for real-world problems



Case study: Hip replacement
(Briggs et al., 2004)
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A MID version of the hip replacement model
[Briggs et al., 2004]

( Age at entry ) \
Death OC [1]

Prosthesis type
Death THR [1] )

State [0]

Failure [1]

< Prosthesis cost >




Case study: HPV vaccine
(Insinga et al., 2009)
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A MID version of the HPV vaccination model
[Callejo et al., 2010]

Dec:Vaccine = Dec:Test type

Vaccinated

Cost of vaccine [ Effective vaccine J

Ever screened

Age [0]

T A r[ Age[1] )

Cost of cy‘tology [0]

Screening [0]

Cost of HC2 [0]

[ Infection 16-18 [0] )

N

Health state [0] \ '/ H Health state [1]

\ Screening result [0] J

[ Do colposcopy & biopsy [0] J

\< Cost colposcopy [0] >

( chemotherapy [0] Cost biopsy [0]

/ ( Radiotherapy [0] ) Conization [0]

< Cost of histerectomy [0] > \ < Cost of chemo [0] \

< Cost of radiotherapy [0] >< Cost of conization [0] > Treatment [0]

Histerectomy [0]




Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21,;8; TRUE)*(((BI5+BJ5)+BK5*u
CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC
+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_
3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU
P($C4:Variables!$A$4:$H$21:2; TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(
$C4;Variables!$A$4:$H$21;4;, TRUE)+(BS4+BT4)*uRCC*VLOOKUP($
C4;Variables!$A$4:$H$21;5; TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C
4;Variables!$A$4:$H$21;2; TRUE))



Case study: AIDS in Africa
(Ryan et al., 2009)

The cost-effectiveness of cotrimoxazole prophylaxis in
HIV-infected children in Zambia

Mairin Ryan®, Susan Griffin®, Bona Chitah®, A. Sarah Walker?,
Veronica Mulenga®, Donald Kalolo®, Neil Hawkins®, Concepta Merry?,
Michael G. Barry?, Chifumbe Chintu®, Mark J. Sculpher®
and Diana M. Gibb*

Obijective: To assess the cost-effectiveness of cotrimoxazole prophylaxis in HIV-
infected children in Zambia, as implementation at the local health centre level has
vet to be undertaken in many resource-limited countries despite recommendations in
recent updated World Health Organization (WHO) guidelines.

Design: A probabilistic decision analytical model of HIV/AIDS progression in children
based on the CD4 cell percentage (CD4%) was populated with data from the placebo-
controlled Children with HIV Antibiotic Prophylaxis trial that had reported a 43%
reduction in mortality with cotrimoxazole prophylaxis in HIV-infected children aged
1-14 years.

Methods: Unit costs (USS in 2006) were measured at University Teaching Hospital,
Lusaka. Cost-effectiveness expressed as cost per life-year saved, cost per quality adjusted
life-year (QALY) saved, cost per disability adjusted life-year (DALY) averted was calculated

L — T w LT x| G Ry, UGy S SN I e . S Wy Y S —— ———



A MID version of the CHAP model
[Ryan et al., 2008]

(" Time in state [0] }—{ Time in state [1] )

( Age at state entry [0] j

A =

e f ’\‘\%« /
CD4Y% 8-15 [0] ) \ (Death 11 )  ( Transition [1]
VA

< Outpatient costs [0] 2

\\< ous e )

{ Total cost [0] ) HIV test cost

Therapy

Inpatient costs [0]




Our model for malignant pleural effusion

\‘( Initial treatment >

[ Time in treatment [0] H Time in treatment [1] )

[ Death (cancer) [1]

Treatment

Complication [0]

\ Infected [0])\ \\ / |nfeeted [1]
[ Patient state [0] j \ \ Patient state 1]
y \ \( Resolved [0] B Resolved [1] )

< Admission for infection [0] >

[ Death cancer now [1] )

< Nurse visit [0] >

> Meeting of the Society for Medical Decision Making (SMDM 2015),
St. Louis, October 2015.



