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Abstract

Probabilistic Graphical Models (PGMs) have been widely praised for their declarative nature
and their capability for complex reasoning with uncertainty, but when applied to real-world
complex domains, the resulting model is usually large and highly inter-connected. This usually
brings two main problems: first, the construction and maintenance of the model turns into
a time-consuming, tedious and error-prone task. And second, the computational cost of
inference soars with the number of links in the model. Therefore it seems necessary to come
up with tools that will alleviate the issues that arise when dealing with large PGMs. In this
Master Thesis we have proposed and implemented methods and techniques to help in the
process of creation and maintenance of large PGMs.

Besides, we describe the process of modelling the problem of programming Cochlear Im-
plants, i.e. adjusting parameters for their optimal performance with the use of PGMs. The
new concepts and algorithms we have developed for this purpose are also presented in this
Master Thesis. Even if inspired by the needs arisen throughout the development of this
real-world application, they are valid for other domains, such as the tuning of systems with
adjustable parameters.
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Resumen

Los Modelos Gráficos Probabilistas (MGPs) han sido alabados por su naturaleza declarativa
y su capacidad de razonamiento complejo con incertidumbre, pero cuando son aplicadas a
problemas complejos de la vida real el modelo resultante es excesivamente grande y alta-
mente interconectado. Esto suele acarrear dos grandes problemas: primero, la construcción
y mantenimiento del modelo se convierte en una tarea costosa y tediosa. Y segunda, el coste
computacional de la inferenci se dispara cuando el número de enlaces en el modelo crece. Por
lo tanto es necesario crear herramientas que alivien los problemas que surgen cuando tra-
bajamos con MGPs de tamaño considerable. En esta Tésis de Máster hemos proponemos e
implementado métodos y técnicas que ayudarán a los ingenieros de conocimiento en el proceso
de creación y mantenimiento de grandes MGPs.

Además, describimos la aplicación de los MGPs al problema del ajuste de parámetros en
implantes cocleares. Los nuevos conceptos y algoritmos que hemos desarrollado, si bien han
sido inspirados por la construcción del modelo mencionado, son aplicables en otros muchos
casos, como por ejemplo la regulación de sistemas con parámetros ajustables.
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Chapter 1

Introduction

1.1 Motivation

The Research Center on Intelligent Decision-Support Systems (CISIAD) of the UNED has
specialized in the construction of Probabilistic Graphical Models (PGMs) and their applica-
tion to different fields, mainly to medicine. Most of the contributions of this group have been
motivated by real-world medical problems, and this Master Thesis is not an exception: the
problem that has led our research is the programming of Cochlear Implants (CIs).

In Spain, around 2,500 babies are born annually with some degree of hearing loss and
around 20% of them suffer from severe to profound deafness. Other people lose their hearing
ability later as a consequence of genetic factors, infectious diseases (mainly meningitis), or
other causes. A CI is an electronic device that allows people with severe and profound
hearing losses recover a near normal hearing ability that permits them to integrate into
society. Currently, there are over 200.000 CI users worldwide, with an annual increase of
over 30.000. However, a CI has between 150 and 200 tunable parameters which makes its
programming a difficult task. There are many CI users whose hearing performance is poor
because of bad programming.

For this reason, several people have thought of the possibility of applying Artificial Intel-
ligence (AI) to this problem. One of the main attempts is Opti-Fox, a project funded by a
European Commission’s 7th Framework Research for SME grant (7FP-SME 262266), which
“aims at reducing the presence of experts when fitting cochlear implants to patients” [30].
Initially, this project intended to use data mining techniques to build a model for this purpose
but the complexity of the problem, due to the huge number of variables involved, and the
scarcity of data, due to a technical problem, made this approach unfeasible. Therefore, the
leader of the project contacted the members of the CISIAD to study the possibility of building
a PGM. The advantage of PGMs with respect to other AI techniques is that they permit to
combine expert knowledge with data.

However, standard PGMs, such as Bayesian Networks (BNs) and Influence Diagrams (IDs)
are not suitable for this task. This led us to develop a new type of PGM that we have called
Tuning Networks. Because of the high number of variables in our model, with some repetitive
structures, we have come to the conclusion that it would be a great advantage to apply an
object-oriented approach. This way, the main contributions of this Master Thesis have been
motivated by a real-world problem but are also applicable to other domains, not only in the
field of medicine.
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1.2 Objectives

The objetive of this Master Thesis is twofold.
On the one hand, the objective is to provide knowledge engineers with tools that will

ease the task of creation and maintenance of large Probabilistic Graphical Models. For that
purpose we present the design and implementation of an Interactive Learning module that will
lead to the easier and faster creation of PGMs through structural learning with the help of the
knowledge engineer or the expert. In addition, we present the implementation of a framework
of Object Oriented Networks that will help knowledge engineers to model large PGMs by
defining a hierarchy of objects and their relationships. Last but not least, we introduce the
concept of Tuning Networks and describe the Tuning Model, that will help model the quite
frequent domain of systems with tunable parameters.

On the other hand, the objective is to build a Probabilistic Graphical Model that will
assist in the programming of Cochlear Implant devices, applying existing techniques as well
as new ones presented in this Master Thesis. The author of this Master Thesis together with
his advisor has taken part in Opti-Fox. The objective of our model will be to recommend the
set of changes to the values of the parameters of the Cochlear Implant that will lead to the
optimal performance of the device, which will be reflected upon the results of the tests that
measure the patient’s hearing ability.

1.3 Methodology

As mentioned above, the methodological contributions presented in this Master Thesis have
been motivated by the need of new methods or adaptation of existing ones to solve problems
that have arisen throughout the development of the CI fitting project. These are the steps
followed in such cases:

• Review of the state of the art: Starting with a compilation of related literature usually
guided by my advisor, involved a search for solutions to the problem faced or similar
ones.

• Conceptual design: This phase consisted of developing new mathematical models and
algorithms for the problems we wanted to solve.

• Implementation: It usually involved programming the new methods in OpenMarkov
based on our earlier conceptual design, sometimes stepping back to the design or even
to the analysis phase.

The methodology followed for the Implementation phase is the usual in following the stan-
dard phases of Software Engineering: specification, design, coding and testing. Also, Open-
Markov was developed with the Object Oriented Programming paradigm in mind. Therefore
we have tried to design what we implement following its main principles, such as the SOLID
principles.

All the new models and algorithms presented in this Master Thesis have been implemented
in OpenMarkov. The author of this Master Thesis has been actively involved in the redesign
and refactorization of existing functionality as well as the implementation of new features.
Even if this additional work is not of direct use to the present Master Thesis, it will help
others in the same way the existence of this open source tool has helped the author.

2
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The collaboration with the company in charge of Opti-Fox has been based on regular
meetings either in person (held in Antwerp, Belgium) or through Internet (with Skype). We
have developed a knowledge engineer-expert relationship where the construction of the model
has been a give-and-take between our knowledge of PGMs and their domain expertise.

1.4 Organization of the Master Thesis

The rest of the Master Thesis, is organized as follows. In the second chapter, State of the
Art, a brief overview is done of the research areas the rest of the Master Thesis deals with,
including a quick introduction to OpenMarkov, the software tool where the implementation
work has been done.

The core of the Master Thesis lies in the third and fourth chapters, that contain the
methodological contributions. The third chapter, Building Probabilistic Networks, contains
the description of the tools and techniques proposed for the easier construction of PGMs
and is itself divided in two blocks: Interactive Learning and Object Oriented Networks. The
fourth chapter, Tuning Networks, describes a new type of PGM whose main feature is the
extensive use of the tuning model, a new type of canonical model.

Chapter five describes the work done in the Opti-Fox project, namely the construction of
the probabilistic model for the fitting of Cochlear Implants.

Finally, Chapter six, Conclusion, briefly reviews the main constributions and outlines the
future work.

3
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Chapter 2

State of the Art

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are a framework based on probability theory that
models large problems involving many inter-related variables. The first and most widely
spread type of PGMs are Bayesian Networks. Since Bayesian Networks were proposed by
Judea Pearl in [25] PGMs have been widely praised as an effective framework for knowledge
representation and reasoning under uncertainty.

A probabilistic graphical model consists of a joint probability distribution defined on a
set of variables and a graph containing a node for each variable; the structure of the graph
imposes some relations of conditional independence on the structure of the network, which
depend mainly on the type of graph. Some types of PGMs are Bayesian networks (BNs),
Markov networks, influence diagrams, hidden Markov models, factored MDPs and POMDPs,
etc.

Notation

We will use capital letters to represent variables or nodes and lower case letters to represent
the values of variables. For instance, v will represent a possible value of variable V . In the
same way, V will denote a set of variables {V1, . . . , Vn}, and v a certain n-tuple (v1, . . . , vn),
where vi represents a value taken by variable Vi.

2.1.1 Basic concepts about graphs

A graph G = (V,E) consists of a finite set of nodes V and a finite set of edges E. An edge is a
pair of nodes (X,Y ), where X,Y ∈ V and X 6= Y ; if X and Y are ordered in the edge (X,Y )
then it is said to be directed ; otherwise it is undirected. A directed edge will be referred to as
an arc. If every arc in E is directed then G is a directed graph. On the other hand, if every
arc is undirected then G is said to be an undirected graph.

A path from a nodeX to a node Y in a graphG = (V,E) is a sequenceX=X0, X1, ..., Xn=
Y of distinct nodes such that (Xi−1, Xi) is an edge in E for each i such that 1 ≤ i ≤ n. The
path is a directed path if (Xi, Xi−1) is a directed arc from Xi−1 to Xi, for each i such that
1 ≤ i ≤ n. A graph is said to be a tree if each pair of distinct nodes is connected by exactly
one path.



