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Disclaimer

▪ We are the developers of OpenMarkov, an open-source 

tool for probabilistic graphical models (PGMs), which we 

will present in this course; so, we may be biased when 

comparing it with other software tools.

▪ We have founded DeciSupport AI, a spin-off that offers 

consultancy about modeling for medical decision analysis 

(especially with OpenMarkov and R), courses, software 

development, etc.
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1. Introduction: 

history of PGMs



History of PGMs

▪ Markov chains:   A. Markov, 1906

▪ Probabilistic models for genetics:   S. Wright, 1921

▪ Markov decision processes (MPDs):   R. Bellman, 1957

▪ Naïve Bayes method:  three independent papers, 1963

▪ Partially observable MDPs (POMDPs):   K. Åström, 1965

▪ Influence diagrams:   R. Howard, J. Matheson, 1980, 1984

▪ Bayesian networks:   J. Pearl, 1982, 1986, 1988

▪ Dynamic Bayesian networks:   T. Dean, K. Kanazawa, 1989

▪ Factored MDPs:  C. Boutilier et al., 1995, 2000

▪ Factored POMDPs:  C. Boutilier, D. Poole, 1996

▪ Decision analysis networks:  F.J. Díez et al., 2012

▪ Markov influence diagrams:  F.J. Díez et al., 2015, 2017
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Nowadays PGMs are one of the main techniques used in A.I. 



Some areas of AI

ML = machine learning

NNs = neural networks

DL = deep learning

PGMs = probabilistic 

graphical models

AI

ML
NNs

DL

PGMs



2. Probabilistic diagnosis



2.1. Basic concepts

of probabilistic diagnosis



Basic concepts for medical diagnosis

❖ Disease E, result of a test T

❖ Probabilistic parameters (model inputs):

➢ Prevalence:  P(+e)

➢ Sensitivity: P(+t|+e)

➢ Specificity: P(¬t|¬e)

❖ Predictive values, i.e., probability of the disease

when knowing the result of the test (model outputs):

➢ Positive PV: P(+e|+t)

➢ Negative PV: P(¬e|¬t)



2.1. Bayes theorem



Bayes theorem
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➢ Combining these results:

➢ It means that knowing P(x) and P(y|x) we compute P(x|y).

➢ We knew that
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Predictive value of a finding

❖ Positive predictive value:  P(+e|+h)
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❖ Negative predictive value:  P(¬e|+h)



Hands-on exercise 1

❖ Example:

➢ Prevalence of a disease:  14%

➢ Sensitivity of a test: 70%

➢ Specificity of the test: 91%

❖ Questions:

➢ What is the positive predictive value (PPV)?

• If the test is positive, what is the probability 

that the patient has the disease?

➢ What is the negative predictive value (NPV)?

• If the test is negative, what is the probability 

that the patient does not have the disease?





OpenMarkov. Main features

❖ Main advantage: open source

➢ Free

➢ Users can adapt it to their needs

➢ Software engineering tools: 

JUnit, maven, mercurial (bitbucket), nexus, bugtracker, etc.

❖ Strengths

➢ Written in Java: portability (Windows, linux, MacOS…)

➢ Many types of models, potentials, etc. 

➢ Algorithms not available in any other package

• CEA with IDs and DANs

• interactive learning

➢ Very active: new features are continuously added

➢ Support for users and developers: wiki, lists, mail…

➢ Well-documented format for encoding networks: ProbModelXML.





OpenMarkov. Limitations

❖ Main weakness

➢ Still a prototype: needs debugging

❖ Other weaknesses

➢ Written in Java: relatively slow (in some cases)

➢ No on-line help, documentation still poor

➢ Support is limited, due to scarcity of human resources.



Probabilistic diagnosis with two findings

❖ Example:

➢ Prevalence of the disease:  14%

➢ Sensitivity of test C: 70%

➢ Specificity of test C: 91%

➢ Sensitivity of test E: 90%

➢ Specificity of test E: 93%

❖ Question:

➢ What is the posterior probability for each combination of findings?



2.2. The naïve Bayes method



❖ Graphical representation:

Diagnostic D

Finding H1 Finding HnFinding H2
...

❖ Two hypotheses:

➢ Diagnostics are mutually exclusive

 every patient has at most one disease

➢ Findings are conditionally independent

given the diagnostics

The naïve Bayes method



Succesfull applications of the naïve-Bayes

• Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone 

tumors: A preliminary report” Radiology 80 (1963) 273-275.

• Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid 

function” JAMA 183 (1963) 307-313. 

• Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis 

of congenital heart disease” Progress in Cardiovascular Diseases 5 (1963) 362-377.

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer 

diagnosis of congenital heart disease” Annals New York Acad. Sciences 115 (1964) 

558-567.

• de Dombal FT, Leaper JR, Staniland JR, et al., “Computer-aided diagnosis of acute 

abdominal pain” BMJ 2 (1972) 9-13.

• Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for 

computer-aided management of acute renal failure” Amer. J Med 55 (1973) 473-484.

• Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program 

that considers clinical responses to digitalis” Amer. J. Med 64 (1978) 452-460. 

More accurate than medical doctors (in restricted domains).



Limitations of the naïve Bayes

❖ In general, the diagnostics are not mutually exclusive.

