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Abstract—This paper presents decision analysis
networks (DANs) as a new type of probabilistic
graphical model. Like influence diagrams (IDs),
DANs are much more compact and easier to build
than decision trees, and are able to represent con-
ditional independencies. Both IDs and DANs can
represent symmetric problems, but DANs can also
represent problems involving restrictions between
the values of the variables (structural asymme-
try) and partial orderings of the decisions (order
asymmetry). Therefore, DANs can easily model
and solve many real-world problems that IDs can-
not. We argue that DANs compare favorably with
other formalisms proposed for modeling asymmet-
ric decision problems. Additionally, we offer Open-
Markov as an open source software tool for editing
and evaluating DANs.

I. Introduction

THE two formalisms most widely used for the
representation and analysis of decision prob-

lems are decision trees (DTs) [1] and influence dia-
grams (IDs) [2]. DTs have the advantage of almost
absolute flexibility, but also have three drawbacks:
their size grows exponentially with the number of vari-
ables, they cannot represent conditional independen-
cies, and they require in general a preprocessing of the
probabilities [2], [3]; for example, medical diagnosis
problems are usually stated in terms of direct proba-
bilities, namely the prevalence of the diseases and the
sensitivity and specificity of the tests, while DTs are
built with inverse probabilities, i.e., the positive and
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negative predictive values of the tests. Even in cases
with only a few chance variables, this preprocessing of
probabilities is a difficult task. Moreover, IDs have the
advantages of being very compact, easily representing
conditional independence, and using direct probabili-
ties, but they can only represent symmetric decision
problems. We say that there is structural asymmetry
when the value taken on by a variable restricts the
domain of other variables. There is order asymmetry
when several orderings of the decisions are possible
[3], [4].

In practice, virtually all real-world problems are
asymmetric, in particular all those that involve the
possibility of getting additional information at a cost;
for example, the variable that represents the result of
a test can take some values only when the decision is
to do the test. Several formalisms have been proposed
for representing and solving asymmetric decision prob-
lems, but all of them have drawbacks, as we discuss
in Section V; in fact, none of them has been used
to build any real-world application. For this reason,
we present a new formalism, called decision analysis
networks (DANs), which can represent all symmetric
problems and, in our opinion, can also represent real-
world asymmetric decision problems more naturally
than any other formalism. We developed it when
trying to solve a complex medical decision problem:
the mediastinal staging of non-small cell lung cancer.

The DAN for that medical problem, together with
other DANs for the most famous asymmetric decision
problems proposed in the literature, can be found in
www.ProbModelXML.org/networks; they are encoded
in ProbModelXML, a format for probabilistic graphi-
cal models [5]. OpenMarkov,1 an open-source tool for
probabilistic graphical models, can be used to view,

1See www.openmarkov.org.
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edit, and evaluate DANs.
The rest of the paper is structured as follows: first,

we introduce the n-test problem, which will serve us
to illustrate the properties of DANs and to compare
different formalisms. Then Section II presents the
definition of DANs, Section III explains how to convert
any DAN into a DT, Section IV shows that symmetric
DANs are equivalent to IDs, Section V compares
DANs with other formalisms, and Section VI contains
the conclusions and some proposals for future work.

Example 1. The n-test problem consists in decid-
ing how to treat a patient that may suffer from a
certain disease. After an initial examination of the
symptoms, the doctor may order one or several of n
available tests, each one having a cost. Each test can
be performed once at most and its result will be known
immediately. The doctor has to decide which tests to
perform and in which order.

In the simplest version of the problem, we assume
that there is only one symptom, and all the variables
are dichotomous, i.e., that the disease and the symp-
tom are either present or absent, and the result of
each test is either positive or negative. The diabetes
problem [6] is an instance of the two-test problem.

II. Definition of a DAN

In this section we define DANs by describing the
elements that compose them and the mechanisms
that indicate the availability of information. We also
discuss the meaning of the different types of links.