6 CHAPTER 2. STATE OF THE ART

A cycle is a path with the exception that X0 = Xn, and a directed cycle is a directed
path with X0 = Xn. A directed graph with no directed cycles is said to be an acyclic directed
graph (ADG).

Given an arc (X,Y ) from X to Y , the node X is said to be a parent of Y and Y is a child
of X. The set of parents for a node Y is denoted by Pa(X), and the set of children for a node
X is denoted by Ch(X). The set of nodes from which there exists a directed path from X
is named the ancestors of X (denoted by an(X)). Similarly, the set of nodes to which there
exists a directed path from X is termed the descendants of X (denoted by de(X)).

2.1.2 Bayesian networks

A Bayesian network (BN) [25] B = (G,P ) consists of two elements: an ADG G = (V,E)
in which each node X ∈ V (named chance node) is drawn as a circle and corresponds to a
chance variable X; and a probability distribution over V, P(V), which can be factored as:

P (v) =
∏
X∈V

P (x|pa(X)), (2.1)

where pa(X) denotes a configuration of the parents of X.
Since there is a bijection between a variable in a BN B = (G,R) and a node in G, the

terms node and variable will be used indifferently.
The quantitative information of a BN B = (G,R) is given by assigning to each nodeX ∈ V

a conditional probability distribution P (X|Pa(X)). Conditional probability distributions are
also referred to as potentials. A potential is a real-valued function over a domain of finite
variables. The domain φ = P (X|Pa(X)) is dom(φ) = {X}∪ Pa(X)dom(φ).

We will assume in the dissertation that BN B = (G,P ) is discrete, which means
each chance node X ∈ V corresponds to a discrete chance variable X with a finite set
of mutually exclusive and exhaustive states; the domain of a variable X is denoted by
dom(X) = (x1, x2, ..., xl).

2.1.3 Influence diagrams

An influence diagram (ID) is basically a BN augmented with decision nodes and value nodes.
Thus, an ID consists of an ADG G = (V,E), where the set V has three types of nodes:
chance nodes VC , decision nodes VD and utility nodes VU .

As in BNs, chance nodes (drawn as circles) represent chance variables, i.e., events which
are not under the direct control of the decision maker. Decision nodes (drawn as rectangles)
correspond to actions under the direct control of the decision maker. Utility nodes (drawn
as diamonds) represent the expected benefit or loss, or more generally, the preferences of the
decision maker. Utility nodes can not be parents of chance or decision nodes.

There are three types of arcs in an ID, corresponding to the type of nodes they link.
Arcs into chance nodes represent probabilistic dependency. Arcs into decision nodes, named
informational arcs, represent availability of information; i.e., if there is an arc from a node X
to a decision node D then the state of X is known when decision D is made. Arcs into utility
nodes represent functional dependency: arcs into ordinary utility nodes indicate the domain
of the associated utility function.

We assume that there is a path in the ID that includes all the decision nodes, which
induces a total order among the n decisions {D1, . . . , Dn} and indicates the order in which

6
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the decisions are made. Such order originates a partitioning of VC into a collection of disjoint
subsets C0,C1, ...,Cn, where Ci contains every chance variable C such that there is an arc
C → Di but there is not an arc C → Dj , j < i; i.e., Ci is the subset of chance variables known
for Di but unknown for any previous decision. This induces a partial order ≺ in VC ∪VD:

C0 ≺ D0 ≺ C1 ≺ ... ≺ Dn ≺ Cn . (2.2)

The set of variables known to the decision maker when deciding on Dj is termed the
informational predecessors of Dj and is denoted iPred(Dj)function ψU of a utility node U can
be expressed as a function of chance and decision nodes, termed the functional predecessors;
the functional predecessors of an ordinary utility node being its parents.

The quantitative information that defines an ID is given by (1) assigning to each chance
node C a conditional probability potential p(C|pa(C)) for each configuration of its parents,
pa(C)1, (2) assigning to each ordinary utility node U a potential ψU (pa(U)) that maps each
configuration of its parents onto a real number.

A stochastic policy for a decision D is a probability distribution defined over D and
conditioned on the set of its informational predecessors, PD(d|iPred(D)). If PD is degenerate
(consisting of ones and zeros only) then we say that the policy is deterministic.

A strategy ∆ for an ID is a set of policies, one for each decision, {PD | D ∈ VD}. If every
policy in the strategy ∆ is deterministic, then ∆ is said to be deterministic; otherwise ∆ is
stochastic. A strategy ∆ induces a joint probability distribution over VC ∪ VD defined as
follows:

P∆(vC ,vD) = P (vC : vD)
∏

D∈VD

PD(d|iPred(D)) =
∏

C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|iPred(D)) .

(2.3)
We define the expected utility of U under the strategy ∆ as EUU (∆) = EUU (∆,�), where

� is the empty configuration. We have that

EUU (∆) =
∑
vC

∑
vD

P (vC ,vD)ψU (vC ,vD). (2.4)

We also define the expected utility of the strategy ∆ as EU(∆) = EUU0(∆). An optimal
strategy is a strategy ∆opt that maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU(∆), (2.5)

where ∆∗ is the set of all the strategies for I. Each policy in an optimal strategy is said to be
an optimal policy . The maximum expected utility (MEU ) is

MEU = EU (∆opt) = max
∆∈∆∗

EU (∆). (2.6)

2.2 Building Probabilistic Networks

There are two main approaches for the construction of PGMs. The most common one is to
build the model manually and it usually involves the collaboration of the knowledge engineer
and the expert in the domain the PGM will represent. First, a graph is built based on the

1We denote with Pa(X) the set of parents of X, and with pa(X) a configuration of the parents of X.

7
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expert’s domain knowledge where causal relations are used to draw the arcs of the graph.
Once the graph is built, the numerical parameters, that is, conditional probabilities are ob-
tained from the literature (for example, medical journals), from databases, or from experts’
estimations. Canonical models help alleviate the task of eliciting the numerical parameters
as explained next.

The second method to build PGMs is to do it automatically based on a database, which
is also called learning, covered in the next section.

2.2.1 Canonical models

The construction of directed graphical probabilistic models, such as Bayesian networks [25]
and influence diagrams [17], requires specification of many conditional probability distribu-
tions of the form P (y|x), where X = {X1, . . . , Xn} is the set of parents of a node Y in the
network—see Figure 2.1. The set {Y } ∪ X is called a family. When all the variables in
a family are discrete, P (y|x) can be expressed in form of a conditional probability tables
(CPT), whose size grows exponentially with the number of nodes. In general, the numerical
parameters are obtained from databases or assessed by human experts and, for this reason,
it is usually difficult to build a CPT for a family having more than three or four parents.

One way of reducing the complexity of elicitation of numerical probabilities is to rely on
so-called canonical models, which allow for building probability distributions from a small
number of parameters. The term “canonical” is used because such models are elementary
units used in the construction of more complicated models [25]. Different canonical models
may coexist in any probabilistic network. For instance, in causal Bayesian networks that
model real-world domains, it is not uncommon that a significant number of families interact
through OR/MAX-models, a few through AND-models and the rest of the families do not
correspond to any canonical model, which implies that their CPT must be explicitly given.

Canonical models are useful not only because they simplify the construction of probabilis-
tic models (knowledge engineering), but also because they save storage space and computation
time [10] and because they correspond to causal patterns that can be exploited to generate
user explanations [19].

ICI models

One kind of probabilistic models are those based on the assumption of independence of
causal influence (ICI). Noisy ICI models can be defined by introducing n auxiliary vari-
ables {Z1, . . . , Zn}, as shown in Figure 2.2, such that Y is a deterministic function of the Zis,
y = f(z), and the value of each Zi depends probabilistically on Xi, as captured by the CPT
P (zi|xi). In most ICI models, the Zis have a causal interpretation. However, we can just see

����
X1 ����

Xn

@
@
@@R

�
�

��	����
Y

· · ·

Figure 2.1: A family consisting of a child node Y and its parents, X = {X1, . . . , Xn}.

8



2.2. BUILDING PROBABILISTIC NETWORKS 9

them as auxiliary variables that are used for deriving the equations and are not part of the
model. The conditional probability P (y|x) is obtained by marginalizing out the Zis:

P (y|x) =
∑
z

P (y|z) · P (z|x) , (2.7)

where

P (y|z) =

{
1 if y = f(z)
0 otherwise .

(2.8)

Therefore,

P (y|x) =
∑

z|f(z)=y

P (z|x) . (2.9)

����
X1 · · · ����

Xn

? ?

����
Z1 · · · ����

Zn

@
@
@@R

�
�
��	����

Y

Noisy
parameters
P (zi|xi)


Deterministic

model
(function f)


Figure 2.2: Auxiliary structure for the derivation of a noisy ICI model.

Independence of causal influence (ICI) means that there are no interactions among the
causal mechanisms by which the Xis affect the value of Y . Given the graph in Figure 2.2,
this property is equivalent to the absence of links Xi → Zj and Zi → Zj for all i 6= j, which
means that

P (z|x) =
∏
i

P (zi|xi) (2.10)

and, consequently,

P (y|x) =
∑

z|f(z)=y

∏
i

P (zi|xi) . (2.11)

Each parameter P (zi|xi) of a canonical model is associated with a particular link Xi → Y ,
while each parameter P (y|x) in a CPT corresponds to a certain configuration x made up
by all the parents of Y , and cannot be associated with any particular link. This property,
stemming from the ICI assumption, entails two advantages from the point of view of knowledge
engineering. The first is a significant reduction in the number of parameters required to specify
a model, from O(exp(n)) in a general model to O(n) in a canonical model. This can amount
to a substantial reduction of the elicitation effort. For example, a binary node with 10 binary
parents will have a CPT consisting of 211 = 2, 048 numerical parameters. Adding one more
node doubles this number to 212 = 4, 096 parameters. In contrast, a noisy OR model would
require only 10 and 11 parameters, respectively. The second advantage is that the parameters
in canonical models lend themselves to fairly intuitive interpretations, which facilitates the
task of eliciting them from human experts. As mentioned above, canonical models not only

9
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require fewer parameters than ordinary CPTs, but also their parameters are more intuitive
and easier to estimate.

