Variable elimination for influence diagrams with super-value nodes

Manuel Luque and Francisco Javier Diez
Departamento de Inteligencia Artificial. UNED
28040, Madrid, Spain

Abstract

In the original formulation of influence diagrams, each model contained exacly one utility
node. Tatman and Shachter (1990) introduced the possibility of having super-value nodes
that represent the sum or the product of their parents’ utility functions. However the
algorithm they proposed for dealing with super-value nodes has two shortcomings: it
requires dividing potentials when reversing arcs, and it tends to introduce unnecessary
variables in the resulting policies. In this paper we propose a new algorithm for influence
diagrams with super-value nodes that avoids these shortcomings and will be in general
much more efficient than their arc-reversal algorithm.

1 INTRODUCTION

In the original proposal by
Howard and Matheson (1984), each influence
diagram (ID) had only one utility node, whose
parents were necessarily random nodes or deci-
sion nodes. Later, Tatman and Shachter (1990)
proposed the inclusion of super-value nodes,
which are utility nodes whose parents are
utility nodes, and adapted the arc-reversal
algorithm (Olmsted, 1983; Shachter, 1986) to
cope with super-value nodes of type sum and
product. Other algorithms, which evaluate
an ID by recursively eliminating its variables
(Shenoy, 1992; Jensen et al., 1994), are in
general more efficient than arc reversal because
they do not need to divide potentials. They
permit that the ID contains several utility
nodes (the global utility will be the sum of all
of them) but do not admit explicit super-value
nodes. All these algorithms try to keep the
separability of the utility function as long as
possible during the evaluation of the ID, not
only for the sake of efficiency, but also to
avoid the introduction of redundant variables
in the resulting policies. However, all of them
may introduce redundant variables, and for
this reason some authors have proposed other
algorithms that analyze the graph in order to
detect those actually required (Faguiouli and

Zaffalon, 1998; Shachter, 1998; Nielsen and
Jensen, 1999; Nilsson and Lauritzen, 2000;
Vomlelova and Jensen, 2002).

In this paper we will try to join the advan-
tages of all the previous algorithms in a new one
that (1) does not require the reversal of arcs,
(2) admits super-value nodes, and (3) keeps
the policy domains as small as possible with-
out the need of auxiliary algorithms for elimi-
nating redundant variables. The process con-
sists in transforming the utility function before
eliminating each variable, in order to keep its
separability as long as possible.

The remainder of this paper is structured as
follows. Section 1.1 introduces some basic defi-
nitions. Section 2 presents a new algorithm for
eliminating chance variables (Sec. 2.1) and de-
cision variables (Sec. 2.2). We discuss related
work and future research lines in Section 3, and
conclude in Section 4.

1.1 DEFINITIONS

An ID is an acyclic directed graph that con-
sists of three disjoint sets of nodes: decision
nodes Vp, chance nodes V¢, and utility nodes
Vy. Given that each node represents a vari-
able, we will use indifferently the terms variable
and node. Chance nodes represent events that
are not under the direct control of the decision
maker. The decision nodes correspond to ac-

tions under the direct control of the decision
maker. We suppose that there is a total or-
dering among the decisions, which indicates the
order in which the decisions are made.

We differentiate two types of utility nodes:
ordinary, whose parents are decision and/or
chance nodes, and super-value, whose parents
are utility nodes, and may in turn by of two
types, sum and product. We assume that there
is a utility node Uy that is a descendant of all the
other utility nodes, and therefore has no child.

An arc from decision D; to decision D; means
that D; is made before D;. An arc from a chance
node X; to a decision node D; means that the
value of variable X; is known When the decision
is made. We assume the non-forgetting hypoth-
esis, which means that a variable X; known for
a decision D; is also known for any posterior
decision Dy, even if there is not an explicit link
X, — Dyj. A chance or decision node without
descendants is said to be barren.