A. Graph and variables of a DAN
In this paper we represent variables with capital

letters (X) and their values with lower-case letters
(x). A bold upper-case letter (X) denotes a set of
variables and a bold lower-case letter (x) denotes a
configuration of them, i.e., the assignment of a value
to each variable in X. The set of variables of a DAN,
V, is partitioned into three disjoint subsets: chance
variables C, decisions D, utility variables U. Chance
variables represent real-world properties that are not
under the direct control of the decision maker, deci-
sions correspond to actions that are under the direct

control of the decision maker, and utilities represent
their preferences. A DAN also has an acyclic directed
graph such that each node represents a variable; hence
we will speak indifferently of nodes and variables.
When the graph has a link X → Y , we say that X is a
parent of Y and Y is a child of X. The set of parents of
a node X is denoted by Pa(X), and pa(X) represents
a configuration of them. When there is a directed path
from X to Y , we say that X is an ancestor of Y and Y
is a descendant of X. In this paper we will assume that
utility nodes do not have children.2 We also assume
that all the decisions and chance variables are discrete.

The DAN in Figure 1 contains 4 chance variables,
drawn as rounded rectangles, 3 decisions, drawn as
rectangles, and 3 utility nodes, drawn as hexagons.

B. Restrictions

A restriction associated to a link X → Y , such that
X and Y are chance or decision variables, is a pair
(x, y), where x is a value of X and y is a value of
Y . It means that variable Y cannot take the value
y when X takes the value x. In OpenMarkov the
restrictions between X and Y are represented by a
table with a column for each value of X and a row
for each value of Y ; when the values x and y are
compatible, i.e., when there is no restriction (x, y),
the corresponding cell contains a 1 and is colored
in green; otherwise it contains a 0 and is colored
in red—see Figure 2. When all the values of Y are
incompatible with a value x, as in this figure, we say
that there is a total restriction and denote it by (x, Y ).
It implies that in some scenarios the variable Y does
not exist; we will see it more clearly when expanding

2In standard IDs the parents of a utility node can only be
decisions and chance nodes. Tatman and Shachter [7] intro-
duced super-value nodes, i.e., utility nodes whose parents are all
utility nodes. This can be further generalized by allowing utility
nodes to have any combination of the three types of nodes as
their parents. Thus, if a utility node U1 has another utility node
U2 as a child, then U2 must be absorbed before applying the
inference algorithm described in this paper, as follows: if the
utility functions for these nodes are u1(x) and u2(u1, y), respec-
tively, U1 is removed, its parents become parents of U2, and the
new utility function for this node is u2(x, y) = u2(u1(x), y).
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Figure 1. A DAN for the diabetes problem. The decision about a test may depend on the presence of the symptom and on the
result of the other test. There is no constraint on the order of the tests.

the equivalent decision tree. In OpenMarkov, a link
having a total restriction, such as the link Dec: Blood
Test → Blood test result in Figure 1, is marked with
a short perpendicular double line.

Figure 2. Compatibility table for the link Dec: Blood test →
Blood test result in Figure 1. It contains two restrictions, (no,
positive) and (no, negative), which mean that when the test is
not performed, it gives neither a positive nor a negative result.

When there is a restriction (x, y) but every value
of X is compatible with at least one value of Y , we
say that there is a partial restriction, and in Open-
Markov the corresponding link is marked with a short
perpendicular line. Thus, the DAN for the reactor
problem [8], [9] (Fig. 3) has a partial restriction for the
link Result of test −→ Build decision, because a bad
test result prevents the construction of an advanced
reactor, as shown in Fig. 4, but every value of Result
of test is compatible with at least one value of Build
decision.

If Y is a chance variable, the restriction (x, y)—
associated to the link X → Y , which implies that

X ∈ Pa(Y )—means that P (y|pa(Y )) = 0 for all the
configurations of Pa(Y ) in which X = x; we will
explain this in further detail in the the next section.
Therefore, when Y is a chance variable, there is not
a significant difference between attaching a partial
restriction to a link and setting to 0 the corresponding
cells in the conditional probability table.3

In contrast, if D is a decision, the restriction (x, d)
means that when X = x the decision maker cannot
choose the option d—see again the example in Fig-
ure 4. Therefore, a partial restriction between X and
D, where D is a decision, means that when evaluating
the DAN, we have to choose among the allowed values
of Y the one that maximizes the expected utility. In
summary, a partial restriction associated to a link

3However, from the point of view of knowledge engineering,
it may be useful to declare a partial restriction when building
the graph of the network (qualitative information), instead
of just setting the probability to 0 in the corresponding cell
of the probability table (quantitative information), because
the more structural information we have about a model, the
easier it will be to maintain it, avoiding inconsistencies in its
numeric parameters. Additionally, restrictions can be useful
when expanding an equivalent DT (see below), when explaining
the reasoning, and when performing sensitivity analyses.
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Figure 3. A DAN for the reactor problem. The main decision is which type of reactor to build, if any.