It is possible to define leaky ICI models, which only differ from their noisy counterparts
in the addition of another auxiliary variable, ZL, which represents the effect of the variables
not explicitly represented in the model [10].

2.2.2 Learning

Learning consists on automatically building the model that more truly represents the reality
of a particular domain based on the information stored in a database. As in manual construc-
tion, learning can be divided in two phases: the structural learning and parametric learning.
Parametric learning consists of computing the conditional probabilities given by the structure
of the network using the observed frequencies on the database. Structural learning tries to
find the graph that best represents the probability distribution based on the frequencies in
the database. It is not uncommon though, to come across with situations where the graph or
structure has been built with the help of an expert and it is just the probabilities that need
to be learnt.

It is worth mentioning that when learning PGMs such as Bayesian Networks, two different
graphs could in fact be probabilistically equivalent, that is, they can represent the same
independence relationships and the same probability distributions over their variables.

There are two main methods for building the graph of a BN from a database. The first
one consist of detecting the probabilistic conditional independencies present in the database.
The most famous algorithm of this type is the PC algorithm [27, 28]. The second method,
called search and score, consists of performing a heuristic search through the space of possible
structures, using a metric that measures how well each structure can represent the probability
distribution of the variables in the database. Several metrics have been proposed in the
literature: Bayesian (which include K2 and BDe as particular cases), cross-entropy, AIC,
and MDL—see [6] for references. K2, the first algorithm of this type, performed a search by
departing from a network without links and adding at each step the link leading to the highest
score, provided that the score was positive [7]. The method that proceeds by examining one
operation at each step (adding, removing, or inverting a link) is called hill climbing.

Learning Bayesian networks is one of the most important research areas in the field of BNs.
Every year, around one third of the total publications in that area are related to automatic
learning.

Interactive Learning

Interactive structural learning was proposed by Sucar and Mart́ınez-Arroyo [29] as a means for
human-computer collaboration in the search for the optimal network structure. The system
proposed by Sucar initially builds a tree automatically and then allows the user to modify it
by adding, removing or inverting arcs. The strength of the correlation between the variables
connected by a link is denoted graphically by the width of the link. It also shows a score
representing the quality of the model, which is inversely related with the complexity of the
network and the distance between the probability distributions specified by the network and
the data.

Later de Campos [8] encoded expert knowledge in the form of a set of restrictions that
the learning algorithm had to satisfy. They used three types of restrictions: presence of a

10
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link, absence of a link, and partial ordering of the variables. They proved that, for several
data sets, this approach improved the quality of the networks learnt.

2.2.3 Object Oriented Networks

PGMs have been successfully applied to several domains of application, but when facing
a complex domain, the construction and maintenance of the resulting large PGMs turns
into a tedious, time-consuming and error-prone task. For example, the only mechanism for
”code reuse” is manually copying a network fragment and pasting it somewhere else. This
duplication has the same drawbacks as the analogous process in a programming task. If the
original network fragment is modified, the knowledge engineer must go back and manually
change all of the models that used it. These difficulties have been encountered and solved in
the context of programming languages, primarily via the introduction of complex data types.
Koller and Pfeffer [18] originally proposed the Object Oriented Bayesian Networks (OOBN)
as a solution to this problem. Applying the concepts of the Object Oriented Programming
paradigm to PGMs, they described an OOBN language to model complex domains in terms of
interrelated objects. Bayesian Network fragments are used to describe probabilistic relations
between the attributes of an object where the attributes can be objects themselves, allowing
the hierarchical definition of a model. As in Object Oriented Programming, the OOBN
framework advocate for the creation of a hierarchy of reusable objects in order to reduce the
complexity of the construction of the model.

Later Bangsø and Wuillemin further developed the idea of OOBNs in [4], giving a more
detailed description of the framework, closer to implementation details than to theoretical
definitions. They also introduced the idea of Top-down construction of Bayesian Networks,
thanks to which it is possible to instantiate a class even if its specification is incomplete. This
is probably the framework our approach owes the most, as it is on top of this framework that
we have built ours, adding other functionalities.

Object Oriented Networks (OON) are meant to be a generalization of Object Oriented
Bayesian Networks to PGMs other than Bayesian Networks. There are examples of Object
Oriented networks with other PGMs such as in [3], where an Object Oriented Influence Dia-
gram is proposed, but the authors use a very limited part of the funcitonality the framework
offers.

2.3 OpenMarkov

This project started in 2002 at the Department of Artificial Intelligence of the Universidad
Nacional de Educación a Distancia (UNED), in Madrid, Spain. Its original name was Carmen
[1], but in 2010 it was renamed as OpenMarkov.2 We departed from our experience in the
construction of Elvira [12],3 an open-source tool begun in 1997 as a joint project of several
Spanish universities, but everything in the new program was redesigned and the code of
OpenMarkov was built from scratch. The language chosen to develop OpenMarkov was Java,
mainly to make it multi-platform.

OpenMarkov is able to represent several types of networks, such as Bayesian networks,
Markov networks, influence diagrams, LIMIDs, and decision analysis networks (DANs), as

2www.openmarkov.org.
3www.ia.uned.es/~elvira.
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well as several types of temporal models: dynamic Bayesian networks, Markov processes with
atemporal decisions (MPADs), MDPs, POMDPs, Dec-POMDPs, and dynamic LIMIDs—see
[2] for definitions and references. Currently it can only evaluate Bayesian networks, influence
diagrams, and MPADs. Each network type is defined by a set of constraints [2, Appendix A],
which leads to the possibility of defining new types of networks easily by combining the existing
constraints and, if necessary, by adding new ones. Constraints play also an important role in
the learning of BNs, as we will discuss below.

There are three types of variables in OpenMarkov: finite-states, numerical, and discretized.
A discretized variable has a finite set of states, each one having an associated numeric interval.

The graphical user interface (GUI) is very similar to those of other software tools for
PGMs, especially to that of Elvira. It has two working modes: edition and inference. It has
been designed for internationalization; currently messages can be displayed in English and
Spanish.

For a comparison of OpenMarkov with other open-source packages, check Table 2.1. For
further details, see OpenMarkov’s web pages and wiki.4
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Bayesian networks yes yes yes yes yes yes yes yes yes yes yes
Influence diagrams no no yes yes no yes yes no no no no
Dynamic models no no no yes no no yes no no no no
Programming language Java Java Java Matlab Java Java Java Java C++ Java Python
License GPL GPL ? GPL GPL GPL EUPL LGPL IOSL GPL GPL
User manuals yes yes yes yes yes yes no∗ no no yes yes
Developer manuals yes no no no no yes no∗ no no no no
Users list/forum yes no no yes yes yes yes yes no yes yes
Developers list/forum yes no yes yes yes yes yes yes no yes yes
Source HTML docs yes yes yes no yes yes yes yes no no no
Version control yes no yes no yes yes yes yes no yes yes
Bug tracker yes yes no no yes yes yes yes no yes yes
Start 1993 1996 1997 1999 2000 2000 2002 2003 2003 2004 2006
Stopped — 2001 — 2007 2004 — — 2003 2005 2004 2007

Table 2.1: Open-source packages for Bayesian networks. Some of those tools can also build
and evaluate influence diagrams. The URLs for these packages can be found in K. Murphy’s
list, at www.cs.ubc.ca/~murphyk/Software/bnsoft.html, except for UnBBayes (unbbayes.
sourceforge.net) and OpenMarkov (www.openmarkov.org). A star in a cell means that this
feature will be available in the near future.

4www.openmarkov.org, wiki.openmarkov.org.
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Chapter 3

Building Probabilistic Networks

We have proposed and implemented two techniques to help in the process of creation of
PGMs. The first method, Interactive Learning, is a valuable resource to start building a
model from an existing database with the guidance of an expert that has already proven to
be very useful. The second is an evolution of existing frameworks that apply the philosophy
of Object Oriented Programming to the realm of PGMs, that alleviates the task of the
construction and maintenance of large PGMs.

3.1 Interactive Learning

3.1.1 Introduction

Algorithms for learning Bayesian networks (BNs) behave as a black box that takes a database
as an input and returns a network as the output. In contrast, OpenMarkov, our tool for
probabilistic graphical models, includes the option to run the algorithms in a step-by-step
fashion, presenting a ranked list of operations (such as adding, removing, or inverting links)
the user can select, while allowing live edition of the BN throughout the learning process.
Database preprocessing options allow the user to select the variables to be used, indicate how
to discretize numeric variables and impute missing data. It is also possible to use a model
network to guide the learning process in different ways. This functionality in OpenMarkov
can be employed to learn BNs with partial expert knowledge, to debug new algorithms, and
as a pedagogical tool.

The difficulty and tediousness of manual construction of Bayesian networks has led to an
increasing interest for learning methods that can generate PGMs from databases automati-
cally. This is the preferred approach when there is a large database with few or none missing
values, and no causal knowledge. However, in many cases the size of the database does not
allow to learn a PGM that accurately represents the conditional independencies existing in
the domain of application. Practitioners of these methods often encounter that the PGM
obtained contains some links that the expert considers as obviously spurious, but given that
in general the algorithms perform as black boxes, it is difficult to determine to what degree
those links are really supported by the data.