Our model for colorectal cancer screening

= Age[1] )

OC death [0]

= State [1]

- ‘\ A\ Time since last FOB test [1]
"\
| Screening policy .“, \“

o FOBT [0]
Fy

‘ CRC stage [1]
CRC death [0]

FOB test result [0]

Do colonoscopy [0] } \ /( Symtomatic [0] ) GloL [0]

[ Colonoscopy result [0]

( Time since colonoscopy [1] j \:remment ]

[ Time since neg. colonosc. [0] )—»( Time since neg. colonosc. [1] J

C: Colonoscopy [0]

> European Conference of the Society for Medical Decision Making,
London, UK, June 2015.



Our model for bilateral cochlear implantation

[ Device price J ( Discount (%) )

CS: Surgery
CS: Initial tuning

Work hours lost

Traveling
CF: Surgery

Alive [1]
Elective non use 2

Internal device age 1 [1] )

Implants used [0] & Implants used [1]

Major complic 1 [0] Explant 1 [0] '

:
QoL [0]
[ Revision surgery [0]
3 \

< CS: Revision surgery [0] >
RN ~
( External device failure 2 [0] J /

\ -‘-{ Internal device age 2 [1] )
» Processor2 age [1] ) \ /
\ [ Internal device failure 2 [0] J

< C8: Processor 2 replace [0] > CF: Processor 2 fix [0] >

CF: Mainteinance [0]

CS: Tuning [0]

CS: Internal device 2 replace [0] >

> Cochlear Implant Symposium, Washington DC, October 2015.
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ORIGINAL ARTICLE

Cost-effectiveness of cardiovascular magnetic
resonance in the diagnosis of coronary heart
disease: an economic evaluation using data from

the CE-MARC study

Simon Walker," Francois Girardin, "% Claire McKenna,' Stephen G Ball,*
Jane Nixon, Sven Plein,* John P Greenwood,® Mark Sculpher'

ABSTRACT

Objective To evaluate the cost-effectiveness of
diagnostic strategies for coronary heart disease (CHD)
derived from the CE-MARC study.

Design Cost-effectiveness analysis using a decision
analytic model to compare eight strategies for the
diagnosis of CHD.

Setting Secondary care out-patients (Cardiology
Department).

Patients Patients referred to cardiologists for the
further evaluation of symptoms thought to be angina
pectoris.

Interventions Eight different strategies were
considered, including different combinations of exercise
treadmill testing (ETT), single-photon emission CT
(SPECT), cardiovascular magnetic resonance (CMR) and
coronary angiography (CA).

Main outcome measures Costs expressed as UK
sterling in 2010-2011 prices and health outcomes in
quality-adjusted life-years (QALYs). The time horizon was
50 years.

Results Based on the characteristics of patients in the
CE-MARC study, only two strategies appear potentially
cost-effective for diagnosis of CHD, both including CMR.
The choice is between two strategies: one in which CMR
follows a positive or inconclusive ETT, followed by CA if
CMR. is positive or inconclusive (Strategy 3 in the
model): and the other where CMR is followed by CA if

INTRODUCTION
Coronary heart disease (CHD) is a leading cause of
death and disability worldwide. In the UK, over 2
million people are living with CHD and, in 2007,
it was estimated to account for over 94 000 deaths,
of which over 31 000 were considered premature.'

A variety of investigations may be used to diag-
nose CHD and identify patients who require cor-
onary revascularisation; all these tests, however,
have their limitations. Increasingly, non-invasive
imaging has replaced exercise treadmill testing
(ETT), with single-photon emission CT (SPECT)
being the most commonly used test for myocardial
ischaemia worldwide.” Cardiovascular magnetic
resonance (CMR) imaging is increasingly used
for the diagnosis of CHD as a result of its safety
(no ionising radiation), high spatial resolution
and ability to assess multiple aspects of CHD path-
ology in both the stable and unstable clinical set-
tings.” ™