Figure 4. Compatibility table for the link Result of test→ Build
decision in Figure 3. It means that s a bad result prevents the
construction of an advanced reactor.

X → Y affects the edition of the network if Y is a
chance variable and affects inference if Y is a decision.

C. Potentials

A potential ψ is a function that maps each con-
figuration x of a set of variables X onto R, i.e.,
ψ(x) is a real number. Each chance node Y has an
associated conditional probability potential, denoted
by ψ(y|pa(Y )). When there is a restriction (x, y) and
X = x in the configuration pa(Y ), then ψ(y|pa(Y )) =
0, because y is incompatible with x. If at least one
value of Y is compatible with all the values of its
parents in the configuration pa(Y ), then ψ(y|pa(Y ))
is a conditional probability distribution for Y given
that configuration, as shown in Figure 5.

Similarly, each utility node U has an associated
potential, u(pa(U)).

Figure 5. Probabilistic potential associated to the chance
node Blood test result. The first two columns are 0 due to
the restrictions shown in Figure 2. The third column defines
a conditional probability distribution for Blood test result (0.98
is the specificity of the test). The fourth column defines another
conditional probability distribution for the same variable (0.96
is the sensitivity of the test).

D. Representing the availability of information

In DANs there are two ways to indicate when a
variable becomes observed: always-observed variables
and revelation arcs. In both cases, we rely on the
no-forgetting hypothesis, which means that when the
value of a variable is known, then it is known for any
subsequent decision.
1) Always observed variables: A chance variable

declared as always observed means that its value is
known before making any decision. In Figure 1, the
node Symptom is marked with a red thick border to
indicate that it is always observed (see also Figure 6).
2) Revelation links: Given a link X → Y , such

that Y is a chance variable, we can declare that
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Figure 6. The chance variable Symptom is declared as always
observed because we know whether it is present or absent
without performing any test.

certain values of X reveal the value of Y ; we then
say that X → Y is a revelation link. In general, X is
a decision node, as in Figure 7, but it might also be
a chance node; in this case, it means that Y is known
only if a fortuitous event X occurs and the value
of X is observed. The revelation conditions are the
values of X that reveal Y . In OpenMarkov revelation
links are colored in red. Figure 7 shows the revelation
conditions for the link Dec: Blood test → Blood test
result for the DAN of the diabetes problem.

Figure 7. Revelation conditions for the link Dec: Blood test →
Blood test result. The value yes (i.e., the decision to test) reveals
the result of the test, but the value no (not to test) does not.

When Y is an always-observed node, it does not
make sense to declare a revelation condition for any
link X → Y . It is also contradictory to declare
x as a revelation condition for Y when there is a
total restriction (x, Y ). The current implementation
of DANs in OpenMarkov does not check for these
consistency properties, but in this paper we assume
that all DANs satisfy them.

E. Summary: The meaning of links

In DANs a link X → Y may have five meanings:
1) Causal influence: For example, the links Dia-

betes → Symptom and Diabetes → Blood test
result mean that the presence of the disease
affects the probability of having the symptom

and the outcomes of this test respect. Y must
be a chance node.

2) Functional dependence: For example, the four
links pointing at Cost of blood test, Cost of urine
test, and Quality of life denote which variables
affect directly the decision maker’s preferences.
Y must be a utility node.

3) Temporal order: For example, the link Dec:
Blood Test → Therapy indicates which decision
is made first. Y must be a decision.

4) Revelation: In general X is a decision, but it
may also be a chance node, as explained above;
Y must be a chance node.

5) Restriction: X must be a chance node or a deci-
sion, because utility nodes do not have children;
Y must be a decision or a chance node.

The first three meanings are the same as in IDs.
Revelation links in DANs replace information links in
IDs. Restrictions are a novelty of DANs with respect
to IDs.

III. Equivalent decision tree

In this section we explain how to convert a DAN
into a DT, with the main purpose of providing a
formal semantics for DANs. In the first phase the
algorithm builds the structure of the tree and in the
second it assigns the probability and utility values.
Then the DT can be evaluated with the standard roll-
back algorithm [10].

We denote each node in the tree by the variable
that it represents, for instance X, and each branch
departing from this node by its associated value, x. In
the first phase, the algorithm operates recursively on a
tree whose leaf node represents DANs or utility values.
The tree is initialized by placing the original DAN as
the only node in the tree. Each node representing a
DAN is expanded until all the leaves in the tree are
utility nodes (values).