➢ The naïve Bayes cannot diagnose that more than one 
diseases are present

❖ In general, findings are not conditionally independent.

➢ The naïve Bayes gives wrong results when findings are 
(conditionally) correlated.

We’ll come back to this later on.

Let’s first see how Bayesian networks address this problem.



3. Bayesian networks



Definition of Bayesian network
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❖ Elements:

➢ a set of variables {Xi }

➢ an acyclic directed graph

• every node in the graph represents a variable Xi

➢ a conditional probability distribution (usually a table) 

for each variable: P(xi | pa(xi))

• for a node without parents: P(xi | pa(xi)) = P(xi )

❖ Result: join probability for the network



Naïve Bayes Bayesian network



3.2. Examples of BNs



Examples of BNs

❖ Medical Bayesian networks we have built

➢ DIAVAL: echocardiography (valvulopathies)

F. J. Díez’ thesis, 1994

➢ Prostanet: urology (prostate cancer)

Carmen Lacave’s thesis, 2003

➢ Nasonet:  nasopharyngeal cancer spread

Severino Galán’s thesis, 2003

➢ HEPAR II: liver diseases

Agnieszka Onisko’s thesis, 2003

➢ Catarnet: Cataract surgery 

Nuria Alonso’s thesis, 2009



DIAVAL



DIAVAL: numeric findings



DIAVAL: qualitative findings



DIAVAL: diagnostics



DIAVAL: 

final report

in a text editor



Prostanet (for prostate diseases)



Nasonet (nasopharyngeal cancer spread)



Hepar II (liver diseases)



Catarnet (cataract surgery)



BN vs. a panel of experts (Delphi)

expert panel (median)
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❖ Comparison in 429 clinical scenarios

❖ Result:   ICC=0.83  [IC95%: 0.80 – 0.86]  (p<0.001)



3.3. BNs and causality



➢ Example 1

Two interpretations of BNs

❖ Semantics of a Bayesian network:

➢ As a mathematical model: probabilistic independencies

➢ As a model of the real world: they usually represent causality

❖ Two BNs are mathematically equivalent when they represent the

same set of independencies.

❖ But two different BNs can never have the same causal meaning.

X Y Z X Y Z X Y Z

X Y X Y

➢ Example 2



Correlation does not imply causality

causal

relation

logical

ìmplication

conjecture

correlation

(statistical)



Several types of correlation

BA

C

❖ Direct cause

A

B

B

A

❖ Common cause

C

BA

❖ Selection bias

(example: Berkson bias)

Correlation

without

direct causality

[Hernán and Robins, 2020]





www.hsph.harvard.edu/miguel-hernan/causal-inference-book

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book




3.4. Building BNs



How to build a Bayesian network

❖ From a database

Data

base
algorithm Bayesian

network

➢ There are many algorithms, several new algorithms every year 

➢ Similar to statistical methods (logistic regression, neural nets...)

❖ With a human expert’s help

Causal 

knowledge
modeling Causal

graph
probabilities Bayesian

network

❖ Hybrid methods: 

➢ experts → structure;   database → probabilities

➢ experts → initial model;   new cases → refine the probabilities



3.4.1. Building BNs

with causal knowledge



Where do the probabilities come from?

❖ Epidemiological studies

➢ advantage: we obtain directly the parameters we need

➢ difficulties: time and cost; biases (e.g. selection biases)

❖ Medical literature

➢ advantages: reliable, relatively inexpensive

➢ difficulties: few qualitative data, few direct probabilities, different 

criteria, population-dependent, publication biases

❖ Databases

➢ advantages: fast, inexpensive

➢ difficulties: small databases, selection biases

❖ Subjective estimates

➢ advantage: relatively inexpensive

➢ difficulties: unavailability of experts, psychological biases



3.4.1.1. Canonical models



General model

❖ Probability table: 

P(y | x1, … , xn)

❖ Factors that  

influence the prob. of X

Obesity

Age

Sex

AHT

Smoking MeningitisPneumonia

Paludism

Fever

Flu

❖ Efficiency of each link:

ci

❖ Causes that

can produce X

Noisy OR

Canonical models





3.4.2. Learning BNs from data



Learning BNs from data

❖ Two possibilities of learning

➢ automatic, interactive

❖ Two main algorithms:

➢ Search-and-score

• search

– depart from a network with no links

– one edit (add/remove/invert a link) in each iteration

• score

– use a metric (there are several metrics available) to quantify how well 

the model fits the data

➢ PC

• depart from a fully-connected undirected graph

• when two variables are independent, remove the link

– more precisely, when the correlation is not statistically significant (p < a)

• when two variables are conditionally indep., remove the link

• orient the remaining links to obtain a directed graph



Hands-on exercise 2



Advantages of interactive learning

❖ The system proposes, the user decides

➢ Very useful for tuition

➢ Useful for combining data with expert knowledge

➢ Useful for debugging new algorithms (workbench)

❖ See www.openmarkov.org/docs/tutorial.



A comparison of both methods for building BNs

❖ Automatic learning from databases

➢ Advantage: faster (graph + probabilities)

➢ Limitation: medical databases are usually incomplete

• Missing values → problem of imputation (rarely missing at random)

• Missing variables → spurious correlations

➢ Black-box algorithm that returns non-causal models

 Human experts are reluctant to accept their advice

❖ With expert knowledge (“manual” method)

➢ Only method possible when there is not a good-enough database

➢ Difficulty in practice: getting the collaboration of experts

➢ Building the causal graph is usually difficult

➢ Obtaining the probabilities is much more difficult.