The diagnosis of CHD has no direct health benefit
in itself; instead, any improved accuracy in diagnosis
should result in more appropriate treatment which
can confer health benefits on patients. The optimal
management of patients with CHD continues to be
debated, but options include medical therapy, percu-
taneous coronary intervention (PCI) or coronary
artery bypass erafting (CABG). Many patients with



Model structure

To conduct the economic evaluation a decision analytic model
was developed. For the initial diagnosis a decision tree allocates
patients to the appropriate diagnostic group. The prognostic
implications of being in one of these groups are then quantified
using three distinct Markov models. An example of the decision
tree for Strategy 2 (ETT, followed by CA if ETT is positive or
inconclusive) is shown in figure 1.

Positive

and alive True positive

CHD patient
with PCI

TT positi g
F posﬂlye or CA/PCI
. inconclusive
Proportion of r

CHD patients ETT Death ‘

eligible for PCI .
False negative patient ] »
+ ETr ) requiring PCI Alive L uepositive
Prior negative CABG 7 CHD patient

lil_<elihood of | . ETT positive or CA CA positive . with CABG
disease Proportion

inconclusiy,eg,&
of CHD
., — patients ETT 4 Dead

eligible for ‘ﬁ Death ﬁ[" Dead

CABG
bidor ETT < Ifalse.ljegative patient
likelihood of negative " eduining CABG
no disease (A'le,giti"e‘ True negative
ETT ETTpositive or aiidalive

. inconclusive .
ETT Death ‘ Dead

negative ‘True negative patient

Figure 1 Structure of decision tree using Strategy 2 as an example. CA, coronary angiography; CABG, coronary artery bypass grafting;
CHD, coronary heart disease; ETT, exercise treadmill testing; PCl, percutaneous coronary intervention.



A MID with several decisions
Adapted from [Walker et al., 2013]

(Health condition } »(_Significant stenosis Eligible PCI

Eligible ETT

N
N

‘.‘m
“‘l

N\
\\‘ Result SPECT Result CA
\ CResut e )
.
| Th
(statel01 ) (statelt] )
{_c: Follow-up [0]

> This model evaluates all the possible interventions.
> It can cope with heterogeneity: sex, age, grade.

Death CA
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A Comparison of Four Software Programs for Implementing
Decision Analytic Cost-Effectiveness Models

Chase Hollman' - Mike Paulden' - Petros Pechlivanoglou®** - Christopher McCabe'

Published online: 9 May 2017
© Springer International Publishing Switzerland 2017

Abstract The volume and technical complexity of both
academic and commercial research using decision ana-
lytic modelling has increased rapidly over the last two
decades. The range of software programs used for their
implementation has also increased, but it remains true
that a small number of programs account for the vast
majority of cost-effectiveness modelling work., We
report a comparison of four software programs: TreeAge
Pro. Microsoft Excel, R and MATLAB. Our focus is on
software commonly used for building Markov models
and decision trees to conduct cohort simulations, given
their predominance in the published literature around
cost-effectiveness modelling. Our comparison uses three
qualitative criteria as proposed by Eddy et al.: “trans-
parency and validation™, “learning curve™ and “capa-
bility™.
criterion of processing speed. We also consider the cost

In addition, we introduce the quantitative

Electronic supplementary material The online version of this
article (doi: 10, 1007/540273-017-0510-8) contains supplementary
material, which is available to authorized users.

B4 Mike Paulden
paulden @ualberta.ca

of each program to academic users and commercial
users. We rank the programs based on each of these
criteria. We find that, whilst Microsoft Excel and Tree-
Age Pro are good programs for educational purposes and
for producing the types of analyses typically required by
health technology assessment agencies, the efficiency
and transparency advantages of programming languages
such as MATLAB and R become increasingly valuable
when more complex analyses are required.

Key Points for Decision Makers

Microsoft Excel and TreeAge Pro are good programs
for implementing the types of cost-effectiveness
analyses commonly required by health technology
assessment bodies.