The quantitative information that defines an
ID is given by assigning to each random node
X; a probability distribution p(X;|pa(X;)) for
each configuration of its parents, pa(X;), and
assigning to each ordinary utility node U; a
function v;(pa(U;)) that maps the configura-
tions of its parents onto the real numbers. The
utility associated to a super-value node of type
sum/product is the sum/product of the utility
functions of its parents (Tatman and Shachter,
1990).

The matriz of an ID v is defined by

= (Hp(Xﬂpa(Xi))) Yo (1)

The total ordering of the
{D1,...,D,} induces a partition of the
chance variables {Cy, Cy,...,C,,}, where C; is
the set of variables known for D; and unknown
for Di—l—l-

The maximum expected utility of an ID whose

chance and decision variables are all discrete is
defined by

MEU = Zmax Zmaxqu (2)

Cn—1

decisions

adios

Z =P—4q

hola

An optimal policy 0p, is a function that maps
each configuration of the variables at the left of
D; in the above expression onto the value d; of
D; (more exactly, one of the values of D;) that
maximize(s) the expression at the right of D;:

5D.(C0,d1,... di_l,ci_l) =
= argmax) max. max » ¥ (3)
) D)
However, in many cases Jp, does not
depend on some of the wvariables in
{Co, Dq,...,D;_1,C;_ 1} which are then

called redundant variables. When a variable is

redundant as a consequence of the form of the

graph, it is said to be structurally redundant.
For instance, for the graph given in Figure 1,

MEU = mDaLXZ P(a)
B A
- (U1(a)

In principle, the domain of the policy dp is
{B}, but we will later see that, as a conse-
quence of the separability of the utility function,
dom(dp) = 0, i.e., variable B is structurally re-
dundant for the decision D.

[0 }—()
I
<> L5
>

Figure 1: Graph of a small influence diagram
containing two super-value nodes.

+ (Uz(a,d) + Us(b)))

The evaluation of an ID consists in finding its
MEU and a policy for each variable. The com-
putational complexity of performing the sum-
mation on C; in Equation 2 grows exponentially
with the number of variables in C;. Therefore,

it is in general more efficient to sum out its vari-
ables one by one. The cost of this recursive
elimination depends on the form of the func-
tions that define the matrix ¢ (see Eq. 1) and
on the order in which the variables are elimi-
nated. The determination of the optimal elimi-
nation sequence is a NP-complete problem that
we will not address in this paper. Our work fo-
cuses on how to eliminate a variable, either by
summation or by maximization, with a double
goal: to eliminate it efficiently and to preserve
the separability of the matrix as much as possi-
ble.

2 VARIABLE-ELIMINATION ON
A TREE OF POTENTIALS

The basic idea of our algorithm consists in rep-
resenting the matrix of an influence diagram as
a tree of potentials (ToP), whose leaves (termi-
nal nodes) represent probability potentials ¢;
or utility potentials v;, and non-terminal nodes
represent either the sum or the product of the
potentials represented by their children.

The construction of the ToP proceeds as fol-
lows. The root will always be a non-terminal
node of type product. Each probability poten-
tial of the ID is added as a child of the root.
If the bottom node of the ID, Up, is an ordi-
nary utility node or a super-value node of type
sum, it is also added as a child of the root. On
the other hand, if Uy is a super-value node of
type product, its parents in the ID are added
as children of the root in the ToP. All the other
utility nodes in the ID must be added analo-
gously, so that the ToP reproduces the tree of
utility nodes in the ID, although upside-down,
together with the probability potentials. In the
context of trees of potentials, we will sometimes
use indifferently the terms node and potential.
This way the ToP represents the matrix of the
ID.

The ToP for the ID in Figure 1, which repre-
sents the potential P(a)-P(b)-[U1(a)+Us(a,d)-
Us(b)], will consist of a product node with three
children, a sum node with two children, and a
product node with two children.