When expanding a DAN, there are five possible
cases; if one holds, the next cases are ignored:

Case 1. The DAN has always-observed nodes:
Then, select one of these nodes, say X, that is not a
descendant of other always-observed nodes. Put this
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variable as a node in the tree, instead of the DAN.
For each value x, create a copy of the DAN and:

1) delete the node X from the new DAN;
2) if x reveals the value of other variables, mark

them as always observed in the new DAN;
3) if there is a total restriction (x, Y ), remove

Y and all the descendants of Y that are not
descendants of another decision;

4) if there is a restriction (x, y), remove y from the
domain of Y ; and

5) put the new DAN in a branch x outgoing from
node X.

Case 2. A decision D is an ancestor of all the
other decisions (i.e., D is the first decision to make):
Then, put D as a node in the tree, create a copy of
the DAN for each value d, and execute the same 5
steps as in the previous case, with one exception: in
step 2, if d reveals the variable Y that is a descendant
of other decisions {D′1, . . . D′n}, draw a link D′i → Y

for i ∈ {1, . . . , n} and declare that each value d′i of D′i
reveals Y .4

If d reveals a variable Y that is not a descendant of
any other decision, then declare Y as always observed,
as in case 1.

Case 3. There are n decisions {D1, . . . , Dn} such
that there is no directed path between any two of them
(i.e., any of them can be made first): Then, replace
the DAN with a meta-decision node indicating which
decision will be made first. Create n copies of the
DAN. In the i-th copy, draw n − 1 links Di → Dj

(j 6= i) to indicate that Di will be the first decision.
Put each new DAN in a branch outgoing from the
meta-decision node.

Case 4. The network has chance nodes (which are
not always-observed; otherwise we would be in case 1):
Then, select one of them, say X, and replace the DAN
with a node X in the tree. For each value x of X,
create a copy of the DAN, remove X, and put the

4The reason for this exception is that if Y is descendant of
D′i then this decision is a cause of Y and therefore Y cannot
be known before making D′i.

new DAN at a branch x.5

Case 5. Otherwise (i.e., the network only has
utility nodes): Then, replace the DAN with a utility
node whose value is the sum of the utility nodes
remaining in the DAN.

As an example, consider the conversion of the dia-
betes DAN into a DT. The tree is initialized by making
this network the root of the tree. In the first iteration,
we are in case 1: the DAN has one always-observed
node, Symptom; then this node replaces the original
DAN as the root of the tree (it is the S node in
Fig. 1); two branches are added, one for present (+s)
and one for absent (¬s). Each leaf is a DAN in which
the node Symptom has been removed, and has two
decisions, Dec: Blood Test and Dec: Urine Test, with
no directed path between them (case 3). Therefore
we put in the tree a meta-decision node OD (order
of the decisions) with two branches. The DAN at the
bt branch has a link Dec: Blood Test → Dec: Urine
Test, which indicates which is the first decision (case
2). This DAN is later replaced with a node BT (Dec:
Blood Test) having two branches: +bt (do test) and
¬bt (do not test). In the DAN at the ¬bt branch the
node Dec: Blood Test has been removed when putting
this variable in the tree; Blood test result has been
removed because of the constraint in Figure 2. In the
DAN at the +bt branch the node Dec: Blood Test
has been also removed, but the node Blood test result
remains; it is now marked as always observed because
of the revelation condition in Figure 7. This DAN gives
rise to the branches +b (positive test result) and ¬b
(negative) in Figure 8. Each of the three UT nodes in
this figure is the result of expanding a DAN in which
Dec: Urine Test was the first decision to make (case 2).
When the decision is +ut (do test), the variable U
is marked as always-observed and in the subsequent
expansion of the DAN it is put in the corresponding
branch of the tree. When the decision is ¬ut (do not
test), U is removed. The node Th (Therapy) is the
result of expanding a DAN in which this was the only

5In this case, the restrictions and revelation conditions are
ignored. In fact, if X can never be observed, then no link X →
Y should have total restrictions or revelation conditions.



7

decision (again case 3). The node D (Diabetes) results
from a DAN having one chance node and three utility
nodes (case 4). The expansion of the DAN that was
at this node, D, generates the two utility nodes shown
in this figure (case 5).