MATLAB and R are particularly valuable for
implementing more complex decision analytic
models and computationally demanding analyses,
such as expected value of perfect parameter
information (EVPPI), due to their processing speed
and transparency.
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6.2.3. Half-cycle correction
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ORIGINAL ARTICLE

Theoretical Foundations and Practical
Applications of Within-Cycle Correction
Methods

Elamin H. Elbasha, PhD, Jagpreet Chhatwal, PhD

Background. Modeling guidelines recommend applying
a half-cycle correction (HCC) to outcomes from discrete-
time state-transition models (DTSTMs). However, there is
still no consensus on why and how to perform the correc-
tion. The objective was to provide theoretical foundations
for HCC and to compare (both mathematically and numer-
ically) the performance of different correction methods in
reducing errors in outcomes from DTSTMs. Methods. We
defined 7 methods from the field of numerical integration:
Riemann sum of rectangles (left, midpoint, right),
trapezoids, life-table, and Simpson’s 1/3rd and 3/8th
rules. We applied these methods to a standard 3-state
disease progression Markov chain to evaluate the cost-
effectiveness of a hypothetical intervention. We solved
the discrete- and continuous-time (our gold standard) ver-
sions of the model analytically and derived expressions
for wvarious outcomes including discounted quality-
adjusted life-years, discounted costs, and incremental
cost-effectiveness ratios. Results. The standard HCC

method gave the same results as the trapezoidal rule and
life-table method. We found situations where applying the
standard HCC can do more harm than good. Compared
with the gold standard, all correction methods resulted in
approximation errors. Contrary to conventional wisdom,
the errors need not cancel each other out or become insig-
nificant when incremental outcomes are calculated. We
found that a wrong decision can be made with a less accu-
rate method. The performance of each correction method
vastly improved when a shorter eycle length was selected;
Simpson’s 1/3rd rule was the fastest method to converge
to the gold standard. Conclusion. Cumulative outcomes
in DTSTMs are prone to errors that can be reduced with
more accurate methods like Simpson’s rules. We clarified
several misconceptions and provided recommendations
and algorithms for practical implementation of these meth-
ods. Key words: state-transition models; discrete time; con-
tinuous time; half-cvcle correction; numerical integration.
(Med Decis Making XXXX;XX:XX-XX)




Within-cycle correction methods

fit)

A

Right Riemann sum Trapezoidal rule Left Riemann sum

Composite Simpson's 1/3"rule
(Quadratic through 3 points)

7 1//

N\

I Midpoint Riemann
sum
:1'} l"'
5 (tio + t11)
v it

h & b & & & & Ot & by

Figure 1 Geometric illustration of the Riemann sums, trapezoidal rule, and composite Simpson’s rules.

[Elbasha and Chhatwal, 2016]



Table 4 Formulas for State Membership per Cycle and Cumulative Outcomes with Different Methods for Discrete-Time, State-Transition

Model
Outcome” Formula
&
Persons well Wy, = wo[l — (1 —e)b —m]
Persons with disease S, - b1 )~ (d—m){ 1-wq)|(L-d)¥ —twob(L-e)[1-{1-e)b-m]*
k Bl1—e)+m—d
Cases of death _ Ibid—e)—ld—m}{1-wo)][1-(1-d]" ]| —wo(d—m){ 1-[1—(1—e}b-m]* }

Dy = Bl—e)+
Risk of disease over T years

Right Riemann sum bi1-e){ 1-[1-( 1_915_mjr}w°{c1_d]5_|1_[1_e]b-m|*}

RISKR = b(1-e) + m—d]d 1-[1-(1—e)b—m] } }
Trapezoidal rule et F 1o 1—etbm T Ve L (1—dih 11— (1 —elbm®
p RISK, - RISKy + ** {1-[1-01 ]ﬁzlb{_l_};]o—{;l_dzjj [1-(1-e)b-mt }

[1+4[1-b(1-e)-mF + [1-b(1-e)-m] {1-11-(1-e)p-m]"}
3(b(1—e) + m—d] { 1-[1-b(1—e}—m]t }
: o 3
Simpson’s 3/8th rule sbi1-epwo { (1-a) - [1-(1-epp-mpt } [1+ 1-b1-e)-mP}] {1-(1-(1-epp-m"}