A super-value node in an ID is redundant if

it is of the same type (either sum or product)
as its child. A non-terminal node in the ToP is
redundant if it is of the same type as its parent.
Therefore the ToP will be free of redundancies if
and only if the ID was so. However a redundant
node in a ToP can be removed by transferring
its children to its parent.

We describe in the next two subsections how
the elimination of chance and decision variables
in an ID is handled in a ToP by applying the
sum and max operators, respectively. We will
assume that the ToP does not contain redun-
dant nodes.

2.1 ELIMINATION OF A CHANCE
VARIABLE

The elimination of a chance variable A consists
in applying the operator), to the ToP. We
divide this process in two phases: we first unfork
the ToP, and then eliminate A in the leaves of
the new ToP. The following definitions will help
us to explain the algorithm.

Definition 1 A variable X appears in a ToP t
if it belongs to its domain, i.e., if it belongs to
the domain of some of the terminal nodes of t.

Definition 2 A node of type product n is
forked with respect to (wrt) a variable A if A
appears in more than one of the children of n.

Definition 3 A ToP is forked wrt A if at least
one of its (product) nodes is forked wrt A. Oth-
erwise, it is non-forked.

2.1.1 Algorithm for eliminating forked
nodes

Each node in a ToP may be implemented as
an object having a boolean property, mayBe-
Forked (wrt the variable A to be eliminated).
Before eliminating each of the variables, say
A, this property is initialized to true for non-
terminal nodes and to false for leaves.

The class ToPNode implements a method,
unfork, which takes variable A as a parame-
ter and returns a boolean value. The purpose
of this method is to unfork the node n receiv-
ing the message and all its descendants. The
method returns true if the potential 1) depends
on A; otherwise, it returns false.

If n is a leaf node, it is already unforked,
and the method can immediately return true or
false. If n is a non-terminal node, it sends the
message unfork to all its children, say nq, ..., ny,
in order to unfork its subtrees and to know how
many of its children depend on A. Then ny
compacts its leaves, i.e., multiplies together all
its children that are terminal and dependant on
A, and replaces them by their product. If no
children of ny depend on A, then the property
mayBeForked is set to false and the method re-
turns false. If n is a sum node or if exactly one
child depends on A, then mayBeForked is set
to false and the method returns true. It n is a
product node and two or more children depend
on A, then n is forked and must be unforked by
iteratively distributing some of its potentials, as
follows.

Let n; and ne be two of the children of n
depending on A. Given that the tree has no
redundant nodes, ni and ny must be either ter-
minal or sum nodes, and since the leaves of n
have been compacted, at least one of the two
—say n1— must be of type sum. Then no will
be distributed wrt the summands of n.

Let us assume that n; has j terminal chil-
dren and (k—j) non-terminal children, as shown
in Figure 2. Each terminal child n;; will be
replaced by a product node having n}, (see
Fig. 3). If the potential ¢, ; depends on A,
we will mark the new non-terminal node n’u
as mayBeForked=true', and ”/1,1 will receive
the message unfork. Analogously, each non-
terminal child n;; —which must be of type
product, because the tree has no redundant
nodes— will add no to its children, as shown
in Figure 3. Again, if the potential 1;; de-
pended on A before adding ng, then n;; must
be marked as mayBeForked and receive again
the message unfork. Then, we must mark n; as
mayBeForked so that nq will receive the mes-
sage unfork.

!The purpose of the boolean property mayBeForked,
whose purpose is to avoid the examination of subtrees
already unforked, must be set to true for n;; so that the
unfork method can process them again. However, the
subtrees of n1,;, which are already marked as forkedTree
will not be processed again, unless it is required by a
subsequent distribution of na.

Figure 2: A tree of potentials (ToP) We assume
that both n; and ny depend on the chance vari-
able to be eliminated, A.

g ny ny; ny ny "y

Figure 3: A ToP equivalent to the previous one,
in which n9 has been distributed with respect to
ni.