The algorithm always terminates: in cases 1, 2,
and 4 the expansion of a DAN with n nodes generates
a finite number of DANs with n− 1 nodes; in case 3,
the new DANs still have n nodes, but every one is
in case 2, which ensures the elimination of a decision
node when expanding each new DAN; therefore, case 3
can occur only a finite number of times.

We should also take into account that a decision
that can reveal a variable should be made earlier than
the decisions that cannot. The formal justification is
the same as in the case of unconstrained influence
diagrams [11]. For example, in Figure 1, the decision
Therapy does not reveal any variable. Therefore, even
if the links Dec: Blood Test→Therapy and Dec: Urine
Test→Therapy were not present in 1, the node OD in
Figure 1 should have only two outgoing branches, bt
and ut, because Therapy should always be made after
Dec: Blood Test and Dec: Urine Test. Therefore, the
above algorithm should be refined as follows: when we
are in case 3 and the variables revealed by Di are a
proper subset of those revealed by Dj , then remove
Di from the set of candidates to be the first decision.
If only one candidate remains, proceed as in case 2.

The second phase of the algorithm consists of as-
signing the numerical parameters of the DT. Each
path from the root node to a leaf node defines a
scenario, i.e., a configuration of the variables in that
path. The utility of a leaf is the sum of the utility
functions in that scenario; for example, the utility
for the upper utility node in Figure 8 is u1(+bt) +
u2(+ut) + u3(+tr,+d), where u1, u2, and u3 are the
utility functions for the nodes Cost of blood test,
Cost of urine test, and Cost of therapy, respectively.
The probability of a scenario is the product of the
conditional probabilities involved in it; for example,
the probability of the upper scenario is P (+s|+d) ·
P (+b|+d,+bt) · P (+u|+d,+ut) · P (+d). Initially we

compute the probability of each branch as the sum of
the probabilities of the scenarios containing it; then,
we normalize the probabilities of the branches going
out from each chance node. This way we obtain an
equivalent DT for the DAN.

This tree can be evaluated with the standard roll-
back algorithm, which proceeds from the leaves to the
root: the utility of a decision node is the maximum
of the utilities of the nodes at its branches, and
the utility of a chance node is the average of the
utilities of the nodes at its branches, weighted by their
probabilities.

The above algorithm may generate different DTs for
one DAN because in cases 1 and 4 there may be several
nodes to select. However, these trees only differ in the
order of the set of chance variables placed between
two consecutive decisions. These DTs are equivalent
in the sense that there is a one-to-one correspondence
between the decision nodes of each pair of trees,
and the optimal policies and the maximum expected
utility are the same for all the trees.

IV. Symmetric DANs

In this section we analyze the relation between
symmetric DTs, IDs, and symmetric DANs.

Definition 2. A DT is symmetric if
1) every path from the root to a leaf has the same

variables and in the same order, and
2) every node representing the variable X has an

outgoing branch for each value x.

Definition 3. A DAN is symmetric if
1) it has no restrictions,
2) if a value of a variable X reveals Y , then all the

other values of X reveal Y , and
3) a directed path connects all the decisions.

Proposition 4. The algorithm in Section III applied
to a symmetric DAN generates a symmetric DT (pro-
vided that when it has several chance nodes to select—
in cases 1 and 4—it always selects the same node).

Proof: The third condition in Definition 3 in-
duces a total ordering of the decisions in the DAN:
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+bt
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Figure 8. A decision tree for the diabetes DAN (Fig. 1).

D1 < . . . < Dn. The first and second conditions imply
that when expanding the DT, the set of candidate
chance nodes is the same for every branch of the tree.
Therefore the first condition for a symmetric DT is
always met. The second is guaranteed by the first
condition in the definition of a symmetric DAN.

A symmetric DAN6 having n decisions
{D1, . . . , Dn} induces a partition of C, the set
of chance variables, into n + 1 disjoint subsets,
{C0, . . . ,Cn}, such that C0 is the subset of always-
observed variables; a chance variable X belongs to
Ci, with 1 ≤ i < n, if and only if the decision Di

reveals X and no other decision Dj with j < i reveals
it; Cn is the set of the variables that are not revealed
by any decision.