Another problem is that most learning algorithms do not return causal models. In the last
decade the number of studies aimed at obtaining causal models from databases has grown
exponentially (the UAI Conference held in Barcelona in July 2011 was a clear illustration
of this phenomenon). However in many cases the problem does not lie in the algorithm but
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on the lack of information in the database: the only conclusion that can be drawn reliably
from a set of data—provided that it is big enough and not biased—is the set of correlations
that exist in the real world. These correlations rule out some causal models, but the number
of models compatible with the data is usually very large. Many of those models clash with
common knowledge of the experts, but it is not easy to feed that knowledge into automatic
causal learning algorithms. For this reason, it would be useful to have interactive learning
algorithms that propose a list of changes to improve the accuracy of the network but allow
an expert to select only those that do not contradict his/her knowledge.

Secondly, interactive learning could be also of great interest for researchers and developers
of new algorithms. An interactive learning tool able to show on a graphical interface the
different actions that the algorithm is considering at each step and the scores assigned to
them may be very useful to debug the algorithm, for example, by observing how a shift in
some of the parameters leads to a different selection of actions.

Thirdly, interactive learning programs may have a high pedagogical value by allowing the
students to know the actions that the algorithm has evaluated at each step and why it has
selected each action. Then it is possible to run a different algorithm, for example with a
different search strategy or a different metric, and observe why it selects different actions at
each step.

For these reasons we decided to implement an interactive learning module on OpenMarkov,
an open-source software tool for editing and evaluating PGMs. The interactive learning
module includes a user-friendly graphical interface that allows to overcome all the above-
pointed problems, with the corresponding benefit for experts, researchers, developers and
students.

3.1.2 Options for learning BNs in OpenMarkov

In this section we describe the main options that OpenMarkov offers for learning BNs inter-
actively.

Using a model network

OpenMarkov gives the user the option to use an existing network as a model for the one that
will be learned. There are four options. The first is to use the model only to determine the
positions of the nodes. When we learn a network from a database we can place the nodes
on the screen by dragging them with the mouse, trying to minimize the number of links
crossing one another; but if we learn another network from the same database (for example,
using different options for the algorithm), we should drag replace the nodes again. Open-
Markov facilitates this task by placing the nodes in the same positions as in a network built
previously.

The other three options are whether the algorithm can add, remove, or invert the links
present in the model network. They are useful, for example, when we wish that the algorithm
preserves all the links in the model network. The first option (i.e., using the model only to
place the nodes) is incompatible with the other three, which are compatible with one another.

There are other uses of the model network, that we describe below.

14
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Data preprocessing

Unfortunately data in the databases is usually not suitable to be directly fed to the learning
algorithm and has to be preprocessed. OpenMarkov offers the following options.

Selection of variables Usually raw databases contain information that is irrelevant for
the model (e.g. the patient’s name). OpenMarkov can learn a network that contains all the
variables in the database, but it is also possible to tell it to use only those present in the
model network. The third possibility is to select the variables one by one from a list.

Discretization of numeric variables Currently OpenMarkov can only learn BNs with
having finite states. Therefore, the numeric variables in the database must be discretized
before the learning algorithm starts. OpenMarkov can discretize a variable in different ways.
First, the user can indicate a number of intervals and then indicate whether the intervals
must have the same width (considering the maximum and the minimum for that variable in
the database) or the same frequency (i.e., the number of database registers for every interval
will be the same). Second, if the variable is discretized in the model network, its intervals
can be used to assign each number in the database to a state. For example, if a variable
has three states, “negative”, “null”, and “positive”, with three associated intervals, (−∞, 0),
[0, 0], and (0,+∞), respectively, these intervals can be used to discretize the values in the
database. This way, creating a model network is a way of specifying how numeric variables
should be discretized.

Imputation of missing values Currently OpenMarkov offers only two ways to fill in the
gaps in the database: either to ignore every register that contains at least one missing value,
or to write the value “missing” in every empty cell, which is then treated as if it were an
ordinary value.

List of suggested edits

In OpenMarkov an edit is an atomic modification of a data structure. There are three edits
that an interactive learning algorithm can propose: adding, removing, or inverting a link. The
list is composed by sorting the edits according to their scores. The hill climbing algorithm
computes the scores using the metric selected by the user. The PC algorithm performs many
statistical test in which the null hypothesis is that two variables are not correlated given other
variables. Roughly speaking, a high p resulting from the test suggests that two variables are
conditionally independent, i.e., that a link can be removed. Therefore, the p value can be
used as a score to rank the edits, each edit being the removal of a link.

Interactive learning is performed by having two windows: one showing the graph of the
network and another one showing the proposed edits. The user can select any edit from the
list, not necessarily the one having the highest score, and the change will be immediately
displayed on the network window. Alternatively, the user can add or remove any link from
the graph. In both cases, the scores will be recalculated and a new list will be proposed.
Figure 3.1 shows the lists of suggested edits shown during the interactive learning process.

15
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Figure 3.1: A moment of the interactive learning process: list of edits proposed by Open-
Markov and the network being learned.

Blocking edits

The user has the possibility of blocking an unwanted edit to prevent the system from offering
it again and again. The list of blocked edits can be viewed and blocked edits can be later
unblocked at any moment.

Additional options There are additional options to control the flow of the algorithm. One
of them is to filter the edits proposed to those only those with a positive score. Another option
is to show only the edits allowed by the constraints associated to the network. For example,
a constraint stemming from the definition of the BN is that the graph cannot contain cycles.
A constraint that the user can impose is that a node cannot have more than n parents. If the
user selects the “Show only allowed edits” option, those incompatible with the constraints
will not be shown in the list, even if they have a high score.

3.1.3 Case study

In order to explore the benefits of interactive learning, we study the case of learning the
well-known ALARM network [5], which has 37 nodes and 46 links. The nodes are classified
into three levels. The first level contains diagnostic nodes, which have no predecessors. The
second level contains intermediate variables, representing pathophysiological anomalies that
cannot be observed directly. The third contains measurement nodes, which represent clinical
variables that can be observed or measured, and do not have children. The network contains
no link from a lower level to an upper level.

Using this network we generated a database containing 10,000 samples and applied the
hill-climbing algorithm with the K2 metric. We applied the learning algorithm automatically
in OpenMarkov, resulting in a model with 50 links, 13 of which were not in the original
network, even though 6 of them were inverted links of the original network. On the other
hand, 9 of the original links were missing in the network learned.1

1The files used in this study are available at www.openmarkov.org/learning so that the results can be
reproduced by other researchers.
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Figure 3.2: The edit suggested at the top of the list contravenes our causal knowledge because
VENTLUNG is an intermediate variable and INTUBATION is a diagnostic variable.

Then we learned the network interactively using elementary causal knowledge, according
to which we did not accept the addition of any link from a measurement node to an interme-
diate or a diagnostic node, nor from an intermediate node to a diagnostic node. Figure 3.2
shows an example of a moment in the interactive learning process where the edit with the
highest score cotravenes the causal knowledge. In this case, we chose to apply the second
edit, which produces the same link but in the opposite direction.

The resulting net contained 47 links: only 2 of them were not in the original network and
only one of the original links was missing. The two links “invented” by the learning algorithm
were the last to be added and had such a low score that they might have been detected as
spurious by the expert. We also observed that the missing link, from INSUFFANESTH to
CATECHOL, has a very weak influence in the original network.

This experiment shows that even a portion of very rudimentary knowledge about the
domain may lead to a significant improvement in the network built by our interactive learning
algorithm.

3.1.4 Discussion

Advantages of our approach

As mentioned in the introduction, a problem of learning algorithms is that they often create
spurious links due to small correlations existing in the database. Another problem is that
in general the models obtained are not causal, not only because of the inherent limitation
of most algorithms, but mainly because the information contained in the database does not
permit to distinguish whether X is a direct cause of Y , or X is a cause of Y , or if there is a
directed causal path between them involving other variables, or they have a common cause,
or there is a selection bias in the database [15, 11].

OpenMarkov allows human users, who may be experts in their respective areas but novices
in the field of probabilistic modelling, to supervise the execution of learning algorithms. The
algorithm proposes some incremental modifications of the network, based on the information
contained in the database, and the user has the opportunity to apply some of the changes
proposed by the tool or impose others at any moment of the learning process, based on their
expertise. Even if this might lead to a lower quality of the network according to the metric,
the result might be better from the point of view of users’ acceptability, because human

17
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experts are reluctant to accept the advice of a machine if they cannot follow its reasoning
[31].

An interactive learning tool might as well be useful for researchers that have developed
a new algorithm and wish to trace its execution in order to debug or fine-tune it. This
process can be done by inserting in the algorithm a few lines of code that print a trace on
the standard output or in a file, but it is much nicer to observe graphically the operations
performed by the algorithm, step by step, together with the qualitative information associated
with the next modifications that the algorithm has evaluated. Obviously, this requires that the
researchers implement the new functionality (such as a new metric, a new search technique, or
a completely novel learning method). OpenMarkov’s architecture has been carefully to permit
these extensions: each new method can be implemented as a Maven subproject, that Open-
Markov will detect at run time as a plug-in.2 This way, researchers can extend OpenMarkov
dynamically without modifying the “official” source code.

Finally, an interactive learning program may be useful as a pedagogical tool to explain
the performance of different algorithms: rather than observing the input and the output,
students may follow the progression of the algorithm step by step, understanding why each
change was selected, seeing the effects of taking different actions to those proposed by the
system and comparing different algorithms.