Simpson's 1/3rd rule

RISKc=b(1 — e}wu{{l —d) —[1-(1—e)b— m]%} X

ISKcp =
RISKcr 8lb(1-¢) + m—d] { 1-[1-b(1—e)—m]"
Discounted QALYs (years)
Right Riemann sum wolb(1—e)(u—q)—(d—m ) § 1 [Lilztbom T Bil—e)—(d—m(1—t
gh QALY - {(1—e)(u—g)—( m{ *,, ] } 4 glbl=e)—(d-m) Afr.-l|[ 1{ o
nlb{1—e) —m-d]{[%] -1 n[b{1—e} +m— d][ =) ]
Trapezoidal rule u_-a[hn_e}[u_q}_m_mm{l_[l;”,m]r} alb(1—e)—{d—m)(1-wy)| [1- (12)"]
QALY7 = QALYg(e) + Znb(i—e) + m—d] Znbli—e) + m—d]
Simpson’s 1/3rd rule g[b(1-e)—{d—m){1-wp)] [L+4(H + (H)ﬁ] [1_{H}T] wolb(1-e){t—q)—(d-mu] [l 4[1 B\~ m]* 4 [Lebltosiom ]{1 [ttt m'| },
QALY = i + :
anfb(l-e) + m—d] [1—({:}5) ] anfb(l-e) +m—d:{l—[]"\'|l$]"}
. o 8 3
Simpson’s 3/8th rule Salb(1—e)(dm)(1-wo)] [1— (]]:_1)&] [1-@0)7]  Swolb(1-e)u—g)~(d-mu] [1+ [1-»31_..;.-;..}&] {1-[tem)
QALY cr = - + 7
Br[b(1-e) +m—d| [1_(11—_-i()n:| Sn[b{l-e) m_d]{l_[l HLe) Ju]n}
Discounted disease cosls
i i eb-my T \ ¢ gy T
Right Riemann sum COST, = cropb(1-e) [1_(%} ] : N L'|-‘)(1—ej—[d—m:lll—ug]]|:l (}2) ]
ajb[l_e]+m_d]{1_[ﬂ;;",ﬂ]' } nlb(1—e)+m— d][ ”)'*_1]
Trapezoidal rule curgh(1—e) 1_(M}T elb(1—e)—(d—m)(1-wy)] [1- (}54)"
COSTZ = COSTR - 2n[~‘?(£—e] + ; ] 2nb{1-e)+m [d] : ]
Simpson’s 1/3rd rule elb(1—e)—{d—m)(1—wo)] [1 a(ld }ﬁ (L_.fr)é] [1-(5)7]  ewsbiiel|1 _4{1—-'”1]::-:--".’])4_‘_ [1-1»:11::.-;“}%} {1 [y
COST = _ '
nlbil—e) + m—d| [‘l {11_"‘{ ] 3n|b(|—e]+m—d_{ 1—[%]5}
Simpson’s 3/8th rule Selb(1—¢) (d-m)(1-wo)] [1_ (1) &] [1-(54)7]  scwb(1-e) [1+ [1_»;I1::1_m]%]' {1 peem™y
COSTeg = I _ ;
8n[b(1—e] +m—d)| [1 (3=t ] sn[b{l—e}arm—d]{l-[W]"}

Net monetary benefits
Method x (R. Z, C, CR) NMB, = \QALY, — COST, — 1

Mote: b= transition probability to the Disease state; ¢ = disease cost per period; C = Simpson's 1/3rd rule; COST = discounted cost of disease; CR = Simpson's 3/8th rule; d = transition probability to the Dead
state from the Disease state; [J; = persons in the Dead state; e = probability of intervention reducing disease progression; I'= intervention cost; m = probability of all-cause death for well persons; NMB = net
monetary benefits; g = quality of life loss; QALY = quality-adjusted life-years; r= discount rate; R = right Riemann; RISK = cumulative risk of disease; Sy = persons in the Disease state; T= time horizon; wy =
proportion of the cohort initially in the Well state; Wy = persons in the Well state; 7. = trapezoidal rule; h = willingness-to-pay for a QALY

a. Outcomes in the absence of the intervention are obtained by setting e=I'=0.