Summary: BNs vs. the naïve Bayes

❖ BNs can diagnose several diseases simultaneously.

❖ BNs do not assume conditional independence of findings.

❖ BNs are usually causal models

➢ closer to doctors’ reasoning: explanation of reasoning

➢ probabilities are in general easier to obtain

❖ Three types of reasoning: abductive, deductive, inter-causal.

❖ They can combine data (from databases), 

epidemiological studies (scientific literature) 

and expert knowledge (doctors).

Despite these advantages,

BNs are almost unknown in medicine.

No book for medical doctors mentions them!



4. Unicriterion decision analysis



4.1. Introductory examples



Medical example (1)

❖ Suspicion of infection

➢ Prior probability: 0.14

❖ Effectiveness:

➢ No disease, no treatment: 10

➢ Disease, not treated: 3

➢ Disease, treated: 8

➢ No disease, treatment (by mistake): 9



Decision tree (1)

no antibiotics

D

antibiotics

infection
u (+x, +d) = 8

u (¬x, +d) = 9
no infection

P(+x) = 0.14

u (¬x, ¬d) = 10

u (+x, ¬d) = 3

X

X

P(¬x) = 0.86

infection

P(+x) = 0.14

no infection

P(¬x) = 0.86

U(+d) = 8.86

U(¬d) = 9.02

Optimal decision: Dopt = ¬d    do not give antibiotics

Prognosis: U = max (U(+d), U(¬d)) = max (8.86, 9.02) = 9.02

Dopt = ¬d



Influence diagram DAN
(decision analysis network)

❖ Both models are identical.

❖ They generate the same decision tree.



Utility as a function of prevalence

U d u x d P x
x

( ) ( , ) ( )= 

P(+x)  U(+d)   U(¬d)   Dopt   U  

0’00 9’00 10’00 ¬d 10’00 

0’05 8’95 9’65 ¬d 9’79 

0’14 8’86 9’02 ¬d 9’02 

0’17 8’83 8’81 +d 8’83 

0’40 8’60 7’20 +d 8’60 

0’75 8’25 4’75 +d 8’25 

1’00 8’00 3’00 +d 8’00 
 

 

U U d U d= + max( ( ), ( ))

D U d U dopt = + arg ( ( ), ( ))max

decision
threshold



Utility as a function of prevalence



Medical example (2)

❖ In the previous scenario, what should we do if we knew 

with certainty whether the patient has the disease?

➢ Question 1: What to do when infection is present?

➢ Question 2: What to do when infection is absent?

❖ What is the average utility in this sub-population?



Decision tree (2)

Optimal decision: infection (+x)  give antibiotics (+d) 

no infection (¬x)  do not give antibiotics (¬d)

Expected utility: U = 8  0.14 + 10  0.86 = 9.72

no infection

infection

antibiotics
u (+x, +d) = 8

u (+x, ¬d) = 3
no antibiotics

u (¬x, ¬d) = 10

u (¬x, +d) = 9

X

antibiotics

no antibiotics

P(+x) = 0.14

Dopt (+x)= +d

U(+x) = 8

P(¬x) = 0.86 

Dopt (¬x) = ¬d

U(¬x) = 10

D

D

U = 9.72



Influence diagram DAN

We have added an 

information link.

We have marked Disease as

always-observed.

❖ Two different ways of saying that the value of Disease is known 

when making the decision Therapy.

❖ Both models are equivalent: they generate the same decision tree.



Medical example (3)

❖ There is a test Y

➢ Sensitivity: 70%

➢ Specificity: 90%

➢ Cost (effectiveness decrease): 0.2

❖ Questions:

➢ What to do when the test is positive?

➢ What to do when it is negative?



D

antibiotics

infection
u (+x, +d) = 7.8

u (¬x, +d) = 8.8

P(+x|+y) = 0.832

X
U(+d |+y) = 7.97 no infection

P(¬x|+y) = 0.168

no antibiotics

U(¬d|+y) = 3.98

infection
u (+x, ¬d) = 2.8

u (¬x, ¬d) = 9.8

P(+x|+y) = 0.832

X

no infection

P(¬x|+y) = 0.168

D

antibiotics

infection
u (+x, +d) = 7.8

u (¬x, +d) = 8.8

P(+x|¬y) = 0.015

X
U(+d |¬y) = 8.79 no infection

P(¬x|¬y) = 0.985

no antibiotics

U(¬d |¬y) = 9.70

infection
u (+x, ¬d) = 2.8

u (¬x, ¬d) = 9.8

P(+x|¬y) = 0.015

X
no infection

P(¬x|¬y) = 0.985

Y

positive

P(+y) = 0.153

Dopt (+y) = +d

U(+y) = 7.97

negative

P(¬y) = 0.847

Dopt (¬y) = ¬d

U(¬y) = 9.70

U = 9.43



Policy and prognosis

❖ Policy:

➢ When Y is positive: give antibiotics

➢ When Y is negative: do not give antibiotics

❖ Prognosis

➢ When Y is positive: U(+y) = 7.97 

➢ When Y is negative: U(¬y) = 9.70

➢ Global prognosis (average utility)

Uwith test = U(+y)  P(+y) + U(¬y)  P(¬y)

= 7.97  0.153 + 9.69  0.847

= 9.43 



Influence diagram DAN

An information link 

from Result of test to Therapy

Result of test is marked as

always-observed.