Related work

Our work shares some aspects with the related work mentioned in the state of the art but
presents important differences too. As in Sucar’s paper [29], our proposal is also based on the
idea of combining a learning algorithm and expert knowledge to build a model interactively.
The main difference is that our system guides the expert through the creation process step-
by-step instead of providing the final result of the learning algorithm and asking the expert
to fine tune it. We think that our approach contributes to a better understanding of the
behavior of the learning algorithm and therefore makes collaboration with the expert easier.

The idea of showing a score that represents the quality of the model is also present
somehow in our approach, because the scores associated to each edit in the score and search
algorithm represent the increment in the quality of the model, given by the complexity of the
network and the distance between the probability distribution of the network and that of the
data.

In the future, we will implement in OpenMarkov the possibility of representing the type of
correlation (positive, negative, or null) by a color and the strength of the correlation by the
thickness of the link, as we did in Elvira [21, 20], thus making our approach more similar to
that of Sucar and Mart́ınez-Arroyo.

Our work is also similar to de Campos’ [29] proposal in that, by means of the model
network, we can impose or prevent the presence of some links in the network learnt, but
we do not have yet partial order restrictions. However, it would be easy to implement any
restriction—not only those used by de Campos and Castellano—as an OpenMarkov constraint,
as explained in Section 3.1.2. Another difference is that in OpenMarkov it is possible to
specify whether the model network imposes the presence or absence of a link, or it only
“suggests” them as a starting point, that can be overriden depending the scores computed by
the algorithm.

2See https://bitbucket.org/cisiad/org.openmarkov/wiki/OpenMarkov-organization.pdf.
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Another similarity between their work and ours is that both of them have been combined
with score-and-search and independence-based algorithms. However, the main difference is
that their approach is not interactive: their restrictions must be declared before the execution
of the algorithm, which then runs automatically, while in OpenMarkov every action proposed
by the algorithm can be accepted or rejected by the user, who can also impose any action at
any moment of the process, thus giving full control to the user.

3.1.5 Design and Implementation

Figure 3.3: A capture of the Interactive Learning module in OpenMarkov with the suggested
edits and the Blocked Edits window

Requirements analysis

• User-friendliness or Usability: is the ease of use of the application. As any GUI based
application, it need to be intuitive and efficient to use.

• Responsiveness: the ability of a system to complete assigned tasks within a given time.
As it is going to be heavily interactive with a human, it needs to be fast.

Analysis model

The Interactive Learning module was designed to be a part of the Learning module in Open-
Markov. After refactoring the core of the learning module to offer the functionality needed
by the interactive module (such as step-by-step execution), the implementation was included
in the org.openmarkov.learning.gui.interactive package as the rest of the functionality
was GUI related. The main class, InteractiveLearningGUI interacts with learning algorithms
through the class LearningManager from the core of the learning module.

19
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3.2 Object Oriented Networks

3.2.1 Introduction

PGMs have been successfully applied to medium-scale applications, but are inadequate as
a general knowledge representation language for large and complex domains [24]. As Koller
and Pfeffer put it in [18], ”the construction of a network is a painstaking manual process,
analogous to programming using logical circuits”. Applying the paradigm of Object Ori-
ented Programming to PGMs is an attempt to bring to the construction of PGMs the same
advantages OOP offers over imperative programming: decoupling, abstraction, reusability,
etc. Object Oriented Networks (OON) are meant to be a generalization of Object Oriented
Bayesian Networks to PGMs other than Bayesian Networks.

3.2.2 Elements of OONs

The basic element of an Object Oriented Network is an object. An OON is defined by a set
of classes, a set of instances of those classes, a set of nodes and a set of links. In the following
we define each of these elements.

Classes

A class consists of a set of nodes and a set of links and it defines a probabilistic relation
among its attributes. A class can also contain a number of instances(described later) of other
classes. Any PGM can be considered a class that can be later instantiated. A class can have
a set of input parameters: these parameters can be nodes or instances of other classes. When
instancing these class, input parameters will need to be assigned values through reference
links (explained later).

Instances

An instance is an instantiation of a class that has been previously defined. There can be
several instances of the same class. Instances can be marked as input parameter; in this case,
the instance is a placeholder to the real instance in the same way formal parameters are to
actual parameters.

Nodes

Nodes can be chance, utility or decision nodes. As in the case of instances, they can be
marked as input parameter in which case they act like placeholders. In [4] nodes marked as
input parameters are called reference nodes.

Links

In addition to the common links used in PGMs, there is another type of links in OONs,
referred to in [4] as reference links. These are directed links that match nodes or instances
with input parameters of their same kind. When running inference, nodes and instances
marked as input parameters will be replaced with those nodes and instances they are linked
to through reference links.

3.2.3 Inference

The easiest way to run inference on a Object Oriented Network is to convert it first into
a plain PGM, that is, replacing instances with the set of nodes and links they consist of
and replacing the input parameters with the nodes and instances they are linked to through
reference links. Once we have a regular PGM, inference is straightforward.

20
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3.2.4 Parametric Learning

Another advantage of OONs is they are able to get better results from learning in object-
oriented domains, as object-oriented learning takes into account the fact that all instances
are identical as part of its learning bias. Langseth and Bangsø propose a learning method
in [22] with and without missing data that learns in the class specification space instead of
in each instance. That means every observation of a class instance will be considered as a
case of the class. When the data is complete, Maximum Likelihood is used to learn from
data and otherwise the Expectation Maximization (EM) algorithm is used. Therefore the
only relevant difference with parametric learning in non object-oriented networks is that the
updated potentials are those belonging to a class based on the records of the database referring
to the instance of that particular class.

3.2.5 New elements in OONs

We have compiled a list of new elements we have added to the existing object-oriented frame-
works:

Utility and Decision nodes

In Koller and Friedman’s paper [18] as well as in Bangsø and Wuillemin [4], the only
PGMs considered are Bayesian Networks. Our framework supports other important PGMs
by supporting utility and decision nodes.

Multiple Arity parameters

In some situations, rather than having just one occurrence of an input parameter we have
a variable number of them. For example, in a class representing a family, we could have a
variable number of input parameters representing sons and daughters. This is what we have
called multiple arity parameters, by which a variable number of reference links can point at a
certain input parameter. This is restricted though to parameters whose links point at nodes
with potentials supporting independence among parents, such as ICI potentials in the case of
chance nodes or sum potentials in the case of utility nodes.

This is a similar idea to the one-to-many relationships used in Probabilistic Relational
Models by Friedman et al. in [13], where they propose a framework for modelling PGMs
based on the concept of relational databases.

Parameters in reference links

Reference links might be parameterized as to represent the strength of that particular
link. For example, if we are trying to model the impact of several factors such as atmospheric
pressure, humidity and temperature in weather, we could want to assign different strengths
to different factors.

Other attributes in classes

There might be attributes in classes that are not represented by nodes but by a boolean
or a double value. This attribute could be used as a parameter to render different values in
the potentials of that class.

3.2.6 Design and Implementation

Requirements analysis

• User-friendliness or Usability: is the ease of use of the application. The task of the
construction of Object Oriented Network is heavily based on the GUI and therefore it
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Figure 3.4: A capture of an Object Oriented Network model for a car accident, as seen in [18]

is important that it is intuitive and fast.

• Decoupling: it refers to the separation of software blocks that shouldn’t depend on each
other. In this case it meant that the implementation of OONs should be as decoupled
as possible from the core and main GUI of OpenMarkov, since OONs are not a core
functionality of OpenMarkov. It also meant users of OpenMarkov not interested in OONs
should not be confused with OON related options in the main toolbar.

Analysis Model

Following, a description of the design of the elements implemented for Object Oriented Net-
works.

Instance Creation As part of the effort to decouple the implementation of OONs, the way
in which ”edition modes” in the GUI are handled was refactored. Edition modes were a static,
hardcoded list consisting of: selection, (chance, utility and decision) node creation and link
creation. After the refactorization, edition modes can be dynamically added implementing a
subclass of EditionMode. Instance Creation is one of the new edition modes.

OON Toolbar In order to make instance creation easier, a toolbar was implemented which
is only visible if activated in the Toolbars submenu under the View menu. The toolbar, as
shown in Figure 3.5, contains two elements: a button to activate the Instance Creation mode
and a combo box containing the list of classes to generate instances from. This list is fed by
the list of current open networks in OpenMarkov. Therefore, in order to create an instance of
a class, it first needs to be loaded. When Instance Creation is active, clicking on an empty
spot of the network panel will generate an instance of the class currently selected in the class
combobox.
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Figure 3.5: Object Oriented Network toolbar with a list of classes available to generate
instances from.

Figure 3.6: Contextual menu of an instance.

Instance Contextual Menu After an instance or more have been created, we might want
to modify the class itself as part of the maintenance of the network. This can be easily
done choosing the Edit class option in the contextual menu (shown in Figure 3.6) that is
prompted when right-clicking on any instance of the class we want to edit. A network panel
will be opened containing the class we want to modify. Any change done to the class network
(addition or removal of nodes or links, changes to the potentials, etc.) will be automatically
reflected on the existing instances.

The Mark as input option marks the selected instance as an input parameter. As
described in Section 3.2, classes can have input parameters that can be either nodes or objects,
that is, instances of other classes. Marking a node or instance as an input parameter tells the
system that they expected a reference link pointing at them.

Finally, the Arity option lets the user set the arity of an input parameter, meaning it
could hold one or many reference links. As explained in Section 3.2.5, in some situations
there is a need for input parameters of an unknown arity, as when modelling a family, where
the number of children is variable.

23



24 CHAPTER 3. BUILDING PROBABILISTIC NETWORKS

24



Chapter 4

Tuning Networks

We have defined a type of network that models the problem of finding the set of adjustments
needed for the optimal performance of a system with tunable parameters.