“Within-cycle corrections” in OpenMarkov

Inference options

Temporal options

Transitions

(@) Beqinning of cycle

Horizon al O Half cycle
() End of cycle
Multi criteria selection

Analysis

Unicriterion
(@) Cost Effectivenes

Criterion Role Scale Discount Units

Cost Cost g 1 3,500 % | per vear

Effectiveness | Effectiveness g 1 3,500 % | per vear
[:] oK . Cancel

This will change in future
versions of OpenMarkov:
replaced with properly
computed “within-cycle
corrections”:

* beginning of cyle
half cycle

end of cycle
Simpson’s 1/3 rule
Simpson’s 3/8 rule
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Evaluation of Markov Models with Discontinuities.

Pérez-Martin J1, Bermejo |, Diez FJ'.
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Abstract

Background. Several methods, such as the half-cycle correction and the life-table method, were developed to attenuate the
error introduced in Markov models by the discretization of time. Elbasha and Chhatwal have proposed alternative
"corrections" based on numerical integration techniques. They present an example whose results suggest that the trapezoidal
rule, which is equivalent to the half-cycle correction, is not as accurate as Simpson's 1/3 and 3/8 rules. However, they did not
take into consideration the impact of discontinuities. Objective. To propose a method for evaluating Markov models with
discontinuities. Design. Applying the trapezoidal rule, we derive a method that consists of adjusting the model by setting the
cost at each point of discontinuity to the mean of the left and right limits of the cost function. We then take from the literature a
model with a cycle length of 1 year and a discontinuity on the cost function and compare our method with other "corrections"
using as the gold standard an equivalent model with a cycle length of 1 day. Results. As expected, for this model, the
life-table method is more accurate than assuming that transitions occur at the beginning or the end of cycles. The application
of numerical integration techniques without taking into account the discontinuity causes large errors. The model with
averaged cost values yields very small errors, especially for the trapezoidal and the 1/3 Simpson rules. Conclusion. In the
case of discontinuities, we recommend applying the trapezoidal rule on an averaged model because this method has a
mathematical justification, and in our empirical evaluation, it was more accurate than the sophisticated 3/8 Simpson rule.

KEYWORDS: Markov models; discontinuities; half-cycle correction; state-transition models; within-cycle correction
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7. Sensitivity analysis



Types of sensitivity analysis

< Two main types
> structural (qualitative)
> parametric (qQuantitative)

< Depending on the effect analyzed
> analysis of utility
> analysis of decisions / policies

<+ Depending on how many parameters are varied
> one-way analysis
> n-way analysis (independent or join analysis)

<+ Depending on how the parameters are varied
> range (interval)
> probability distribution
> look for thresholds (changes in policies)



7.1. Unicriterion sensitivity analysis



Tornado diagram
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Spider diagram
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Plot (one-way sensitivity analysis)

) OpenMarkov - Sensitivity analysis - |ID-decide-2tests-2therapies-uncert.pgmx
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7.2. Cost-effectiveness
sensitivity analysis



Scatter plot
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Acceptability curve

&) OpenMarkov - Sensitivity analysis - ID-decide-2tests-2therapies-uncert.pgmx
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Some sensitivity analysis options

unicriterion cost-effectiveness

tornado / spider diagram (global)
deterministic

plot (global / for a decision) o C.E. spider diagram (global)

map (global / for a decision)

acceptability (for a decision) o scatter pIc_;t_+ acceptability curve
probabilistic (for a decision)

EVPI (global) o EVPI curve (global)




Hands-on exercise 6



Uncertainty for the small Markov model

< Uncertainty about cost of new therapy
» Gamma, with standard deviation = 20% of the mean

< Uncertainty about transition probabilities
» one-month study: 400 volunteers with latent disease

. standard new
Transition to 4
therapy therapy
dead 4 4
active 22 16
latent (no transition) 174 180
TOTAL 200 200

< Questions
» Prob. new therapy being cost-effective at WTP = $50,000/QALY
» Prob. new therapy being effective (disregarding cost)



8. Overview of software tools



Software tools for CEA

REVIEW OF SOFTWARE FOR DECISION MODELLING.

