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Abstract

Spiegelhalter and Lauritzen �	
� studied se�
quential learning in Bayesian networks and
proposed three models for the representation
of conditional probabilities� A forth model

shown here
 assumes that the parameter dis�
tribution is given by a product of Gaussian
functions and updates them from the � and
� messages of evidence propagation� We also
generalize the noisy OR�gate for multival�
ued variables
 develop the algorithm to com�
pute probability in time proportional to the
number of parents �even in networks with
loops� and apply the learning model to this
gate�

� INTRODUCTION

Knowledge acquisition is one of the bottlenecks in
expert systems building� Bayesian networks �BNs�
�	�
 		
 ��
 besides having theoretical grounds support�
ing them as the soundest framework for uncertain rea�
soning
 o�er an important advantage for model con�
struction� In this �eld
 the task consists of building
a network which
 based on the observed cases
 gives
the optimal prediction for future ones� Fortunately

in this �eld there is a normative theory for learning

provided again by Bayesian analysis� we look for the
most probable BN given the observed cases�

Once we have chosen the variables
 the �rst step is
to determine the qualitative relations among them by
drawing causal links� Then
 quantitative information
must be obtained in the form of conditional probabil�
ities�

The optimal situation happens when there is an avail�
able database containing a large number of cases in
which the values of all variables are speci�ed� E��
cient algorithms for eliciting both the structure and
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the parameters of the network have been developed�
This process performed on a database is called batch
learning � It allows the automated discovery of depen�
dency relationships� Recent work on batch learning
can be found in ����

Unfortunately
 if the cases contained in the database
are incomplete
 the mathematical framework becomes
complex and no de�nitive theory of learning is estab�
lished yet� Very often
 there is not even an incom�
plete database
 and the knowledge engineer must re�
sort to subjective assessments of probability obtained
from human experts
 who make use of their memory
and of the literature published in their �eld� In this
second situation
 the model needs re�nement
 and it
is desirable to endow the system with some capabil�
ity of adaptation as it executes� This process is called
sequential learning �

The most important work on sequential learning in
BNs was performed by Spiegelhalter and Lauritzen
�S�L� �	
�� They introduce some assumptions
 mainly
global and local independence of parameters �see next
section�
 in order to make the problem tractable� Nev�
ertheless
 the problem is still di�cult when data are
incomplete
 i�e� when not all the variables are deter�
mined� A �nal problem is the representation of condi�
tional probability tables P �xjpa�x�� �x�� S�L propose
three di�erent models� discretization of parameters

Dirichlet distributions
 and Gaussian distributions for
the log�odds relative to the probability of a reference
state� The second approach is applied in ��� and �	���

The problem addressed in this paper is
 as in S�L

to update sequentially the parameters of a probability
distribution� The main di�erence from their work is
that we assume a normal distribution for the param�
eters �not for the log�odds�� We will �rst study the
general case and then the OR�gate�

The present work can be important for three reasons�

� Usually
 only some nodes in a BN are observable�
This means that we do not have databases where ev�
ery variable is instantiated
 and even if we had
 we
should take them with criticism
 remembering that
the value stored for an unobservable or unobserved



variable was not obtained directly but inferred from
the values of other variables� Unfortunately
 the con�
struction of general BNs from incomplete databases is
very complex �	� and no normative algorithm exists
yet� So we assume that an initial causal network has
been elicited from human experts� The use of Gaussian
distributions allows us to integrate easily subjective as�
sessments ��the probability is about �� or ����� and
experimental results ��U produces X in ����� of the
patients��� Parameter adjustment takes place when
the network performs diagnosis on new cases� Our
model of learning can naturally deal with incomplete
and uncertain data�

� In general
 the number of parameters required for
every family is exponential in the number of parents

and so is the time for evidence propagation� In the
OR�gate
 on the other hand
 the number of parame�
ters is proportional to the number of causes� This dif�
ference can be considerable in real�world applications

such as medicine
 where there are often more than a
dozen known causes for a disease� When building a
BN from a database
 the resulting model for the OR�
gate will be more accurate if there are only a few cases
for every instantiation of the parent nodes� Also for a
human expert
 it is much easier to answer a question
like �What is the probability of X when only cause
U is present�� than lots of questions entailing a com�
plex casuistry� It is useful
 then
 to have a model of
sequential learning for that gate�

� The OR�gate is not only valuable for knowledge
acquisition
 but also for evidence propagation� When
applied instead of probability tables
 it can save an im�
portant amount of storage space and processing time�
However
 algorithms usually employed for probabilis�
tic inference do not take advantage of this possibility�
Section ��	 generalizes the noisy OR to multivalued
variables and develops e�cient formulas for propagat�
ing evidence� They allow the local conditioning al�
gorithm ��� to exploit the OR�gate even in multiply�
connected networks�

� PARAMETER ADJUSTMENT

��� ASSUMPTIONS

We introduce in this section the hypotheses which con�
stitute the basis of our model� Every case i is given
by the instantiation of some variables corresponding
to the observed evidence
 ei�

Assumption � �Cases independence� Cases ei
are independent given the parameters�

P �e�� � � � � eN j��  
NY
i��

P �eij��� �	�

This assumption seems reasonable� the probability of a
new case depends only on the parameters of the model
�the conditional and a priori probabilities�
 not on the

cases we have found so far or are going to �nd in the
future� This assumption is the key for the sequential
updating of probabilities
 namely

P ��je�� � � � � eN �  � P �eN j�� � P ��je�� � � � � eN���
���

where � P �e�� � � � � eN����P �e�� � � � � eN � is a normal�
ization factor independent of ��

Assumption � �Parameter independence� All
parameters are a priori pairwise independent�

This includes local independence �within every family
formed by a node and its parents� as well as global
independence �among di�erent families�� It is not clear
that it holds for an arbitrary election of parameters�
S�L show the case of pedigree analysis as an example
in which global independence is clearly violated�

Both these assumptions where introduced in S�L� The
speci�c feature of our model is as follows�

Assumption 	 �Gaussian distributions� The ini�
tial distribution for every parameter �i is given by a
Gaussian distribution

P ��ije�� � � � � eN���  N ��i� 	�i � ���

with

� 
 �i 
 	 ���

and

	i � min��i� 	� �i�� �
�

Eq� �
� implies that f��� � � outside the interval
��� 	�N�� This assumptions will allow us to apply the
simpli�cations derived below�

��� STATISTICAL PROPERTIES

We start now from a multivariate normal distribution
of uncorrelated variables� It can be represented as the
product of Gaussian distributions�

f���  
Y
i

N ��i� 	i� ���
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and study a new distribution given by

f ����  

�
c �a!

P
i bi�i�f��� for � � �i � 	� �i

� otherwise
���

where c is a normalization constant� We shall assume

without loss of generality
 that it is positive� Then


a!
X
i

bi�i 	 � if � � �i � 	� �i ���

so that the distribution is always non�negative�



Since conditions ��� and �
� guarantee that f��� � �
outside the interval ��� 	�N�
 we have very approxi�
mately

c  a!
X
i

bi�i� �	��

With the same approximation
 the moments for the
new distribution are

��i  E���i�  �i !"i �		�

	�i
�
 E����i �� ��i

�
 	�i �"�

i �	��

where

"i 
 	�i bi
a!

P
j bj�j

� �	��

�Observe that the normalization constant c is irrele�
vant� This is an advantage for the computations in
parameter adjustment
 because it makes unnecessary
to normalize messages��

The covariance will be given by

cov��i� �j�  E���i�j�� ��i�
�
j  "i"j � �	��

Properties ��� and �
�
 together with the condition of
non�negativity ���
 allow us to conclude that "i 
 	i


so that
 as expected
 	�i
�
� �� We also observe that the

standard deviation will be reduced when bi � �� This
property will ensure the convergence when applying
this study to parameter adjustment�

��	 ALGORITHMS

The purpose of this section is to apply the statistical
model in order to update the parameters according to
eq� ���� The set of parameters can be partitioned into
three subsets relative to an arbitrary variable X �see
�g� 	�� �X includes the parameters relative to family
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Figure 	� Messages for family X�

X
 i�e� the parameters that determine P �xju�
 where
u represents any of the possible con�gurations for the
states of the parents of X� ��

X and ��
X represent the

parameters determining the probabilities in the fami�
lies above the parents of X or below X
 respectively�
In the same way
 ��

UX represents the parameters above
link UX� The new case we are considering consists of
the evidence eN observed� What we have is ��x� and

��x� for every node X and we are going to update the
parameters according to this information� The condi�
tional probability is given by

P �eN j�� �
X
x

��xj��
X � ��xj�X ���

X� �	
�

 
X
x

X
u

��xj��
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Y
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UiX
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�	��
The de�nitions of � and � are taken from �		��

These formulas are general and can be applied to the
case of complete conditional probability tables as well
as to the AND#OR�gates�

We �rst study the general case
 represented by giv�
ing a parameter for every instantiation of family X�
P �xju��x�� But the probabilities for all values of X
must sum up to 	� So they can be represented by the
following independent parameters �ux �

P �xju��x�  
��
	

�ux for x � x�

	�
X
x� ��x�

�ux� for x  x� �	��

With these parameters
 eq� �	�� turns into

P �eN j�� � ��x�j��
X�!X

x��x�

X
u

���xj��
X�� ��x�j��

X �� �
u
x

Y
i

�X�uij��
UiX

��

�	��

From the axioms in section ��	
 we had

P ��je�� � � � � eN �  P �eN j��f���
X �f��X �

Y
i

f���
UiX

�

�	��
where every f represents a product of univariate Gaus�
sian distributions�

The last two expressions can be combined and
 after
integration
 we get

P ��X je�� � � � � eN � �

�$��x�� ! X

x��x�

X
u

�$��x�� $��x��� �ux
Y
i

$�X�ui�

�

f��X �

����
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Z
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Z
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Let us also de�ne

$P �xju� 

��
	

�ux for x � x�

	�
X
x� ��x�

�ux� for x  x� ����

and
$��x� 


X
u

$P �xju�
Y
i

$�X�ui� � ����



By comparison of eq� ���� to the study in section ���
and applying the equivalence

$��x��!
X
x��x�

X
u

�$��x��$��x����ux
Y
i

$�X �ui�

 
X
x

$��x� $��x� �

we eventually �nd

"u
x  

�	ux�
� �$��x�� $��x���

Y
i

$�X�ui�X
x�

$��x�� $��x��
� ��
�

In conclusion
 the new distribution for parameter �ux
has changed its mean value from �ux to �

x ! "u
x and

its variance from �	ux�
� to �	ux�

���"u
x�
�� Nevertheless


we do not have Gaussian distributions any more and

in general correlations arise when the case is not com�
plete
 i�e� when the observed evidence is not su�cient
to determine exactly the values of all variables�

But in order to have a tractable model
 we shall assume
that the new distribution can be approximated by a
product of Gaussian univariate distributions


P ��xju��X�  
��
	
N ��ux !"u

x � 	
u
x
� �"u

x
�� x � x�

	�
X
x� ��x�

P ��x�ju��x� x  x�

����
so that case eN�� can be treated in the same way
 thus
having a sequential framework for learning�

��
 COMMENTS


 The approximation in eq� ���� is valid when "u
x is

small compared to min��ux� 	 � �ux�� Otherwise the
resulting distribution will di�er from a Gaussian func�
tion and
 besides
 correlations given by eq� �	�� will
not be negligible if standard deviations are wide and
observed values were a priori improbable� Therefore

those approximations are justi�ed when 	ux is small

that is to say
 when the original model is relatively
accurate�


 Messages $��x�
 $�X�ui� and $��x� can be obtained lo�
cally
 i�e� considering the messages received at node X
and the parameters of its family� This is a consequence
of the global independence assumption� It allows a dis�
tributed learning capability �see ��� and �g� ���


 Eq� ����
 for $P �xju�
 is equivalent to eq� �	�� for
P �xju��x�� The only di�erence is that average val�
ues must be taken instead of the original distribution�
The same is true for $��x� in eq� ����� Therefore
 evi�
dence propagation in this model is formally equivalent
to the �traditional� case
 by using mean values instead
of exactly determined probabilities� In other words
 we
need not worry about distributions� we take the aver�
age value of each parameter and can neglect
 for the
moment
 the standard deviation�


 According to eq� ��
�
 "u
x  � when 	ux  �� Natu�

rally
 a parameter will not be updated if it is exactly
determined�


 We observe that "u
x  � when $��x�  $��x��� As

expected
 parameters of a family are not updated un�
less some evidence arrives from its e�ects� In case
$��x� � $��x�� and 	ux � �
 then "u

x � �
 at least for some
values of x and u� According to eq� �	��
 the standard
deviation of a parameter is reduced each time evidence
is observed for its corresponding con�guration state�


 Every node without parents has an a priori probabil�
ity
 which can be dealt with as an ordinary conditional
probability by adding a dummy node representing a
�ctitious binary variable whose value is always TRUE�


 The equations derived in this section
 including
eq� ��
�
 do not change even if some $� or $� is multiplied
by a constant� It is not necessary to have normalized
�%s
 and instead of de�ning

��xj�X ���
X � 
 P �xje�X ��X ���

X�� ����

after �	��
 we could have de�ned it after �	�
 ����

��xj�X ���
X � 
 P �x� e�Xj�X ���

X�� ����

Therefore
 this formalism can also be applied when
evidence is propagated using the local conditioning al�
gorithm ��� and so the learning method can be applied
to general networks as well as to singly�connected ones�

� THE GENERALIZED NOISY

OR�GATE

	�� DEFINITION AND ALGORITHMS

The noisy OR�gate was introduced in �	��� In this
model
 a parent node of X is not conceived as a mere
factor �age of the patient
 for instance� modulating the
probability of X given a certain con�guration of the
other parents �sex
 weight
 smoking
 etc��� Instead

node X represents a physical�world entity �for exam�
ple
 a disease� that may be present or absent
 and its
parents represent phenomena�in general anomalies�
whose presence can produce X� In other words
 a link
in the OR�gate represents the intuitive notion of cau�
sation ��U produces X��
 not only the statistical def�
inition given in �	���

The main advantage of the OR�gate is that the num�
ber of parameters is proportional to the number of
causes
 while it was exponential in the general case�
As a consequence
 the OR�gate simpli�es knowledge
acquisition
 saves storage space and allows evidence
propagation in time proportional to the number of par�
ents�

A generalization for multivalued variables was intro�
duced by Henrion �
� in order to simplify knowledge

�Only eqs� 
��� and 

�� would be slightly modi�ed� We
have here chosen the original de�nition just for simplicity�
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Figure �� Learning at node X�

acquisition� This model can also save storage space

but if a clustering method is chosen for evidence prop�
agation
 the conditional probability table of every fam�
ily must be worked out in advance ��
 ��
 thus wasting
the computational advantage of the OR�gate� For this
reason
 after formalizing the model
 we will now de�
velop an algorithm for computing probability in time
proportional to the number of causes
 which can also
deal with multiply�connected networks�

De�nition � �Graded variable� A variable X that
can be either absent� or present with gX degrees of in�
tensity� is said to be a graded variable� It has gX!	
possible values� which can be assigned non�negative in�
tegers such that X � means �absence of X� and suc�
ceeding numbers indicate higher intensity�

Observe that the concept of �graded� is independent
of the number of outcomes
 since not all multivalued
variables represent di�erent degrees of presence and

conversely
 the de�nition includes also the binary vari�
ables intervening in the noisy OR
 which are of type
absent#present �g 	� and di�er from non�graded bi�
nary variables
 such as sex� The concept is relevant
because the OR�gate makes sense only for graded vari�
ables�

The parameters for a certain family in the OR�gate
will be the conditional probabilities of X given that
all causes but one are absent� in case U is a cause of
X
 and V agglutinates all the other causes
 we have�

�U�uX�x 
 P �X  xjU  u� V  �� ����

which could be abbreviated as

�ux 
 P �xju� v�� ����

Obviously

�ux�  	�
gXX
x��

�ux � ��	�

When U 
 as well as all other causes
 is absent
 X must
be absent too��

�u�x  

�
	 for x  �

� for x � � � ����

In consequence
 only gU � gX parameters are required
for this link�

We now introduce the following de�nition�

QU �x� 
 P �X � xje�
UX � V  �� � ����

which is the probability of X given all the evidence
above link U�X in the case that all other causes of
X were absent� From

P �xje�UX� v��  
X
u

P �xju� v�� P �uje�UX�

 
X
u

�ux �X�u� � ����

it can be deduced that

QU �x�  	�
gUX
u��

�X �u�

gXX
x��x��

�ux� � ��
�

So far in this section we have introduced only some
de�nitions and no assumption� Now we are going to
present the key axiomof the OR�gate
 which will allow
us to calculate the probability of X when more than
one of its causes are present�

�The leaky probability ��� can be assigned to a certain
anonymous cause� In this way� the treatment is trivially
extensible to the leaky OR�gate�



De�nition � �Generalized noisy OR�gate� In a
Bayes network� given a graded variable X with parents
U�� � � � � Un 	also graded variables
� we say that they in�
teract through a generalized noisy OR�gate when

P �X � xju�� � � � � un�
 
Y
i

P �X � xjUi  ui� Uj  �� j � i�� ����

The interpretation is as follows� the degree reached
by X is the maximum of the degrees produced by the
causes acting independently
 without synergy �
�� So
eq� ���� re&ects the fact that X � x only when every
cause has raised X to a degree not higher than x� This
model of interaction could also be termed MAX�gate�
In the same way
 the graded AND�gate could be called
MIN�gate�

With de�nition

Q�x� 
 P �X � xje�X�� ����

it is straightforward to get ��x� from Q�x��

��x�  

�
Q�x�� Q�x� 	� for x � �
Q��� for x  � �

����

According to eq� ����
 we have

Q�x�  
Y
i

QUi�x� � ����

which allows us to compute ��x�� To summarize
 from
�X�u� we get QUi�x�
 and combining all these mes�
sages
 we arrive through Q�x� at ��x� in time propor�
tional to the number of causes
 as claimed before�

In case family X formed part of a loop
 local condi�
tioning ��� should be applied� then
 ��messages are not
normalized
 but these formulas remain valid with mi�
nor modi�cations� Moreover
 if only link UiX lies in
the loop path
 conditioning does not apply to other
QUj �x� messages
 and this allows an important addi�
tional save in computation for the OR�gate�

A similar treatment could be made for the AND�gate�
we have studied the OR�gate because it appears much
more often� An additional advantage of these gates is
that they enable us to generate explanations of why the
evidence at hand has increased or reduced the proba�
bility of X ����

	�� PARAMETER ADJUSTMENT FOR
THE OR�GATE

We are now going to develop a formalism for param�
eter adjustment in the OR�gate
 similar to that of
section ��� for the general case� The starting point
is eq� �	
�� The expression for ��xj�X ���

X� is simi�
lar to eq� ����
 just including the conditioning on the
parameters �� In the same way
 the expression for
Q�xj�X ���

X� is similar to eq� ����� now
 global inde�
pendence of parameters leads to

Q�xj�X ���
X�  

Y
U

QU�xj�UX ���
UX�� ����

with �UX being the parameters associated to link UX�

From eq� ��
� we get

QU �xj�UX ���
UX�  	�

gUX
u��

�X �uj��
UX�

gXX
x��x��

�ux� �

��	�

These expressions must be substituted into eq� �	
��
The assumptions of independence allow us to integrate
over the parameters outside link UX
 and after de�n�
ing

$QV �x� 
 	�
gVX
v��

$�X�v�

gXX
x��x��

�vx� ����

and

RU�x� 

�
�$��x�� $��x! 	�� QV

$QV �x� for x 
 gX
$��x�

Q
V
$QV �x� for x  gX

����
we arrive at

P ��UX jall cases�

�
�X

x

RU�x�

�
	�

gUX
u��

$�X�u�

gXX
x��x��

�ux�
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f��UX �
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x���

gUX
u��

�ux�

�
�$�X �u� x

���X
x��

RU�x�

�
A
�

 f��UX �� ����

Finally
 by comparing this expression to eq� ��� and
substituting into eq� �	��
 we conclude that

"u
x  

� �	ux�� $�X�u�
x��X
x���

RU �x
��

X
x�

RU �x
�� �

gxX
x���

gUX
u��

�ux�$�X�u�
x���X
x����

RU �x
���

�

��
�

In the case of binary variables
 gU  gX 	
 and there
is just one parameter �XU for link UX� Using the no�

tation �i  $��X  i� and �UX  $�X�U  	�
 the result
becomes simpli�ed to

"U
X  

�	UX �
� �UX��� � ����	� �VX�

V
X�

�� ! ��� � ����	� �UX�
U
X ��	� �VX�

U
X�

� ����

Besides repeating the same considerations as in the
general case
 we can also observe that
 according to
this last equation
 when �UX  	 �it means that U
is present�
 the evidential support for the presence of
X ��� � ��� makes "U

X positive
 while "U
X is nega�

tive for �� 
 ��� This was the expected result
 since
parameter �UX represents the probability that U alone
produces X�



� CONCLUSIONS

This paper has presented a model for parameter ad�
justment in Bayesian networks� The starting point is a
BN in which every conditional probability is given by
its mean value and its standard deviation� The main
virtue of this approach is that updating of parameters
can be performed locally �distributed for every node�

based on the � and � messages of evidence propaga�
tion� The statistical model is cumbersome �more as
a consequence of notation than of the ideas involved�
but leads to simple algorithms� We tried to show the
agreement between the results and what was expected
from common sense�

We have given a mathematical de�nition of the gen�
eralized noisy OR�gate for multivalued variables and
have shown how to compute probability in time pro�
portional to the number of parents� In conjunction
with local conditioning ���
 this method can be used
even in networks with loops
 thus representing an
important advantage over inference algorithms which
work only on conditional probability tables� The learn�
ing model has also been applied to this gate�

The main shortcomings of this model reside in the
strong assumptions of independence and in some ap�
proximation that might not be valid if standard devi�
ations are wide and the observed evidence di�ers sig�
ni�cantly from the expected values�
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