As a result of the distribution, the number
of children of n depending on A has decreased
by one. If n is still forked, it will be necessary
to distribute other of the child nodes that de-
pend on A —say n3— until n becomes unforked.
Then the property forkedTree is set to false and
the method returns true (because n depends on
A).

The algorithm for the method unfork may be
summarized as follows:

Algorithm 4 (unfork)
if mayBeForked=true {
send the message unfork to the children of n
and record which children depend on A;
if n is of type product then {
compact its leaves;
while n is forked {
distribute no wrt the sum node nq;
send again the message unfork to nq;

}

} mayBeForked: =false;

}

if ¥ depends on A then return true
else return false;

It is clear that both the compaction of the
leaves and the distribution of a potential pre-
serve the value of the potential, because

k k
Yo X Y =Y Xty (4)
=1 =1

Then, in order to guarantee the correctness of
the method, it suffices to prove that the algo-
rithm terminates. We prove it by induction on
the number of summands that would result in
the expansion of the tree.

Definition 5 The number of summands of the
expansion of a ToP rooted at node n, denoted
by s(n), is defined recursively as follows. If n
is a terminal node, then s(n) = 1. If n has
m children, ny,...,nm, and n is of type sum,
then s(n) = Y i s(ng); if n is of type product,
s(n) = [TiZ; s(ni).

Lemma 6 Given the distribution operation ex-
plained above (see Figures 2 and 3), s(n);) <
s(ny;). ’

Proof. We have that s(n) = s(ny) - ... -
$(Nm), which implies that s(n) > s(ny). Given
that ny has more than one child and s(n;) =
Zle s(niy), then s(ny) > s(nyy) for all I,
s(n1) > 1, and s(n) > s(ng).

If ny; was a leaf node, then s(n) ;) = s(ng)
and s(nj ;) < s(n). If ny; was a non-terminal
node then s(n},) = s(niy) - s(n2) < s(ny) -
s(n2) < s(nq) - o s(nm) = s(n), which proves
the lemma. m

Theorem 7 For every ToP, the algorithm un-
fork terminates in a finite number of steps.

Proof. We prove it by induction on the num-
ber of summands of the root of the tree, s(r),
taking into account that the number of children
of every node is finite.

If s(r) = 1 then the tree has only one ter-
minal node or one product node having a finite
number of leaves, and clearly the algorithm ter-
minates.

Let us now assume that the theorem holds
for all the trees such that s(r) < k and let us

examine a tree such that s(r) = k+1 > 2. If
r is of type sum, then each subtree of r has at
most k summands (because r has at least two
children), and therefore the unfork method ter-
minates for each child of r and for r itself. If r
is of type product, then at least one of the chil-
dren of r, say n;, must be of type sum (other-
wise s(r) would be 1). Therefore, the number of
summands for the other children of r is at most
n, which means that unfork terminates. Sim-
ilarly, the number of summands of each child
of n; is at most k, which means that the al-
gorithm terminates for each child of n; and for
n;. When all the children of r have processed
the unfork message, it may happen that two of
them, ny and ns, depend on A. It is then nec-
essary to distribute one of them, say ns, wrt
the other, as shown in Figures 2 and 3, and to
send again the message unfork to ny. Since the
lemma above states that s(n);) is at most n,
the unfork method terminates for the children
of n1 and, consequently, for n; itself. If n; has
still other children that depend on A, they must
also be distributed wrt ny, but the process ter-
minates for each node, and given that the num-
ber of children of n; is finite, the whole process
terminates. m

In the above example, whose potential was
P(a)- P(b) - [Ui(a) + Us(a,d) - Us(b)], after dis-
tributing P(a) with respect to the sum node and
compacting the leaves, the new potential will be
P(b) - [U}(a) + Uj(a,d) - Us(b)], where Uj(a) =
P(a) - Ui(a) and Uj(a,d) = P(a) - Us(a,d).