Theorem 5. The maximum expected utility for a
symmetric DAN is

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn

∑
cn∏

X∈C
P (x|pa(X))

∑
Ui∈U

ui(pa(Ui)) , (1)

6If an always-observed variable X reveals Y in a symmetric
DAN, we can declare Y as always-observed and remove the
revelation conditions from X to Y . Similarly, if a decision D

reveals X, and X reveals Y , we may declare that D reveals Y

and remove the revelation conditions from X to Y . Addition-
ally, it is irrelevant whether the last decision, Dn, reveals any
variable or not, because this information has no effect on any
decision. Therefore, in order to simplify the exposition in this
section, we assume that in symmetric DANs only the decisions
{D1, . . . , Dn−1} can reveal any variables.

and the optimal policy for decision Di is

d
opt
i (c0, d1, . . . , ci−1) =

arg max
∑
ci

max
di+1

. . .
∑
cn−1

max
dn

∑
cn∏

X∈C
P (x|pa(X))

∑
Ui∈U

ui(pa(Ui)) . (2)

Proof: These equations are a consequence of the
algorithm in Section III, which builds the DT, and the
roll-back algorithm, which evaluates it.

The properties of symmetric DANs are very sim-
ilar to those of IDs. Namely, an ID with n deci-
sions {D1, . . . , Dn} induces a partition of C, the
set of chance variables, into n + 1 disjoint subsets,
{C0, . . . ,Cn} such that a chance variable X belongs
to Ci, with 0 ≤ i < n, if and only if there is an
information link C → Di+1 and there is no link
X → Dj for a previous decision Dj (j ≤ i). Both in a
DAN and in an ID, C0 is the set of variables observed
before making the first decision, Ci is the set of
variables observed after decision Di and before Di+1,
and Cn is the set of unobservable variables. Therefore
the transformation of a symmetric DAN into an ID is
straightforward: for every chance variable X, if X is
always-observed, i.e., if X ∈ C0, draw a link X → D1;
if X is revealed by decision Di (and not revealed by
any previous decision), i.e., if X ∈ Ci, draw a link
X → Di+1. The conversion of an ID into a symmetric
DAN is analogous. Additionally, Equations 1 and 2
are valid both for IDs and symmetric DANs.
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As a consequence of this close relation between the
two types of networks, any algorithm for IDs can be
used to evaluate symmetric DANs. In general, it is not
even necessary to convert the DAN into an ID; it is
enough to infer the partition {C0, . . . ,Cn} from the
graph of the DAN. For example, the variable elimi-
nation algorithm [12], [13], which consists essentially
of applying Equations 1 and 2, is identical in both
cases. The arc reversal algorithm [14], [15] can also be
applied to DANs: the only difference is that in an ID
the first nodes to be removed (i.e., Cn) are those that
have no outgoing information links, while in a DAN
they are those that have no incoming revelation links.

V. Comparison of different formalisms

In this section we examine seven formalisms for
decision analysis. First we compare DANs with IDs,
which are the standard framework for decision analy-
sis, and then (in Sec. V-B) we analyze six formalisms
for asymmetric decision problems.

A. DANs vs. IDs

We have shown that symmetric DANs are equiv-
alent to IDs. Therefore, they are equally suited for
representing symmetric problems.

Problems having only structural asymmetry can
be symmetrized by using two modeling tricks [16].
First, a total restriction on a chance variable X can
be modeled by adding a dummy state. For example,
the one-test problem can be represented with an ID
having three values for the result of the test: positive,
negative, and (the dummy state) not-performed. The
drawback of this trick is that it complicates the
edition of the probability tables of the variables that
have dummy states. It also makes the evaluation less
efficient, due to the enlarged probability and utility ta-
bles, and complicates the interpretation of the results,
because some policies contain configurations that can
never occur, such as (do not test, positive), (do not
test, negative), and (do test, not-performed). Even for
this small problem it is advantageous to use a DAN,
which does not need dummy states. Another modeling
trick can be used in an ID to model a restriction (x, d),

where D is a decision: to add a dummy utility node U
such that u(x, d) = −∞ and u(x′, d′) = 0 for the other
configurations of X and D. This trick complicates the
graph of the ID and makes inference less efficient than
when using a DAN.