❖ Different ways of indicating the flow of information.

❖ Both models generate the same decision tree.



Bayesian networks IDs / DANs

❖ Only chance nodes

❖ Used for diagnosis

❖ Can be learned from data

❖ Three types of nodes:

chance, decision, utility

❖ Used for decision analysis

❖ Require causal knowledge



Medical example (4): 

deciding about a test

❖ Test Y

➢Advantage:  gives information

➢Disadvantage:  has a cost

❖ Is it worth doing the test?

❖ Three possible policies:

1. Give the therapy to all patients, preventively

2. Never apply the therapy

3. Do test Y; apply the therapy only when it is positive



D

u (+x, +d , +t) = 7.8

u (¬x, +d , +t) = 8.8

X

D

u (+x, +d , +t) = 7.8

u (¬x, +d , +t) = 8.8

X

u (+x, ¬d , +t) = 2.8

u (¬x, ¬d , +t) = 9.8

X

antibiotics

U(+d|+y) = 7.97

no antibiotics

U(¬d |+y) = 3.98

antibiotics

U(+d |¬y) = 8.79

no antibiotics

U(¬d |¬y) = 9.70

u (+x, ¬d , +t) = 2.8

u (¬x, ¬d , +t) = 9.8

X

infection

P(+x|+y) = 0.832

no infection

P(¬x|+y) = 0.168

infection

P(+x|+y) = 0.832

no infection

P(¬x|+y) = 0.168

infection

P(+x|¬y) = 0.015

no infection

P(¬x|¬y) = 0.985

infection

P(+x|¬y) = 0.015

no infection

P(¬x|¬y) = 0.985

Y

Y positive

P(+y)=0.153

Dopt = +d

U(+y) = 7.97

Y negative

P(¬y)=0.847

Dopt = ¬d

U(¬y) = 9.68

D

u (+x, +d, ¬t) = 8

u (¬x, +d, ¬t) = 9

X

u (+x, ¬d, ¬t) = 3

u (¬x, ¬d, ¬t) = 10

X

antibiotics

U(+d) = 8.86

no antibiotics

U(¬d) = 9.02

infection

P(+x) = 0.14

no infection

P(¬x) = 0.86

infection
P(+x) = 0.14

no infection

P(¬x) = 0.86

T

do not test

Dopt = ¬d

U(¬t) = 9.02

do test

U(+t) = 9.43

U = 9.43



Influence diagram DAN

An information link.

Total ordering of the decisions

Restrictions. Revelation link.

The decisions are not ordered.

❖ Different ways of indicating the flow of information.

❖ The decision trees are different but equivalent: 

the same probabilities, utilities, and policies.



in the ID in the DAN

• dummy value:

test not done

• restrictions

• no dummy value

Conditional prob. for Result of test



Decision tree

generated by the ID

Decision tree 

generated by the DAN

symmetric asymmetric



Hands-on exercise 3



Exercise: Optimal stratety for two tests

❖ Question:  What is the most effective strategy?



Solution with influence diagrams

❖ IDs require a total ordering of the decisions

❖ It is not possible to represent this problem with one ID

❖ Trick: use two influence diagrams

❖ We choose the order (the ID) with the higher expected utility.

❖ This trick does not work for more than two tests.



Solution with a DAN

❖ Advantages wrt IDs

➢ one network is sufficient

➢ no dummy states, such as “test not done”

➢ can accommodate any number of tests



The n-test problem

❖ Computationally hard: n! possible orderings of the tests.

❖ We have developed an any-space algorithm for this problem

❖ and a fast algorithm (9 minutes for the 7-test problem).

❖ It is possible to develop even more efficient algorithms.





DANs vs. IDs

❖ DANs can replace IDs as the standard decision analysis tool 

(in AI, MDM, operations research…) because:

➢ For every ID there is an equivalent symmetric DAN

• but for many DANs there is no equivalent ID

➢ Virtually all real-world problems are asymmetric.

➢ There many problems that cannot be modeled with IDs.

➢ Even if a problem can be modeled with an ID, a DAN is 

usually better because it does not need dummy states.



4.2. Examples of decision models

for real-world problems



Mediastinet, an ID for lung cancer

Equivalent to a decision tree containing ~104 branches.



Mediastinet (DAN version)

Decisions are partially ordered.



Arthronet, an ID for total knee arthroplasty

Equivalent to a decision tree containing ~104 branches.



4.3. Advantages and limitations

of influence diagrams



Advantages of influence diagrams (1/3)

❖ IDs are more compact than decision trees

➢An ID having n binary nodes ~ a DT having 2n branches

❖ IDs transform automatically into decision trees

➢ ... but the reverse is not true (no general algorithm)

➢ If you build a decision tree, you only have a decision tree.

➢ If you build an ID, you have both.