4.1 Basic properties

4.1.1 Elements of the network

Tuning networks consist of an ADG and a probability distribution. Tuning networks can
contain decision and utility nodes. Decision nodes represent tunable parameters in tuning
networks. The values of these nodes can represent either setting the value of the parameter
to a certain value in absolute terms or to do it in relative terms, that is, they represent the
change in the value of the parameter (increase, decrease or no change). In both cases, we
define the term of the neutral state, for relative variables as the ”no change” value and for
the absolute variables as the ideal value of the parameter.

Link Restrictions

A restriction associated to a link X → Y , where X and Y are chance variables or decisions,
is a pair (x, y), where x is a value of X and y is a value of Y . It means that variable Y cannot
take the value y when X takes the value x. If X and Y are discrete, the restrictions associated
with this link can be represented by a compatibility table with a column for each value of x
and a row for each value of y; the cell (x, y) contains a 1 when x and y are compatible and
0 when there is a restriction. For example, Table 4.1 means that when the decision about
blood test (BT ) is not to perform it, the result (B) is neither positive nor negative.

BT +bt ¬bt

B
+b 1 0
¬b 1 0

Table 4.1: Compatibility table for the link BT → B.
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4.1.2 Interpretation of the network

A PGM representing the system described above has at least two posible interpretations:

The diagnostic interpretation assumes that the optimal tuning is unique, i.e., there is only
one configuration of the parameters (the inputs) that makes the system perform optimally.
The three values of each variable are interpreted as {decreased, optimal, increased}. The
current output of the system is introduced as evidence into the Bayesian network and the goal
of inference is to “diagnose” which parameters are not properly tuned. Therefore, inference
proceeds down-up, i.e., from the observed outputs to the inputs. This method has two
advantages: first, it does not require a global gain function, and second, inference is more
efficient, because it evaluates the network only once, while the variational interpretation need
to evaluate the network once for each change in one of the parameters.

The variational interpretation tries to predict the impact that a change in the value of the
parents (the causes or the inputs) will have on the children (the effects or the outputs). The
three values of each variable, {−, 0,+} are interpreted as {decrease, no-change, increase}.
Initially all the variables take on the value no-change by definition. The process of inference
consists of computing the posterior probability of each output variable for each change that the
user may impose on the input variables. Therefore, in this interpretation inference proceeds
top-down, i.e., from (the possible adjustments of) the inputs to the outputs, using predictive
reasoning. The changes that lead to an improved performance will be applied. When an
improvement in some of the output variables comes together with a worsening in others, it is
necessary to have a utility function that measure the global gain in performance.

4.2 The Tuning Model

The tuning model represents how a change in some variables (the parents) affects another
variable (the child). The motivation for the proposal of this new model is that, when building
a PGM for programming cochlear implants, we needed a model that could represent how a
change in some of the parameters of the physical device affect other properties of the system,
which in turn may affect the subject’s ability to detect and recognize the sound. Given that
none of the existing models fitted our needs, we devised a new model based on the property
of independence of causal interaction (ICI), which was discussed at length in Section 2.2.1.

4.2.1 Mathematical definition of the tuning model

As mentioned in Section 2.2.1, a noisy ICI model is defined by three elements: the domains
of the variables, the function f , and some constraints on the values of P (zi|xi).

In the tuning model, all the variables have the same domain, {−, 0,+}, where − rep-
resents a decrease in the value of the variable, + represents an increase, and 0 means “no
change”. If the variable is denoted by V , we will sometimes write v−/v0/v+ instead of −/0/+
to make it more clear what variable we are speaking of.

The function of the tuning model is defined as follows:

ftuning(z) =


y+ if n+(z) > 0
y0 if n+(z) = 0
y− if n+(z) < 0 ,

(4.1)
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where n+(z) is a function that returns the number of variables that take the value + in config-
uration z minus the number of those that take the value −. For example, n+(z+

1 , z
+
2 , z

+
3 ) = 3,

n+(z+
1 , z

−
2 , z

0
3) = 0, and n+(z+

1 , z
−
2 , z

−
3 ) = −1. Therefore, ftuning(z+

1 , z
+
2 , z

+
3 ) = y+,

ftuning(z+
1 , z

−
2 , z

0
3) = y0, and ftuning(z+

1 , z
−
2 , z

−
3 ) = y−.

A constraint that we impose on P (zi|xi) is that

P (z0
i |x0

i ) = 1 , (4.2)

which implies that P (z+
i |x0

i ) = P (z−i |x0
i ) = 0. Therefore, if we introduce four parameters for

each link, c++
i , c+−

i , c−+
i , and c−−i , the CPT for that link has the form shown in Table 4.2.

P (zi|xi) x−i x0
i x+

i

z+
i c−+

i 0 c++
i

z0
i 1− c−+

i − c−−i 1 1− c++
i − c+−

i

z−i c−−i 0 c+−
i

Table 4.2: Conditional probabilty table for link Xi → Y in the tuning model.

It is possible to prove from Equation 2.11 that when all the Xs take the value 0, then Y
takes the value 0 with absolute certainty. When Xi takes the value + and the other Xs take
the value 0, then Y takes the value + with probability c++ and the value − with probability
c+−. Similarly, when Xi takes the value − and the other Xs take the value 0, then Y takes
the value + with probability c−+ and the value − with probability c−−. Therefore, the four
c-parameters quantify the individual impact of Xi on Y .

4.2.2 Classes of interactions

We have seen that the general form of the conditional probability table associated with link
Xi → Y is as shown in Table 4.2. However, it is possible to impose a second constraint: for
each variable Xi and each value of this variable, P (z+

i |xi) = 0 or P (z−i |xi) = 0; put another
way:

(c−+
i =0 ∨ c−−i =0) ∧ (c−+

i =0 ∨ c−−i =0) . (4.3)

Therefore, when this constraint holds for a link Xi → Y , only two parameters are different
from 0—in contrast with the general case, which requires four independent parameters—and
that link must belong to one of four classes: direct, inverse, always increasing, and always
decreasing.

The direct class is shown in Table 4.3. The values in the x0
i column are imposed by the

first constraint of the tuning model (Eq. 4.2). The x−i column implies that a decrease in
Xi causes a decrease in Y with a probability c−−i , such that c−−i > 0. It may occur, with
probability 1− c−−i , that a decrease in Xi fails to cause a change in Y , but that decrease can
never cause an increase in Y . Similarly, the x+

i column means that an increase in Xi causes
an increase in Y with a probability c++

i . Therefore, this class represents a positive influence
of Xi on Y [21] and a positive correlation between both variables.

Similarly, the inverse class is characterized by c++ = c−+ = 0, c−+ > 0, and c+− > 0,
which implies that a decrease in Xi causes an increase in Y , and vice versa, thus leading to
a negative correlation between both variables.
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P (zi|xi) x−i x0
i x+

i

z+
i 0 0 c++

i

z0
i 1− c−−i 1 1− c++

i

z−i c−−i 0 0

Table 4.3: Conditional probabilty table for a link Xi → Y of the direct class.

The relations that define the always decreasing class are: c−+ = c++ = 0, c−− > 0, and
c+− > 0. Therefore, any change in Xi will cause a decrease in Y . The properties of the
always increasing class are analogous.

We may impose a third constraint: the symmetry of the influence. In the case of an
direct interaction, it implies that c++

i = c−−i , i.e., the probability that an increase in Xi causes
an increase in Y is the same as the probability that a decrease in Xi causes a decrease in
Y. In the case of an always decreasing interaction, the probability of a decrease in Y is the
same for an increase in Xi as for a decrease: c−−i = c++

i . A link satisfying the condition of
symmetry requires only one parameter.

Several kinds of interaction may coexist within the same family.

Example 1. In a family with four parents, the link X1 → Y might be general (i.e., free
from the second and third constraints, as shown in Table 4.2), X2 → Y might be a direct
interaction, X3 → Y might be direct and symmetric, and X4 might be always decreasing.
The total number of parameters for this model would be 4 + 2 + 1 + 2 = 9.

If the interaction of this family did not use any canonical model, its conditional probability
table would require 35 = 243 parameters, but given that there are 34 = 81 constraints among
them, this family would require 243 − 81 = 162 independent parameters. Obtaining those
parameters from a database is unreliable, unless in the case of a huge database, because many
of the configurations of the Xs will not be represented. Obtaining those parameters from an
expert would be impossible in practice not only for the amount of time required, but mainly
because estimating the probability of Y for each configuration of the Xs exceeds by far the
cognitive capabilities of the human mind.

4.2.3 Causal interpretation of the tuning model

In the tuning model Y represents a parameter of a system whose value depends on the values
taken on by other parameters, {X1, . . . , Xn}. Each auxiliary variable Zi, associated with link
Xi → Y , as shown in Figure 2.2, indicates whether a change in Xi (from x0

i to x+
i or x−i ) has

induced a change in Y : z+
i indicates an increase (from y0 to y+) while z−i indicates a decrease

(from y0 to y−).
The first constraint, given by Equation 4.2, means that when there is no change in Xi,

then there is no change in Y .
The second constraint, given by Equation 4.3, means that a change in Xi may cause either

an increase or a decrease in Y , but not both; this assumption seems reasonable for some
domains, but there might be others in which an increase (or a decrease) in Xi sometimes
produces an increase in Y and sometimes a decrease.

The function ftuning(z), given by Equation 4.1, means that when some of the Xis induce
an increase in Y and others cause a decrease, the global effect depends on whether there are
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more increases than decreases, or vice versa, or there is a tie.

The tuning model is used to build probabilistic networks in which each variable represents
a property of the system. In these networks, a node without parents represents a physical
parameter that can be adjusted by the user, while a node Y with parents {X1, . . . , Xn}
represents a parameter or a property of the system whose value depends on other parameters
(its parents).