DECISION SUPPORT UNIT

Jon Tosh and Allan Wailoo
Health Economics and Decision Science, School of Health and Related Research,

University of Sheffield

29 July 2008



Table 1 - Software used for NICE Technology Appraisals

Software Respondents that used this software Number of Number of Number of
TAGs Manufacturers Consultancies
n Yo

MS Excel 28 100% 6 14 8
TreeAge Pro 16 57% 6 7 3
WinBUGS 6 21% 1 2 3

R 5 18% 1 2 2
Arena 3 11% 0 2 1

SAS 3 11% 0 1 2
Crystal Ball 2 7% 1 0 1
Simu8 2 7% 1 0 |
STATA 1 4% 1 0 0
RevMAN 1 4% 1 0 0
Borland 1 4% 1 0 0
Delphi

S-PLUS 1 4% 1 0 0
(wrisk 1 4% 0 0 1
STELLA 0 0% 0 0 0
Witness 0 0% 0 0 0




Software Packages for Graphical Models

Written by Kevin Murphy.
Last updated 16 June 2014.
(Thanks to Alex Gorban for helping me with the switch to Google Sheets.)

Review articles

List of GM code at MLOSS

Click here for a short article I wrote for the ISBA (International Society for Bayesian Analysis) Newsletter, December 2007, sumarizing some of the packages below.
Click here for a more detailed discussion of some of these packages written by Ann Nicholson and Kevin Korb in 2004.

Click here for a French version of my comparison table (not necessarily up-to-date).

What do the headers in the table mean?

» Src = source code included? (N=no) If so, what language?

Cts = are continuous (latent) nodes supported? G = (conditionally) Gaussians nodes supported analytically, Cs = continuous nodes supported by sampling, Cd = continuous nodes

supported by discretization, Cx = continuous nodes supported by some unspecified method, D = only discrete nodes supported.

GUI = Graphical User Interface included?

Learns parameters?

Learns structure? CI = means uses conditional independency tests

Utility = utility and decision nodes (i.e., influence diagrams) supported?

Free? 0 = free (although possibly only for academic use). § = commercial software (although most have free versions which are restricted in various ways, e.g., the model size is limite

or models cannot be saved, or there is no APL)

Undir? What kind of graphs are supported? U = only undirected graphs, D = only directed graphs, UD = both undirected and directed, CG = chain graphs (mixed directed/undirected).

» Inference = which inference algorithm is used? jtree = junction tree, varelim = variable (bucket) elimination, MH = Metropols Hastings, G = Gibbs sampling, IS = importance sampling
sampling = some other Monte Carlo method, polytree = Pearl's algorithm restricted to a graph with no cycles, VMP = variational message passing, EP = expectation propagation, SL =
the program is designed for structure learning from completely observed data, not state estimation

o Comments. If in "quotes", I am quoting the authors at their request.

If you want your package to be listed, please fill out this form.

Name Authors Src Cts GUI Params Struct Utility Free Undir Inference Comments

<

AgenaRisk Agena M Cx Y Y N N $ D JTree Simulation by Dynamic discretisatior
Analytica Lumina N G Y M N Y $ D sampling spread sheet compatible

B-course U. Helsinki M Cd Y Y Y N 0D 7 Runs on their server: view results us
Banjo Hartemink Java Cd N N Y N 0D none structure learning of static or dynam
st 1 U il ~ ~ N v " " nn nan P b 14 Fre RAORAC (R e

69 packages!