Order asymmetry poses a much more serious diffi-
culty to IDs. For example, if we try to model the n-test
problem with an ID, we need a n decision nodes for
the tests, {T1, . . . Tn}, each having n+ 1 options; the
extra option “do no test”. We then need n(n − 1)/2
dummy utility nodes to represent the restrictions that
tests cannot be repeated, and that if the i−th decision
is not to test, then all subsequent test decisions are not
to test. We also need n chance variables, {R1, . . . Rn},
for the results of the tests. The meaning of Ri depends
which test has been done in the i-th place. Each Ri has
m+1 possible states, where m is the maximum of the
number of outcomes of the tests; the extra state is “not
performed”. If a test has fewer than m outcomes, some
of the states of the R’s are meaningless. Combining
continuous and discrete tests in the same model is
impossible. Specifying the conditional probabilty ta-
bles for the R’s is cumbersome; in fact, it is the same
table for every Ri, which complicates the maintenance
of the model and makes sensitivity analysis virtually
impossible. If a new test is added to the model, the
domains of the all the T ’s and the R’s must be revised,
as well as the conditional probability tables of the R’s
and the tables of dummy utility nodes; the effort is
comparable to building the new model from scratch.

In contrast, the DAN for the n-test problem does
not need dummy states, nor dummy utility nodes,
nor links between the T ’s; each Ti is dichotomic and
represents the decision about a single test, the states
of Ri correspond to the outcomes of the i-th test,
thus allowing to combine continuous and discrete tests
in the same model (see below); each parameter is
encoded only once, the size of the model is propor-
tional to n, and adding a new test to the model is
straightforward.
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B. DANs vs. other formalisms for asymmetric deci-
sion problems

Because of the difficulty of representing asymmetric
problems with IDs, several alternative formalisms have
been proposed. In this section we briefly compare six
of them: influence diagrams with constraints (IDCs)
[16], asymmetric influence diagrams (AIDs) [17], se-
quential valuation networks (SVNs) [6], [18], uncon-
strained influence diagrams (UIDs) [11], sequential
influence diagrams (SIDs) [4], and decision analysis
networks (DANs)—see also the comparisons in [3], [9].
Table I summarizes the main features of each method.

The first column indicates whether a formalism
needs dummy states to “symmetrize” the problems
containing structural asymmetries, as explained in
the previous section. IDs and UIDs suffer from this
drawback.

The second column tells us which models require
a total ordering of the decisions. Obviously, these
formalisms are inadequate for problems having order
asymmetry.

Finally, the third column shows which methods
need information links. These links, which indicate
whether a variable is known for a decision, complicate
the graph when there are many sequences of decisions
that can reveal a variable. In the n-test problem, it
leads to a link from each result-of-test variable to
each test decision. König [19], who has built IDCs,
AIDs, SVNs, UIDs, SIDs, and DANs for three of
the asymmetric problems proposed in the literature,
explains why the formalisms that use information links
result in cumbersome diagrams even for the diabetes
problem, let alone for the n-test problem.

UIDs and DANs share the advantage of not needing
such links, but differ from each other in two important
aspects. First, UIDs cannot represent restrictions and
are therefore inappropriate for problems having struc-
tural asymmetries—see the first column. Second, in a
UID an observable variable becomes observed when all
its ancestral decisions have been made, independently
of the option chosen for each decision; in a DAN
a revelation link X → Y indicates which values of

X reveal Y . For example, the decision to do a test
reveals its result, while the decision not to do it
does not reveal anything. This property cannot be
modeled directly with a UID: it would be necessary
to add a dummy state to the result-of-test variable,
as explained in Section V-A.

In summary, IDCs, AIDs, and SVNs were designed
to represent structural asymmetries, while UIDs were
designed only for order asymmetry. SIDs were de-
signed for both; apparently this was a significant
improvement, but the use of information links in
SIDs makes this formalism unsuitable for representing
order asymmetry. Moreover, a SID consists of two
overlapping graphs, one for the probability and utility
relations, and the other for modeling the sequence of
decisions and observations, which makes the model
difficult to build, to communicate to experts, and to
maintain.

Furthermore, the five frameworks proposed previ-
ously for asymmetric problems have been illustrated
only with toy problems, which in many cases were
designed just to illustrate the strengths of the new
formalism. None of these formalisms has tried to solve
all the asymmetric problems proposed previously in
the literature. Additionally, no software tool, either
commercial or open-source, has implemented them
any of these formalisms.7 These limitations may ex-
plain why none of these frameworks, proposed as an
alternative to IDs, has been used to build any real-
world application.