❖ IDs are much easier to build than decision trees

➢ IDs use direct probabilities (prevalence, sensitivity, specificity...)

and costs (mortality, morbidity, economic cost...)

➢ ID can use canonical models (noisy OR, noisy AND, etc.)

➢Each parameter appears only once in the ID 

• in many cases it is not necessary to have parametric variables

➢ IDs can have several value nodes: more clarity, separate criteria



Advantages of influence diagrams (2/3)

❖ No pre-calculation of probabilities is required

❖ Having all the information, no debugging is usually needed

➢On the contrary, “all trees have bugs” (Primer on MDA, in MDM journal)

❖ IDs are much easier to modify than decision trees

➢Refine the model with new decisions and chance variables

➢Structural sensitivity analysis

➢Can adapt to different regional settings

➢Can adapt to patient’s medical characteristics and preferences

❖ Explicit representation of causality

➢a link indicates causal influence

➢ the absence of a link means “no causal influence” (hypothesis)



Advantages of influence diagrams (3/3)

❖ Two possibilities of evaluation:

1. expansion of an equivalent decision tree

• exponential complexity (time and space)

• equivalent to the brute-force method for Bayesian networks

• many problems can not be solved with this method

2. operations on the ID (recursive reduction of the ID)

• direct manipulation of the graph and/or potentials of the ID

• similar to the best algorithms for Bayesian networks

• canonical models and the separation of utility nodes can lead to 

more efficient evaluations

❖ More possibilities of explanation of reasoning

➢ computation of posterior probabilities on the ID (as if it were a BN)

➢ value of information (EVPI and other measures) can be computed easily

➢ other methods from Bayesian networks and qualitative prob. networks.

These methods can be used to debug/refine IDs.







IDs in the literature on MDM (1/3)

❖ Books that mention decision trees but do not mention IDs

• Weinstein, Fineberg. Clinical Decision Making. 1980. 

• Sloan (ed.). Valuing Health Care. 1995.

• Gold et al. Cost-Effectiveness in Health and Medicine. 1996.

• Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).

• Petitti. Meta-Analysis, Decision Analysis and CEA. 2nd ed., 2000.

• Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.

• Levin and McEwan. Cost-Effectiveness Analysis. 2nd ed., 2001.

• Parmigiani. Modelling in Medical Decision Making. 2002.

• Haddix et al. Prevention Effectiveness. 2nd ed., 2003.

• Fox-Rushby and Cairns. Economic Evaluation. 2005.

• Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.

• Alemi and Gustafson. Decision Analysis for Healthcare Managers, 2006.

• Arnold. Pharmacoeconomics: From Theory to Practice. 2009.

• Kassirer et al. Learning Clinical Reasoning. 2nd ed., 2010.

• Mushlin and Greene. Decision Making in Medicine. 3rd ed., 2010.

(cont’d)



IDs in the literature on MDM (2/3)

❖ Books that mention decision trees but do not mention IDs (cont.)

• Gray et al. Applied Methods of CEA in Health Care, 2011. 

• Alfaro-LeFevre. Critical Thinking, Clinical Reasoning… 5th ed., 2013.

• Morris et al. Economic Analysis in Healthcare. 2nd ed., 2012.

• Rascati. Essentials of Pharmacoeconomics. 2nd ed., 2013.

• Sox et al. Medical Decision Making. Latest ed., 2013.

• Hunink et al. Decision Making in Health and Medicine. 2nd ed., 2014.

• Drummond et al. Methods for the Economic Evaluation of… 4th ed. 2015.

• Edlin et al. Cost Effectiveness Modelling for HTA… 2015.

• Neumann et al. Cost-Effectiveness in Health and Medicine. 2016

• Caro et al. Discrete Event Simulation for HTA. 2016

❖ One book that mentioned IDs 

• Muennig. Designing and Conducting Cost-Effectiveness Analyses in 

Medicine and Health Care. 2002, page 242:

“An influence diagram (also known as a tornado diagram) ...”

The 2nd edition (2007) and the 3rd (2016) do not mention them.



IDs in the literature on MDM (3/3)

❖ Three books that describe IDs 

• Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000 

(5 pages out of 421, in a chapter by Mark Roberts)

• Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.

(2 pages out of 230)

• Kattan. Encyclopedia of Medical Decision Making. 2009

(4 pages out of 1200+).

❖ Summary of the informal survey of books on MDM and EBM

➢ 26 books published after 1984 

➢ All of them explain DTs but only 3 describe IDs, very briefly.

❖ Some books on medical informatics mention IDs:

• Shortliffe and Cimino. Biomedical Informatics. 4th ed., 2013 (2.5 pages out of 991).

• Kalet. Principles of Biomedical Informatics. 2nd ed., 2013 (3 pages out of 708).

❖ Why are IDs so little known in health sciences after 35+ years?



Limitations of IDs

1. The “reasoning” of an ID is not easy to understand

2. The evaluation returns large policy tables

3. IDs can only model symmetric problems

➢ IDs require a total ordering of the decisions

➢ IDs cannot represent incompatibilities between values

• Non-standard versions of IDs partially solve this problem, 

but none of the alternatives was completely satisfactory.

4. Algorithms could only evaluate unicriterion IDs

➢ They could not perform cost-effectiveness analysis

5. Temporal reasoning was not possible with IDs

➢ Dynamic IDs are computationally unfeasible.