4.2.4 Inference with the tuning model

Inference on the tuning model can be done either with exact or stochastic inference in quite
different ways:

Exact Inference Using exact inference, conditional probabilities of the tuning model are
obtained by marginalizing out the Zis as in Equation 2.7. The computational cost of exact
inference is O(exp(n)) where n is the number of parents.

Stochastic inference In stochastic inference a sample is picked randomly for each variable.
In order to pick a sample from the tuning model, one could first calculate the conditional
probability as in exact inference and pick a sample from that probability distribution, but
it is much more efficient to pick a sample for all the Zis and then calculating y = f(z), f
function in Equation 4.1. The computational cost of stochastic inference is O(n) where n is
the number of samples.

4.3 Construction of a Tuning Network

The construction of a Tuning network for the tuning of a physical system begins by selecting
the variables. Some of them will represent variations in the parameters of the system. The
domain of each of these variables will be {−, 0,+}, which implies a discretization of a contin-
uous variable. The value 0 might indicate that the value of the parameter has not changed at
all, and −/+ might represent any increase/decrease in its value, no matter how small it might
be. However, in practice it is better that 0 indicates “no significant change”, − represents a
significant decrease and + represents a significant increase. It is the knowledge engineer, in
collaboration with human experts, who must determine what constitutes a significant change.
For instance, the threshold might be ±5% of the absolute value of the parameter represented
by the variable; for a different variable tuned with higher or lower precision the threshold
might be ±2% or ±10%, respectively This threshold might be different for each variable in
the network, but it must be very clearly defined, because it will affect the elicitation of the
conditional probabilities.

The second step in the construction of a Tuning network is to draw causal links between
the variables, which is usually the easiest task in the construction of the network.

The third step is to analyze for each family in the Tuning network the possibility of
applying a canonical model. The conditions for applying an OR, a MAX, a MIN, or an
XOR model are discussed in [10], while the conditions for applying a tuning model have been
described in the previous section.

The fourth step is to obtain the numerical parameters, i.e., the conditional probabilities
for each family in the Bayesian network.

29



30 CHAPTER 4. TUNING NETWORKS

4.3.1 Elicitation of a tuning model

The first thing to do when considering to apply a tuning model to a relation in a family is
to check whether the requirements are met. The first condition for applying a tuning model
is that all the variables involved in the family must have the same domain: {−, 0,+}. The
second condition is that the effects of the parents can be combined by applying the function
ftuning defined in Equation 4.1, which basically states that each change in one of the Xs may
produce an increase or a decrease in Y , and the resulting value of Y depends on whether
there are more increases than decreases, or vice versa, or there is a tie. The third condition
is that the increase or decrease produced by each Xi only depends on the value taken by
this variable, not on the values of the other Xs; this condition seems difficult to assess for
a human expert because in fact the individual effects are combined by the function ftuning,
and consequently it is difficult to think of the individual effects “before” being combined.
Therefore, it is reasonable to give the third condition for granted and assume that the tuning
model can be applied whenever the first two conditions hold.

Once we know we can apply the tuning model, the next thing to do is to obtain the
numerical parameters, i.e., the conditional probabilities for the family. In the tuning model,
each link Xi → Y must be analyzed independently of the others. The first question is: “Does
the second constraint, given by Equation 4.3, hold for this link, or is it possible that the same
change in Xi sometimes causes an increase in Y and other times a decrease?” In the latter
case it will be necessary to obtain four parameters: c++, c+−, c−+, and c−−. However, some
of the parameters might coincide; for example, using causal knowledge we might state that
c++ = c−− and c−+ = c−+ (assumption of symmetry). This would reduce the number of
independent parameters to be estimated.

On the contrary, if the second constraint holds, the next question to be asked is: “What
class of interaction is this: direct, inverse, always increasing, or always decreasing?” (see
Sec. 4.2.2). The last question is about symmetry. For example, in the case of a direct
interaction, the question is: “Does a decrease in Xi cause a decrease in Y with the same
probability that an increase in Xi causes an increase in Y ?”If there is symmetry, we only
need to elicit one parameter; otherwise, we need two.

Then, we have to estimate the numerical value(s) of the parameter(s) of each link. The
question to be asked for each parameter can be derived from the comment in the last paragraph
of Section 4.2.1. For example, the question for parameter c++ is: “What is the probability
that an increase in Xi causes an increase in Y when there is no change in the other parents
of Y ?” The questions for the other parameters are analogous.

Finally, we must consider for that family whether a noisy tuning model suffices or it is
necessary to apply a leaky tuning model.1 The question is: “Is it possible that a change in
some of the physical parameters not explicitly represented in the Bayesian network causes
a change in Y ?” If the answer is affirmative, the question: “What is the probability that
they cause an increase in Y (when none of the explicit parents changes)?” will give us an
estimate for the leak parameter c+

L , will the question: “What is the probability that they
cause a decrease in increase in Y ?” will yield c−L , as

1In this paper we have not described explicitly the leaky tuning model due to space constraints, but it is
analogous to the leaky models explained in [10].
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4.3.2 Conditioned interactions

It may occur in practice that the effect of a certain variable—say X1—on Y depends on the
value of a third variable, C. For example, X1 may represent a change in the value of a physical
parameter (an increase or a decrease) while C represents the absolute value of that parameter.
In this situation we can apply a modeling trick consisting of adding an auxiliary variable A1,
as shown in Figure 4.1. The interaction between A1 and Y is given by the identity matrix:
P (a1|y) = δa1,y, where δ is Kronecker’s delta function; put another way, the link A1 → Y is
a deterministic symmetric direct interaction (see Table 4.3) with c−−i = c++

i = 1.
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Figure 4.1: Conditioned interaction: the effect of X1 on Y depends on the value of variable
C. The combined effect of X1 and C is modeled by the auxiliary variable A1.

Table 4.4 shows with a hypothetical example how the effect of X1 on Y may depend on
a conditioning variable, C. When the value of C is low, the interaction is bottom-up and
symmetric: in 90% of cases, a decrease in X1 causes a decrease in Y , and vice versa. When
C = medium, the interaction is also bottom-up and symmetric, but the effect is qualitatively
smaller, i.e., it occurs in a lower proportion of cases. When C = high, the effect of a change
in X1 is unpredictable: it may cause an increase in Y but it may also cause a decrease, and
the variability is asymmetric: it is higher for an increase in X1 than for a decrease.

C = low C = medium C = high
P (ai|xi) x−i x0

i x+
i x−i x0

i x+
i x−i x0

i x+
i

a+
i 0 0 0.9 0 0 0.4 0.04 0 0.26
a0
i 0.1 1 0.1 0.4 1 0.6 0.68 1 0.67
a−i 0.9 0 0 0.6 0 0 0.28 0 0.07

Table 4.4: Conditional probability table for the auxiliary variable A1.

4.4 Inference: finding a near-optimal fitting

As in influence diagrams, inference consists on the search of an optimal strategy, in the
case of tuning networks the set of adjustments or changes in the tunable parameter that
will maximize the global expected utility of the model. As common inference algorithms
for influence diagrams would be computationally unaffordable, we propose a greedy search
algorithm that searches the space of possible strategies searching for the optimal strategy.
The algorithm can be divided in two parts: score and search.
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Search

The algorithm performs a greedy search over the space of possible strategies. The search space
is limited by link restrictions, described in Section 4.1.1. The search is initialized setting all
policies for all decision nodes to the neutral state. The greedy search then looks the single
change in a decision node’s policy (also referred to as an adjustment) that maximizes the
utility. After changing the policy for that node, it repeats the search for the next change that
will maximize the utility.

Score

The computation of the score is the computation of the global expected utility given a
certain strategy. In this case, the computation of probabilities and utilities uses the same
algorithms as influence diagrams.

Algoritmo 1: Search for near-optimal fitting

Data: Set of decision nodes, PGM
Result: Set of adjustments
set the imposed policies of all decision nodes to the neutral state;
find best adjustment;
while there is a better adjustment do

add current best adjustment to result set;
add current best adjustment to imposed policies;
find best adjustment;

end

4.5 Implementation in OpenMarkov

4.5.1 Requirements Analysis

The requirements for the implementation of the Tuning Model were:

• Maintainability: is the ease with which a product can be maintained. Important factors
that influence maintainability are keeping the code well documented and readable.

• Efficiency: optimization the speed and memory requirements of a computer program.
Inference is a time-consuming process with tight time constraints. Memory efficiency is
important too as memory needed for inference can increase exponentially on the number
of variables.

• Robustness: is the ability of a computer system to cope with errors. In this case, with
unexpected inputs.

• Reliability: the ability of a system or component to perform its required functions under
stated conditions.
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Potential

ICIPotential TablePotential

MinMaxPotential TuningPotential

Figure 4.2: Part of the class hierarchy of Potential, where TuningPotenial appears as a sub-
class of ICIPotential

4.5.2 Analysis Model

The only class involved in the implementation of the tuning model is TuningPotential, which
is a subclass of the abstract superclass ICIPotential. ICIPotential implements the generic
behavior of ICI canonical models described in [10], and as earlier stated, the Tuning model
is of the family of ICI canonical models. It is worth noting that the generic behavior of
ICIPotential as well as its extensible interface were also designed and implemented by the
author of this Master Thesis for the later implementation of the Tuning model. Thanks
to this, the only thing to implement in TuningPotential was the functionality specific to the
TuningModel, that is, to implement the function that retrieves the logic behind the f function
in Equation 4.1. In Figure 4.2 the class diagram of the resulting class diagram can be seen.

Figure 4.3: A capture of the probability table of a tuning model with five parents in Open-
Markov
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4.5.3 Design and implementation

Requirements Analysis

The requirements for the implementation of the Utility Calculator were:

• Decoupling: it refers to the separation of software blocks that shouldn’t depend on each
other. In this case it meant that the neither the core nor GUI of OpenMarkov should
depend on the UtilityCalculator.