2.1.2 Elimination of a chance variable
from a non-forked tree

When the tree is not forked, the process of
eliminating a chance variable A can be under-
stood as “transferring” the), operator from
the root of the ToP to the leaves that depend
on A, according with the following theorem.

Theorem 8 Let t be a ToP non-forked wrt
A representing the potential 1. The potential
YA is equivalent to the potential represented
by the ToP t' obtained by replacing in t each
terminal node 1; depending on A in its domain
with the potential), 4 ;.

Proof. We prove the theorem by induction
on the depth of the ToP, d. When d = 1, the
tree has only one node, and the potential of the
tree is the same as that of the node. If ¢ de-
pends on A, the theorem holds trivially. If ¢
does not depend on A, then) , 1 = 1, and no
substitution is necessary.

Let us assume that the theorem holds for any
tree whose depth is not greater than d and that
there is a tree ¢t of depth d + 1, whose root r
is necessarily an operator node having m chil-
dren, tq, ..., t;, such that each tree t; represents
a potential ;.

If r is a sum node, the potential represented
by the tree t is the sum of the ¢;’s:

V=014 ... +n (5)

Therefore,
D=1+t U (6)
A A A

and, according with the induction hypothesis,
each potential), ¢; can be obtained by sum-
ming out A on the terminal nodes that depend
of A.

If r is a product node, at most one of its chil-
dren will depend on A. If none of them depends
on A, then), 1 = 1 and the theorem holds.
If one potential, say v;, depends on A, then

§¢=Zﬁ¢i= 1A DG

A i=1 i#] A

Since the depth of ¢; is d, the theorem holds
because of the induction hypothesis. m

In the above example, whose unforked tree
represented the potential P(b)-[U](a)+Us(a, d)-
Us(b)], Uj(a) must be replaced with the con-
stant uy = Y, Uj(a), and Uj(a, d) with Us(d) =
Za UQ(a7 d)

2.2 ELIMINATION OF A DECISION
VARIABLE

The elimination of a decision variable D from a
potential ¢ that does not depend on D is trivial,
because maxp Y = 1. The elimination from a

terminal potential is also immediate. The elim-
ination of D from a potential i) represented by
a ToP whose root is of type sum and only one of
its children +; depends on D can be simplified
to its elimination from ; because

max 1 = mngzm = max) +;¢z’ (8)
i i#£]

However, when there are more potentials, say
{1i}ics, that depend on D, we can only apply
that

mDaux¢:m3x ij +Z¢i 9)

jed i¢J

If a potential 1) is given by the product of several
potentials, the equation

max ¢ = max [[vi = | [[oi | maxv; (10)

i=1 i#j

can be applied only if all the 1);’s other than ;
are non-negative and independent of D. In the
rest of this section we will assume that all the
potentials that make part of a product are non-
negative in order to be able to apply the above
equation.?

Then, the elimination of a decision variable D
is algorithmically more simple —although com-
putationally more expensive— than the elimi-
nation of a chance node: when a node at a ToP
has more than one children that depend on D,
all these children must be reduced into a unique
terminal node before eliminating D. We will re-
duce first the lower nodes by performing a depth
first search. The resulting tree will contain just
one terminal potential depending on D, say ¥p.
The elimination of D just amounts to replacing
1p in the potential with a new potential

Y = mbaxzpp (11)

2We believe that it is a reasonable assumption, be-
cause in our experience in building influence diagrams
for medical applications we have often encountered neg-
ative utilities, but never as multiplicative factors of other
utilities. In any case, the algorithm should check it be-
fore applying Equation 10.

which does not depend on D. The optimal pol-
icy for decision D is

dp = argmax ¢p (12)

deD

Given a decision D;, the domain of dp, will
then be dom(¢p,)\{D;}, which is a subset of
the variables in {Cg, D1,...,D;_1,C;_1}, be-
cause the rest of the variables have been elimi-
nated before D;. In practice, dom(dp,) will be a
proper subset of such variables, because the ap-
plication of Equations 8 to 10 prevents that the
variables that do not belong to the v;’s make
part of the domain of ¢ p.