In contrast, DANs were developed for a complex
medical problem: the mediastinal staging of non-small
cell lung cancer based on several tests: CT-scan, PET,
TBNA, EBUS, EUS, and mediastinoscopy; this is
very similar to the n-test problem. Later another
DAN was built for deciding when to implant a knee
prosthesis [23]. These medical networks are available
at www.ProbModelXML.org/networks, together with
other DANs for the problems proposed previously in

7UIDs are a partial exception to this assertion: they were
implemented in Elvira [11], [20], [21], [22] with the goal of mea-
suring the efficiency of some inference algorithms, but Elvira’s
graphical user interface for building UIDs is not mature, and
no document explains how to build UIDs in Elvira.
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Table I
Main features of several methods for representing decision problems.

dummy states total order inform. links
IDs [2] yes yes yes
IDCs [16] no yes yes
AIDs [17] no yes yes
SVNs [18] no yes yes
UIDs [11] yes no no
SIDs [4] no no yes
DANs no no no

the literature on asymmetric decision formalisms: the
used car buyer problem [24], the reactor problem [8],
the diabetes problem [6] (which is another instance of
the n-test problem), the dating problem [17], and the
king’s problem [11]; all these networks were built using
OpenMarkov, an open source software tool for editing
and evaluating DANs. Finally, DANs can also solve
other real-world problems, such as troubleshooting
different types of devices, which is very similar to the
n-test problem.

VI. Conclusion

In this paper, we have proposed a new type of
probabilistic graphical model, called decision analysis
networks (DANs), and explained how to convert each
DAN into a DT. The main purpose of this conversion
is to give a formal semantics for our representation
language—in other formalisms proposed in the litera-
ture, the semantics is described only by means of an
example. Any other algorithm for DANs should prove
that it returns the same expected utility and optimal
strategy as the expansion and evaluation of a DT.

A second reason for this conversion is that many
decision analysts will understand DANs much better
if they can examine the equivalent DT. In fact, the
conversion of IDs into DTs was one of the explanation
facilities proposed in [25]. In some fields, such as
medicine, DTs are the standard analysis tool, while
IDs are almost unknown and rarely used [26], let alone
the frameworks for asymmetric decision problems.

In principle, DTs are more flexible than DANs.
However, after reviewing 23 books that describe DTs,
most of them about medical decision making, we have

found no example that cannot be modeled with a
DAN. On the contrary, we have mentioned in this pa-
per several DANs whose size prevents the construction
of a DT.

On the other hand, for every ID there is an equiva-
lent symmetric DAN (cf. Sec. V-A). Problems having
only structural asymmetry can be modeled with IDs
by adding dummy states and/or dummy utility nodes,
but these modeling tricks complicate the network and
make inference less efficient than when using DANs.
Problems having order asymmetry are very difficult to
model with IDs—in fact it is unfeasible in practice—
while it is straightforward with DANs.

We have also argued (in Sec. V-B) that DANs
compare favorably with other probabilistic graphical
models for asymmetric decision problems. All the
formalisms, except UIDs, use information links, which
makes them unsuitable for representing order asym-
metry. But UIDs were designed only for order asym-
metry. Therefore none of these formalisms is suitable
for problems, such as the n-test problem, having both
types of asymmetry. This might explain why none
of them has been implemented in the graphical user
interface of any software tool nor used to build any
real-world application. In contrast, there is at least
one software package, OpenMarkov, for editing and
evaluating DANs, and we expect that in the future
other tools, both open-source and commercial, will
implement them as well.

In this paper the only method proposed for evaluat-
ing an asymmetric DAN is to convert it into an equiv-
alent DT, but the space complexity of this method
makes it impractical for large problems. For this



12

reason, we have developed more efficient evaluation
algorithms . One of them consists of building a tree of
symmetric DANs; these DANs can be evaluated with
any algorithm for IDs, such as variable elimination or
arc reversal, as explained in Section IV. The other
method consists of building an S-DAG, as in [11].
These algorithms have allowed us to evaluate the two
medical DANs mentioned in Section V-B and the n-
test problem for up to 12 tests.8 A line for future
research is the evaluation of DANs by converting
them into decision circuits [27], [28]. It would also be
interesting to develop algorithms for DANs containing
continuous variables; a point of departure might be to
adapt some of the algorithms for IDs [3], [29].

Another line for future research is to develop al-
gorithms for the explanation of reasoning, similar to
those available for Bayesian networks and IDs [25],
[30], which have been very useful for debugging prob-
abilistic models [31].

In summary, given the advantages of DANs over
DTs and IDs and the fact that we have so far found
no problem based on the non-forgetting assumption—
also implicit in DTs—that cannot be easily repre-
sented with DANs, we conjecture that this formalism
will play a significant role in the field of decision
analysis.
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