Solutions we have proposed

1. Explanation in influence diagrams

➢ showing the posterior probabilities and expected values

➢ introduction of evidence

➢ hypothetical reasoning (what if) by means of imposed policies

2. Synthesizing the optimal intervention

➢ in the form of a compact tree

3. Decision analysis networks (DANs)

➢ an alternative to IDs for asymmetric decision problems.

4. Cost-effectiveness analysis with IDs

5. Markov influence diagrams 

➢ including cost-effectiveness analysis

after the break



Break:  20 minutes



5. Cost-effectiveness analysis



5.1. Deterministic CEA



An example with costs and effectiveness

❖ Two therapies

➢ Therapy 1: cost = € 20,000

➢ Therapy 2: cost = € 70,000

➢ Effectiveness (QALY)

❖ Questions:

➢ Which therapy to apply when the disease is present

➢ Which therapy to apply when the disease is absent

❖ The answer may depend on l, the willingness to pay (WTP)

No therapy Therapy 1 Therapy 2

Disease present 1.2 4.0 6.5

Disease absent 10 9.9 9.3



When we know that the disease is present

Interval for l Cost Effect. Best therapy

(0, 7,143) 0 1.2 no-therapy

(7,143, 13,208) 20.000 4.0 therapy-1

(13,208, +) 70.000 6.5 therapy-2

7,143 13,208

l



When we know that the disease is absent

Interval for l Cost Effect. Best therapy

(0, +) 0 10 no-therapy

l



5.2. CEA with uncertainty

about the disease



Cost-effectiveness of a test

❖ Prevalence of the disease: 0.14

❖ There is a test

➢ sensitivity: 0.90

➢ specificity 0.93

➢ cost:  € 150

❖ Questions:

➢ Is the test cost-effective?

➢ The answer depends on l

➢ What is the most beneficial therapy for each value of l?

➢ What is the ICER of the test?



Effectiveness as a function of probability

❖ Before doing the test, it only depends on the prevalence:

❖ The result of the test changes the probability of the disease.



A decision tree for this example

present

Disease

prev*sensit/_pJ_5
(cost_test+cost_ther_2) / e2pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_2) / e2abs

therapy-2

Therapy

present

prev*sensit/_pJ_5
(cost_test+cost_ther_1) / e1pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*sensit/_pJ_5
cost_test / e0pres

absent

_pJ_1*_pJ_2/_pJ_5
cost_test / e0abs

no-therapy

positive

Result

of test

_pJ_5

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_2) / e2pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_2) / e2abs

therapy-2

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_1) / e1pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*_pJ_3/_pJ_6
cost_test / e0pres

absent

_pJ_4*spec/_pJ_6
cost_test / e0abs

no-therapy

negative

_pJ_6

do_test

Dec:Test

present

prev
cost_ther_2 / e2pres

absent

#
cost_ther_2 / e2abs

therapy-2

present

prev
cost_ther_1 / e1pres

absent

#
cost_ther_1 / e1abs

therapy-1

present

prev
0 / e0pres

absent

#
0 / e0abs

no-therapy

no_test

cost-effectiveness

cost_test=150

cost_ther_1=20000

cost_ther_2=70000

e0abs=10

e0pres=1,2

e1abs=9,9

e1pres=4,0

e2abs=9,3

e2pres=6,5

prev=0,14

Problem: the standard algorithm only works for the unicriterion case



A warning and a (rudimentary) solution

“Embedded, or downstream, decision nodes are not useful in 

cost-effectiveness analysis because the optimal branch 

cannot be determined when folding back the tree without an 

explicit decision rule for comparing costs and consequences.

Cost-effectiveness analyses can be performed with 

a decision tree that has one decision node at the root. 

The branches of the initial decision node represent 

all of the strategies that are to be compared.”

[Kuntz and Weinstein, 2001]



How many strategies for this example?

❖ Without testing

➢ No therapy in any case

➢ Always therapy 1

➢ Always therapy 2

❖ With testing

➢ If positive, no therapy; if negative, no therapy.

➢ If positive, no therapy; if negative, therapy 1.

➢ If positive, no therapy; if negative, therapy 2.

➢ If positive, therapy 1; if negative, no therapy.

➢ If positive, therapy 1; if negative, therapy 1.

➢ If positive, therapy 1; if negative, therapy 2.

➢ If positive, therapy 2; if negative, no therapy.

➢ If positive, therapy 2; if negative, therapy 1.

➢ If positive, therapy 2; if negative, therapy 2.









5.3. CEA with IDs and DANs



Influence diagram DAN

❖ The same structure as in the unicriterion case

❖ but now we have two criteria: cost and effectiveness



An example with two tests

❖ The same disease and therapies as in the previous example.

❖ Test E (the same as in the previous example)

➢ sensitivity:  0.90

➢ specificity:  0.93

➢ cost:  €150

❖ Test C

➢ sensitivity:  0.78

➢ specificity:  0.91

➢ cost:  €18

➢ discomfort:  0.001 QALY

❖ What is the optimal policy (for each value of l)?