• Responsiveness: it refers to the specific ability of a system to complete assigned tasks
within a given time. It also refers to the ability of using the system even if there is an
on-going task.

The requirement of the decoupling was achieved thanks to the plug-in system implemented
in OpenMarkov, thanks to which the UtilityCalculator works as a plug-in that is found and
loaded in runtime. The UtilityCalculator is available under the Tools menu in OpenMarkov’s
main menu, but just when the jar produced is in OpenMarkov’s classpath.

Responsiveness was mainly achieved by the use of approximate inference algorithms which
take less time than exact inference algorithms. In order to improve responsiveness the Util-
ity Calculator was implemented in such a way that the time-consuming task is run in the
background so the GUI is not frozen and intermediate results are shown. For example, the
best adjustment of each iteration is added to the table as soon as it is computed, while next
iterations are being run in the background.

4.5.4 Utility Calculator: user manual

As previously explained when describing the Tuning networks, in order to find the optimal
policies for the decision nodes, or to put it more clearly, in order to get the list of adjustments
or changes in the parameters that lead to an optimal performance of the Cochlear Implant, a
greedy search algorithm is run. A GUI was developed to give the user the possibility to run
this algorithm and give some insight on its behavior.

The user introduces the available evidence using OpenMarkov’s Network Panel and then
launches the Utility Calculator. Next, the behavior of the main options of the GUI is de-
scribed.

Utility Variable

The GUI lets the user choose the target utility node to be maximized among all the utility
nodes in the Tuning Network.

Search type

The search algorithm can be run one iteration at a time (Step-by-step) or until the termination
condition is met (Automatic), namely when no more tunings are found with a positive utility.

Tuning sequence

This table holds the ordered list of the best adjustments or tunings according to the algorithm
and their relative utilities. The fields it contains are: Variable, referring to the tunable
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parameter that should be changed; State, defining the direction of that change; and Utility,
holding the relative utility that will be summed to the total expected utility of the target
utility variable if the change is applied. Once the search has started, this table is filled
progressively as each iteration produces one best tuning. The total utility is also specified
just below this table.

Next tuning

When running the algorithm in a step-by-step fashion, all the candidate tunings of the current
iteration are shown in this table ordered by descending relative expected utility. While the
algorithm adds the tuning with the highest relative utility to the list of the ”Tuning sequence”,
the user can choose among these candidates by double-clicking on the corresponding row. This
way the user not only has the chance to monitor the behavior of the algorithm but it can also
change it. Once the user has chosen a tuning, it appears in the ”Tuning Sequence” table and
the next iteration is executed, providing the ”Next Tuning” table with a new set of candidate
tunings.

Run

This button launches the execution of the algorithm, be it on a step-by-step fashion or oth-
erwise.

Apply Tuning Sequence

This button applies to the current network the Tuning Sequence that appears in the so called
table. It is particularly useful when the list of recommended tunings is long.

Save Report

This button gives the user the option to store the results of the Utility Calculator into an
excel file.

4.6 Discussion

The tuning model arose from a need encountered when building a Bayesian network for real-
world problem: the programming of cochlear implants. In this domain of application, it soon
became clear that the diagnostic approach was inappropriate, hence we decided to use the
predictive approach positive results.

The fact that the tuning model arose from a real-problem is a difference with some of the
canonical problems proposed in the literature, which came out from mathematical speculation
and have never been implemented on a software tool nor used in practice.
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Figure 4.4: A capture of a net modelling an air conditioning and heater system and the Utility
Calculator’s output. In this case, the Heater is switched on at half power,the Air conditioning
is switched off and the Temperature is ”high”. The Utility Calculator recommends to switch
off the Heater but does not recommend switching the Air conditioning on as this would have
a cost that is bigger than the benefit expected from doing so.
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Chapter 5

Application: Fitting of Cochlear
Implants

Important notice: for the sake of confidentiality, this section has been severely simplified.

5.1 Introduction

5.1.1 Cochlear Implants

Hearing is a complex function that converts sound (mechanical waves) into electrical patterns
in the auditory nerve. The sound receptor is the inner ear, also known as the cochlea. Severe
and profound hearing losses can be treated with cochlear implants (CI). A Cochlear Implant
consists of a ”speech processor” that analyzes the sound and an array of implanted electrodes
that are stimulated to generate an electrical field that passes the information directly to the
auditory nerve.

Figure 5.1: Cochlear Implant

A Cochlear Implant is controlled by about 200 tunable parameters that determine its be-
havior: sensitivity levels at different frequencies, electrical dynamic ranges for each electrode,
characteristics of amplifiers and strategies of stimulating electrodes.

5.1.2 The difficulty of programming CIs

After implantation, CIs need to be programmed or ”fitted” to optimize the hearing capabilities
of each patient. This is usually a challenging and time-consuming task that is typically
performed by highly trained audiologists or medical doctors. Recipients using inappropriate
Cochlear Implant programming experience poor performance and outcomes.
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Chapter 6

Conclusions

6.1 Main Contributions

6.1.1 Interactive Learning

We have designed and implemented an interactive learning approach for learning Bayesian
networks from databases, which may be very useful for the experts in different application
domains, as well as for researchers and students in the field of PGMs.

We have presented a case study based on a well-known model, the ALARM network
[5], frquently used in the literature on learning BNs. This study has shown that even very
rudimentary causal knowledge about the domain may lead to a significant improvement of
the network built interactively with the facilities we have developed.

Its main shortcoming is that the computation cost grows exponentially with the number
of variables, which makes the learning of big networks unfeasible or a nuisance at best.

The Interactive Learning module is described on the paper ”Interactive learning of
Bayesian Networks with OpenMarkov” that will be presented in the upcoming Sixth Eu-
ropean Workshop on Probabilistic Graphical Models.

6.1.2 Object Oriented Networks

We have studied the existing literature on Object Oriented Bayesian Networks as well as
other frameworks that combine probabilistic models with relational models or even first order
logic. Based on this study of the state of the art, we have come up with our own framework
picking what we believe is the best of each of the studied proposals.

We have also designed an implemented in OpenMarkov the necessary functionality to
build and edit Object Oriented Networks on a user-friendly way, making it one of the few
tools available that support it.

6.1.3 Tuning Networks

We have presented a new type of probabilistic network focused on solving the problem of
tuning systems with tunable parameters for their optimal performance. The main feature
of this type of network is the use of a new canonical model that we call the tuning model.
We have defined mathematically this model, analyzed its properties and developed efficient
methods to integrate this model into standard inference algorithms, both exact and stochastic.
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We have developed an algorithm for finding near-optimal interventions using tuning networks.
We have implemented in OpenMarkov the tuning model and the algorithms for doing inference
on tuning networks .

6.1.4 Application to Cochlear Implant programming

In the context of the European project Opti-FOX, we have built a tuning network for the
programming of Cochlear Implant devices in collaboration with experts of Belgium and the
Netherlands. In fact, the development of tuning networks and our framework for OONs has
been motivated by the needs encountered in this project.

This model has been tested on a set of cases taken from a database of real CI users. The
recommendations of our prototype have not been applied to these patients but the expert
leading this project has valued them very positively. In most cases he agreed with these
recommendations while in the rest he has considered the recommendations as different from
what he would apply but nonetheless “intelligent”, “smart” and “worth trying”. In fact,
the only CI user that has been programmed following our model’s recommendations, which
differed from audiologists’ previous interventions, has experienced a noticeable increase in her
speech understanding capability.

The advantages of our model with respect to the FOX rule based system are that our
model is capable of complex reasoning whereas FOX only concatenates rules, that FOX is
deterministic while our model handles uncertainty and our model will be fine-tuned by learning
from data. Anyway, FOX is still a more mature project and includes features that our model
still does not, such as the ability to specify the quantity by which the value of a parameter
should be changed.

6.2 Future Work

6.2.1 Interactive Learning

The main lines for future development would be to borrow some ideas from the work of [29]
and [8], such as representing graphically the strength of the correlation between variables and
having richer types of constraints. It would be also useful to show an absolute quality measure
of the net rather than the incremental one we currently have, given by the complexity of the
network and the distance between the probability distribution of the network and that of the
data. This quality measure could be used to compare the resulting nets of the interactive and
non-interactive learning processes.

Another research line would be to adapt our approach to learning Bayesian classifiers, a
somewhat different problem, as the objective is not to build the network that better represents
the probability distribution of the data, but the network that better classifies new cases.

6.2.2 Object Oriented Networks

Object Oriented Networks still have a long way to go. Currently they have improved the
way of building large PGMs, based on the reuse of building blocks that represent objects
but the Object Oriented Programming paradigm is much more than that. Inheritance is
defined in Bangsø and Wuillemin ([4]), just as a mechanism where ”the subtype adds things
to the type”. Other Object Oriented mechanisms such as polimorphism could be defined for
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Object Oriented Networks. Besides, inference can be optimized in the same way learning is
optimized, taking advantage of the object oriented aspect of these models, reusing partial
results across all instances of the same class.

6.2.3 Tuning Networks

A possible line for future research is to explore the behavior of the tuning model when using
different combination functions; thus, instead of the “democratic” function ftuning, defined
in Equation 4.1, which assigns the same weight to each parent, we might have a function in
which each parent “votes” with a different weight. However, such a function would require
more parameters, and the increase in the complexity of the model, instead of improving its
accuracy, might be counterproductive.

Another line of research is to improve the integration of the tuning model with exact
and/or stochastic algorithms, in order to improve their efficiency.

6.2.4 Application to CI fitting
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