In the above example, after eliminating A the
potential represented by the ToP is Uy + Us(d) -
Us(b). The maximization of this potential leads
to uy + ug - Us (D), where uy = maxyU(d). The
optimal policy is ép = argmax U(d), and its

D

domain is empty, as ment(iigned above. This
way, our algorithm has not included the struc-
turally redundant variable B, without needing
to analyze the graph of the ID with an auxiliary
algorithm.

However, it is possible that the distribution
of a potential ny during the elimination of a
chance variable A may duplicate a potential de-
pending on A, say 1;, on different branches of
the tree. This potential may be multiplied by
the potentials that depend on D, thus adding
the variables in ¢; —other than A, which has
already been eliminated— to the domain of ¢p,
even if ¢; were a common factor that could have
been taken out by applying Equation 10. An is-
sue that remains to be analyzed is whether this
hypothetical situation may actually occur, and
if so, how to detect the common factors, in or-
der to guarantee that our algorithm does not
include structurally redundant variables in the
returned policies.

3 RELATED WORK AND
FUTURE RESEARCH

The algorithm that we have presented in the
previous sections preserves the separability of
the utility function in many situations in which
other algorithms would join several potentials.

For instance, in the above example, the al-
gorithm by Tatman and Shachter (1990) would
join Uy, Us, and Us into a single potential be-
fore eliminating A. This has two shortcom-
ings. The first one is the burden of operat-
ing with bigger potentials. The second one is
that after eliminating A, B is still a parent of
D, and consequently the policy dp returned by
this algorithm would depend on B, even though
this variable is structurally redundant. An ad-
ditional shortcoming of the algorithm by Tat-
man and Shachter is the need to divide po-
tentials when reversing an arc. For this rea-
son variable-elimination algorithms are in gen-
eral more efficient than arc-reversal (Bielza and
Shenoy, 1999).3

However, variable-elimination algorithms de-
veloped up to date (Shenoy, 1992; Jensen et
al., 1994; Jensen, 2001) were not able to deal
with IDs having a structure of super-value nodes
such as the one in our example. The algorithms
for detecting structural redundancies (Faguiouli
and Zaffalon, 1998; Shachter, 1998; Nielsen
and Jensen, 1999; Nilsson and Lauritzen, 2000;
Vomlelova and Jensen, 2002) have the same
shortcoming, so they cannot help the Tatman-
Shachter algorithm to remove redundant vari-
ables.

Even for some problems that could be solved
by variable-elimination, standard algorithms
will include redundant variables—see for in-
stance the example in (Jensen, 2001, Figure 7.4)

An open question is: given an ID without
product super-value nodes, is our algorithm
more efficient than previous ones? We claim
that in general it is, because the separability of
the utility function, which our algorithm tries
to keep as long as possible, leads to smaller po-
tentials. However, the elimination of the next

3If the purpose of the evaluation of an ID is just to
obtain the global utility and the optimal policy for each
decision (Eqgs. 2 and 3) then variable-elimination algo-
rithms do not need to divide potentials. However, if we
are interested in knowing as well the utility correspond-
ing to each option of a decision, then variable-elimination
algorithms must differentiate probability potentials from
utility potentials and normalize (wrt A, the chance vari-
able to be eliminated) the probability potential that will
be multiplied by the utility potential—see (Jensen, 2001)
for the details.

variable may join together some potentials that
our algorithm has tried to keep separated, thus
making some distributions of potentials unnec-
essary and counterproductive. We are now car-
rying out experiments in order to empirically
compare the efficiency of the available algo-
rithms. It’s interesting to see a comparison with
lazy elimination for IDs where the total utility
is either a sum or a product of the local utilities.

As a consequence, another open issue is to
develop criteria, at least of heuristic nature, for
deciding if it is worthy in a certain situation
to distribute potentials or to combine them, de-
pending on the variables that will be eliminated
afterwards.