It is a difficult problem

❖ Impossible to solve this problem with an ID

➢ IDs require a total ordering of the decisions

➢ The trick of using two IDs does not work in this case

because it does not return all the ICERs

❖ Difficult to build a decision tree with embedded dec. nodes

➢ It would have 90 leaves

➢ Computing the probability of each scenario is cumbersome

❖ Much more difficult to build a decision tree 

without embedded decision nodes

➢ Finding the possible interventions is a daunting task



… that can be easily solved with a DAN



Methods of Information in Medicine 2015;54:353-358.



April 2021



Hands-on exercise 4



Exercise: cost-effectiveness for two tests

❖ The same probabilities and effectiveness as in exercise 3

❖ but now we are also considering economic costs.

❖ Question:  What is the most beneficial strategy?



6. Temporal models



Temporal PGMs

❖ Markov models

➢ The future is independent of the past given the present

• “Markov models do not have memory”

➢ Key concept: state

➢ Types of models: Markov chains, HMMs, MDPs, 

POMDPs, DBNs, MIDs, DLIMIDs… 

❖ Temporal non-Markovian models

➢ The future is not determined by the current state

• for example, birth occurs around 9 months after conception

➢ An type of non-Markov model: event networks

• Galán, Aguado, Díez, Mira.  NasoNet: Modelling the spread of nasopharyngeal 

cancer with temporal Bayesian networks. AI in Med, 2002.



6.1. Types of Markov models



Markov chain

❖ One variable that evolves over time

❖ Transition probabilities:  P(xi+1|xi)



Hidden Markov model (HMM)

❖ Observed variable:  Y

❖ Non-observed (hidden) variable: X

❖ Transition probabilities:  P(xi+1|xi)

❖ Probability of each observation:  P(yi|xi)



Markov decision process (MDP)

❖ Observed variable:  X

❖ Decision: D

❖ Transition probabilities:  P(xi+1|xi, di)

❖ Reward:  U(xi, di)



Partially observable MDP (POMDP)

❖ Hidden variable: X 

❖ Observed variable : Y

❖ Decision: D

❖ Observation prob.: P(yi|xi)

❖ Transition prob.: P(xi+1|xi, di)

❖ Reward: U(xi, di)



Dynamic Bayesian network (DBN)

❖ Markov chain or hidden Markov model: 

– one variable, X

– one conditional probability: P(xi+1|xi)

❖ Dynamic Bayesian network: 

– several variables, {X, Y, Z…}

– factored probability: P(yi|xi), P(zi|xi, yi), P(xi+1|xi, yi)…



Factored extensions of Markov models



IJCAI Workshop Decision Making in Partially Observable, 

Uncertain Worlds: Exploring Insights from Multiple Communities

Barcelona, Spain, July 2011



6.2. Markov influence diagrams



Markov influence diagrams

❖ Tractable only when decisions are atemporal, i.e., 

policies do not change over time

❖ Can be used for cost-effectiveness analysis



Medical Decision Making 2017; 37:183-195 



Hands-on exercise 5



A small Markov model

❖ A disease can be latent (QoL = 0.9) or active (QoL = 0.7).

❖ Two therapies

➢ standard: $150/month when latent

$2,500/month when active

➢ new therapy, only effective when latent: $950/month

❖ Monthly transition probabilities

➢ active → dead: 15%

➢ latent → dead: 2%

➢ latent → active, standard therapy: 11%

➢ latent → active, new therapy: 8%

➢ active → latent 0% (no regression)

❖ Annual discount rate:  3.5% for cost and effectiveness

❖ Is the new therapy cost-effective?

effect of the new therapy



6.2.1. Example:

Chancellor’s model for HIV



Case study: HIV/AIDS 
(Chancellor et al.,1997)



❖ Two therapies: 

➢ monotherapy: AZT only

➢ combined therapy: AZT + lamivudine for 2 years; then only AZT

❖ State-transition diagram:  4 states



A MID version of the HIV model
[Chancellor et al., 1997]



Representing the patient history (1)

❖ Transition probabilities that depend on the time spent in 

current state

➢ We can build a state-transition model with tunnel states

State A

State B1

State B3

State B2 State DState C



Representing the patient history (1)

❖ Transition probabilities that depend on the time spent in 

current state
Memory variable

Only 4 states



Representing the patient history (2)

❖ Transition probabilities that depend on the number of 

relapses

➢ We can add states to keep track of the number of relapses

D

A0 A1 A2

C0 C1 C2

B0 B1 B2



Representing the patient history (2)

❖ Transition probabilities that depend on the number of 

relapses:
Memory variable

Only 4 states



6.2.2. Other MIDs for real-world problems



Case study: Hip replacement
(Briggs et al., 2004)



A MID version of the hip replacement model

[Briggs et al., 2004]



Case study: HPV vaccine
(Insinga et al., 2009)





A MID version of the HPV vaccination model
[Callejo et al., 2010]



Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21;8;TRUE)*(((BI5+BJ5)+BK5*u

CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC

+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_

3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU

P($C4;Variables!$A$4:$H$21;2;TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(

$C4;Variables!$A$4:$H$21;4;TRUE)+(BS4+BT4)*uRCC*VLOOKUP($

C4;Variables!$A$4:$H$21;5;TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C

4;Variables!$A$4:$H$21;2;TRUE))



Case study: AIDS in Africa
(Ryan et al., 2009)



A MID version of the CHAP model

[Ryan et al., 2008]



Our model for malignant pleural effusion

➢ Meeting of the Society for Medical Decision Making (SMDM 2015), 

St. Louis, October 2015.