Open-source tools for PGMs

.
_ : 2
g & iy =
5 = | 2| 3
1 iy -
[aa] T a w :
£ g 8 = 3 = g 2 = = &
o = = = 8 E = 3 2 i =
= ] 3] = 2= = < aa) (a9 = <
Start 1993 | 1996 | 1997 1999 2000 | 2000 | 2002 2003 2003 | 2004 2006
7 ~ e~ - 7 m— - - -
Stopped — ) 2001 | 2010 2007 2004 | 2014 ( — ) 2003 2005 | 2004 2007
\; \;
Programming language Java | Java | Java | Matlab | Java | Java | Java Java C++ Java | Python
License GPL | GPL ? GPL GPL | GPL | GPL | LGPL | IOSL | GPL GPL
Bayesian networks yes yes yes yves ves yes ves yes yes yves yes
Influence didg[‘ﬁ]llﬁ e no yes yes no yes yves no I i no
Dynamic,/Markov models no no no ( ves ) no no ( ves ) no no no no
= \‘E’
User manuals yes yes yes yes yes yes yes no no yes yes
Developer manuals yes no no no no yes yes no no no no
Users list /forum yes no no yves yes ves yes yes no yves yes
Developers list /forum yes no yes ves yes yes yes yes no ves yes
Source HTML docs yes yes yes no yves yes ves yes no no no
Version control ves no yes no yes ves ves ves no ves ves
Bug tracker yes yes 1o no yes ves ves yes 1o yes yes

< Among the tools having a GUI for editing PGMs, only

Weka and OpenMarkov are still under active development.

< Only BNT and OpenMarkov can represent Markov models.

<+ Only OpenMarkov has cost-effectiveness analysis.




Which software tool should | use?

< It depends on:
> my problem — type of model

> my expertise: tools | am proficient at
> my budget
> the recipient. a company, an agency (e.g., NICE)

< Several types of temporal models
» Markov models (cohort models or microsimulation)
> discrete event simulation

> dynamic models (differential equations)



Comparison of MIDs with other techniques

< MIDs vs. spreadsheets (Excel)
» Nno need to write any formulas nor VisualBasic macros
» no need to multiply the number of states (e.g., tunnel states)
» difficult to write functions of parameters in OpenMarkov

<+ MIDs vs. Markov decision trees
» much more compact = possible to build much larger models
» no need to add tracking variables (microsimulation)

< MIDs vs. a programming language (R, C++, MATLAB...)
» no need to write any code, not even for sensitivity analysis
» but programming languages are much more flexible

<+ MIDs vs. discrete event simulation
» cohort propagation (exact algorithm) is often much faster

<+ MIDs vs. all the others: may contain several decisions.



Our (biased) recommendation

for atemporal and Markov models

<+ If OpenMarkov satisfies your needs, use it
> because of graphical user interface
> because of advanced algorithms (difficult to implement)

< If the model is small and relatively simple, you may try using
Excel or TreeAge

<+ Otherwise, use R

> DARTH group, https://darthworkgroup.com
software and other resources for CEA in R

< If you have patient-level data, use R+BUGS

> http://www.statistica.it/gianluca/tags/bcea
Book: Baio et al., Bayesian Cost-Effectiveness Analysis
with the R package BCEA, 2017.



https://darthworkgroup.com/
http://www.statistica.it/gianluca/tags/bcea

8. Conclusions



Conclusions

<+ BNs overcame the limitations of the naive Bayes method.

< |IDs have several advantages over decision trees,
but also have serious limitations for medical decision making.

< DANSs are similar to IDs, but more suitable for asymmetric
decision problems, especially partially ordered decisions.

< It is possible to do cost-effectiveness analysis with IDs.
< and also with Markov IDs (MIDs) if all decisions are atemporal.

< There are other types of Markov PGMs having one or more
decisions per cycle: MDPs, POMDPs, DLIMIDs...



Thank you very much for your attention!

< Links
 www.cisiad.uned.es

 www.OpenMarkov.org

o www.ProbModelXML.org/networks

< Contact: fidiez@dia.uned.es



http://www.probmodelxml.org/networks
mailto:fjdiez@dia.uned.es