Clearly, it is also very important to develop
heuristics for finding close-to-optimal elimina-
tion orderings, given the impact that this or-
dering usually has on the efficiency of the algo-
rithm. However, it is a difficult problem, given
that the optimal ordering not only depends on
the domains of the ordinary utility nodes, but
also on how they are combined by the super-
value nodes, taking into account that from the
point of view of variable elimination a sum node
behaves in a different way from a product node,
and the elimination of a chance variable is very
different from the elimination of a decision vari-
able.

Finally, we have to study the issue mentioned
in the last paragraph of Section 2.2, namely
whether our algorithm may include structurally
redundant variables in the policies, and if so,
how to fix it in order to avoid this problem.

4 CONCLUSION

We have presented a new variable-elimination
algorithm for evaluating influence diagrams
with super-value nodes, which could not be eval-
uated with previous variable-elimination algo-
rithms. Another advantage of our algorithm
with respect to both variable-elimination meth-
ods and to arc reversal algorithms is that —
at least in general— it does not include struc-
turally redundant variables. An issue that must
be studied is whether our algorithm may ac-
tually return policies with redundant variables,

and if so, how to fix this shortcoming.

References

C. Bielza and P. P. Shenoy. 1999. A comparison
of graphical techniques for asymmetric decision
problems. Management Science, 45(11):1552—
1569.

E. Faguiouli and M. Zaffalon. 1998. A note about
redundancy in influence diagrams. International
Journal of Aproximate Reasoning, 19(3-4):231-
246.

R. A. Howard and J. E. Matheson. 1984. Influence
diagrams. In R. A. Howard and J. E. Matheson,
editors, Readings on the Principles and Applica-
tions of Decision Analysis, pages 719-762. Strate-
gic Decisions Group, Menlo Park, CA.

F. Jensen, F. V. Jensen, and S. L. Dittmer. 1994.
From influence diagrams to junction trees. In Pro-
ceedings of the 10th Conference on Uncertainty in
Artificial Intelligence (UAI'94), pages 367-373,
San Francisco, CA. Morgan Kaufmann Publish-
ers.

F. V. Jensen. 2001. Bayesian Networks and Deci-
sion Graphs. Springer-Verlag, New York.

T. D. Nielsen and F. V. Jensen. 1999. Wellde-
fined decision scenarios. In Proceedings of the 15th
Conference on Uncertainty in Artificial Intelli-
gence (UAI'99), pages 502-511, San Francisco,
CA. Morgan Kaufmann Publishers.

D. Nilsson and S. Lauritzen. 2000. Evaluating influ-
ence diagrams using limids. In Proceedings of the
16th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI’00), pages 436-445, San
Francisco, CA. Morgan Kaufmann Publishers.

S. M. Olmsted. 1983. On Representing and
Solving Decision Problems. Ph.D. thesis, Dept.
Engineering-Economic Systems, Stanford Univer-
sity, CA.

R. D. Shachter. 1986. Evaluating influence dia-
grams. Operations Research, 34:871-882.

R. D. Shachter. 1998. Bayes-ball: The rational
pastime (for determining irrelevance and requi-
site information in belief networks and influence
diagrams). In Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelli-
gence (UAI'98), pages 480-487, San Francisco,
CA. Morgan Kaufmann Publishers.

P. P. Shenoy. 1992. Valuation based systems for
bayesian decision analysis. Operations Research,
40(3):463-484.

J. A. Tatman and R. D. Shachter. 1990. Dynamic
programming and influence diagrams. IEEE
Transactions on Systems, Man, and Cybernetics,
20(2):365-379.

M. Vomlelova and F. V. Jensen. 2002. An extension
of lazy evaluation for influence diagrams avoiding
redundant variables in the potentials. In Proceed-
ings of the First European Conference on Prob-
abilistic Graphical Models, pages 186-193. J. A.
Gamez and A. Salmeron (eds.).