Our model for colorectal cancer screening

➢ European Conference of the Society for Medical Decision Making, 

London, UK, June 2015.



Our model for bilateral cochlear implantation

➢ Cochlear Implant Symposium, Washington DC, October 2015.







A MID with several decisions
Adapted from [Walker et al., 2013]

➢ This model evaluates all the possible interventions.

➢ It can cope with heterogeneity: sex, age, grade.





MID version of the 21-gene model



6.2.3. Half-cycle correction



Medical Decision Making 2016;36:115-131 



Within-cycle correction methods

[Elbasha and Chhatwal, 2016]





“Within-cycle corrections” in OpenMarkov

This will change in future

versions of OpenMarkov: 

replaced with properly

computed “within-cycle

corrections”:

• beginning of cyle

• half cycle

• end of cycle

• Simpson’s 1/3  rule

• Simpson’s 3/8 rule





7. Sensitivity analysis



Types of sensitivity analysis

❖ Two main types

➢ structural (qualitative)

➢ parametric (quantitative)

❖ Depending on the effect analyzed

➢ analysis of utility

➢ analysis of decisions / policies

❖ Depending on how many parameters are varied

➢ one-way analysis

➢ n-way analysis (independent or join analysis)

❖ Depending on how the parameters are varied

➢ range (interval)

➢ probability distribution

➢ look for thresholds (changes in policies)



7.1. Unicriterion sensitivity analysis



Tornado diagram



Spider diagram



Plot (one-way sensitivity analysis)



7.2. Cost-effectiveness

sensitivity analysis



Scatter plot



Acceptability curve



Some sensitivity analysis options



Hands-on exercise 6



Uncertainty for the small Markov model

❖ Uncertainty about cost of new therapy

➢ Gamma, with standard deviation = 20% of the mean

❖ Uncertainty about transition probabilities

➢ one-month study: 400 volunteers with latent disease

❖ Questions

➢ Prob. new therapy being cost-effective at WTP = $50,000/QALY

➢ Prob. new therapy being effective (disregarding cost)

Transition to 
standard 

therapy

new 

therapy

dead 4 4

active 22 16

latent (no transition) 174 180

TOTAL 200 200



8. Overview of software tools



Software tools for CEA





69 packages!



Open-source tools for PGMs

❖ Among the tools having a GUI for editing PGMs, only 

Weka and OpenMarkov are still under active development.

❖ Only BNT and OpenMarkov can represent Markov models.

❖ Only OpenMarkov has cost-effectiveness analysis.



Which software tool should I use?

❖ It depends on:

➢ my problem → type of model

➢ my expertise: tools I am proficient at

➢ my budget

➢ the recipient: a company, an agency (e.g., NICE)

❖ Several types of temporal models

➢ Markov models (cohort models or microsimulation)

➢ discrete event simulation

➢ dynamic models (differential equations)



Comparison of MIDs with other techniques

❖ MIDs vs. spreadsheets (Excel)

➢ no need to write any formulas nor VisualBasic macros

➢ no need to multiply the number of states (e.g., tunnel states)

➢ difficult to write functions of parameters in OpenMarkov

❖ MIDs vs. Markov decision trees

➢ much more compact  possible to build much larger models

➢ no need to add tracking variables (microsimulation)

❖ MIDs vs. a programming language (R, C++, MATLAB…)

➢ no need to write any code, not even for sensitivity analysis

➢ but programming languages are much more flexible

❖ MIDs vs. discrete event simulation

➢ cohort propagation (exact algorithm) is often much faster

❖ MIDs vs. all the others: may contain several decisions.



Our (biased) recommendation

❖ If OpenMarkov satisfies your needs, use it

➢ because of graphical user interface

➢ because of advanced algorithms (difficult to implement)

❖ If the model is small and relatively simple, you may try using 

Excel or TreeAge

❖ Otherwise, use R

➢ DARTH group, https://darthworkgroup.com 

software and other resources for CEA in R

❖ If you have patient-level data, use R+BUGS

➢ http://www.statistica.it/gianluca/tags/bcea

Book: Baio et al., Bayesian Cost-Effectiveness Analysis 

with the R package BCEA, 2017.

for atemporal and Markov models 

https://darthworkgroup.com/
http://www.statistica.it/gianluca/tags/bcea


8. Conclusions



Conclusions

❖ BNs overcame the limitations of the naïve Bayes method.

❖ IDs have several advantages over decision trees,

but also have serious limitations for medical decision making.

❖ DANs are similar to IDs, but more suitable for asymmetric 

decision problems, especially partially ordered decisions.

❖ It is possible to do cost-effectiveness analysis with IDs.

❖ and also with Markov IDs (MIDs) if all decisions are atemporal.

❖ There are other types of Markov PGMs having one or more 

decisions per cycle: MDPs, POMDPs, DLIMIDs…



Thank you very much for your attention!

❖ Links

• www.cisiad.uned.es

• www.OpenMarkov.org

• www.ProbModelXML.org/networks

❖ Contact: fjdiez@dia.uned.es

http://www.probmodelxml.org/networks
mailto:fjdiez@dia.uned.es

