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Abstract

In this paper we present a new method for performing cost-effectiveness analyses
of problems that involve multiple decisions and probabilistic outcomes. This issue
has been ignored by most of the literature on medical decision making, and the few
proposed solutions are either wrong or unfeasible, except for very small problems.
The method proposed in this paper consists of building a decision tree with several
decision nodes and evaluating the tree with a modified roll back algorithm that
operates with partitions of intervals.

1 Introduction

In medicine, it is often necessary to determine whether the benefit of an intervention
outweighs its cost. By “intervention” we mean either a single action, such as applying a
therapy, or a whole strategy, such as “Do the test T ; if it is positive, apply therapy drug
D every 8 hours; if it is negative, repeat the test after 24 hours and then...”.

Cost-effectiveness analysis (CEA) is one method of assessing whether the health benefits
of an intervention outweigh the economic cost [3, 6]. Cost-utility analysis is a particular
form of CEA in which the effectiveness is measured in quality-adjusted life years (QALYs)
[21, 22]. In this context, the net monetary benefit [?] of an intervention Ii is

NMBIi(λ) = λ · ei − ci , (1)

where ei is the cost and ci is the effectiveness. The parameter λ is used to convert the
effectiveness into a monetary scale. It takes values on the set of positive real numbers,
i.e., on the interval (0,∞). This parameter is measured in effectiveness units divided by



cost units, e.g., in dollars per death avoided or euros per QALY. It is sometimes called
willingness to pay, cost-effectiveness threshold or ceiling ratio, because it indicates how
much money a decision maker is willing to pay to obtain a certain “amount” of health
benefit.

CEA assumes that the cost and effectiveness of each intervention, which are objective
magnitudes, are known. Therefore, if we know the value of λ, then we are able to compute
the NMB of each intervention, a unicriterion decision problem results, and we can choose
the set of interventions that maximize the NMB. The problem is that λ depends on each
decision maker; therefore the selection of interventions must be expressed as a function of
λ.

When the consequences of an intervention are not deterministic, it is necessary to apply
a model that considers the probability of each outcome. The most usual tool for modeling
decision problems with uncertainty is a decision tree.

The standard way of evaluating a unicriterion decision tree is the roll back algorithm,
which evaluates the tree from its leaves to the root node. The utility associated to a
chance node is the average of the utilities of its branches, and the utility of a decision node
is the maximum of their utilities. This roll-back algorithm can be adapted to perform
CEA on a decision tree: each leaf node represents two separate utilities, the cost and
the effectiveness; at each chance, the cost and effectiveness are computed separately by
averaging the values of its branches, and the propagation continues backwards until we
reach a decision node, in which a standard CEA is performed. However, the result of this
analysis cannot be propagated backwards as a pair of numbers, because in general the cost
and the effectiveness depend on the value of λ, which is assumed to be unknown. Given
that the modified roll-back algorithm stops at a decision node, the tree can contain only
one decision node, and that must be its root. This is a strong limitation, because many
realistic situations involve more than one decisions, as we can see in the following problem,
which we will use as a running example throughout the entiere paper.

Example 1 For a disease whose prevalence is 0.14, there are two possible therapies. The
effectiveness of each therapy depends on whether the disease is present, as shown in Table 1.

There is a test with a sensitivity of 90% and a specificity of 93%, and a cost of 150 e.
Is the test cost-effective?

In this hypothetical example, the second therapy is more effective for those who suffer
from the disease (effectiveness = 6.5 vs. 4.0 for the first therapy). Therefore, when we
are sure that a patient is suffering from that disease, we should apply the second therapy,
but only if we can afford the extra cost, 50,000 e. On the contrary, if the patient is not
suffering from the disease, we should not apply any therapy, not only because they have a
cost, but also because both have secondary effects, especially the second one, which leads
to an effectiveness of 9.3, while the effectiveness of the first one is 9.9.

Therefore, it may be desirable to know with certainty whether the disease is present
or not. The test may offer useful information, but it has a cost and the value of the
information it provides is limited. First, because the test is not completely reliable, and
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Therapy Cost Effectiveness Effectiveness
+disease ¬disease

No therapy 0C 1.2 10,0
Therapy 1 20,000C 4.0 9.9
Therapy 2 70,000C 6.5 9.3

Table 1: Cost and effectiveness of each intervention.

therefore there are still some uncertainty even after applying it. And second, because if λ
is very small, we can not afford to apply any therapy, not even the first one, let alone the
second one. In this case, the test would be useless, even if it were very cheap. Therefore,
the net benefit of the test depends on what therapy will be applied later, which in turn
depends on λ.

As mentioned above, if we knew the value of λ, we mihgt transform the above example
into a unicriterion problem and solve it using standard techniques. For example, the
decision tree in Figure 1 shows that the test is cost-effective when λ = 30,000 e/QALY.
A similar analysis would arrive at the opposite result for λ = 10,000 e/QALY.

If we wish to find the intervals in which the test is cost-effective and those for which
it is not, we should repeat this analysis for each single value of λ, however this is clearly
unfeasible, because λ can assume infinite values. We might also try to apply standard
CEA techniques, but the problem is they can only be applied to decision trees having only
one decision node, that must be its root. Another method is to build a decision tree such
that each branch of the root node represents an entiere strategy, i.e., an intervention that
includes both decisions. This method is suitable for solving the above example, but is
not appropiate for larger problems, as we will show in Section 5. We will also show that
the most commonly used commercial program for decision trees often provides a wrong
result for cost-effectiveness decision trees with several decisions. For this reason, the main
purpose of the current paper is to propose a scalable CEA method for problems that involve
several decisions and probabilistic outcomes, that gives the right answer in all cases but,
at the same time, scales up reasonably well. The basic idea of our algorithm is to group
the λ’s into intervals having the same cost and effectiveness.

The rest of this paper is structured as follows: in Section 2 we review the standard
methods for unicriterion decision analysis and for CEA. In Section 3 we present our method
for CEA with multiple decisions; Section 4 explains in detail how to solve the problem
stated in the Example 1. In Section 5 we compare our method with those proposed
previously and we conclude in Section 6.
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2 Overview of standard methods

In this section we review the standard techniques for decision analysis. First, we present
unicriterion decision trees, which can be used to find the most cost-effective interventions
when λ is known. Second, we review the fundamentals of CEA for the case in which the
cost and effectiveness of each intervention are known explicitly. Then, we combine both
methods to show how to perform CEA in decision trees without embedded decision nodes,
i.e., trees whose only decision node is at the root.

2.1 Unicriterion decision trees

A decision tree is a model for decision analysis of problems involving probabilistic outcomes.
It has three types of nodes: chance, decision, and utility. Utility nodes represent the
decision maker’s preferences. All the leaves must be utility nodes and, conversely, all
utility nodes must be leaves. A path from the root to a utility node is called a scenario;
the utility node represents the reward obtained by the decision maker in that scenario. A
decision node represents a choice that the decisor can choose; each branch of a decision
variable represents one of the values that the variables can assume and has an associated
probability. Chance nodes represent events that are not under the direct control of the
decision maker; each branch of a chance variable represents one of the values that the
variable can take on, and has an associated probability. For each chance node, the sum of
the probabilities of its branches must be one.

Decision trees can be evaluated by applying Algorithm 1, which operates recursively
from the leaves to the root.

Algorithm 1: Roll-back algorithm for unicriterion decision trees

Input: A decision tree
Result: The expected utility and

a policy for each decision node

1 foreach node n do
2 if n is a chance node then
3 un =

∑
i pi · ui, where pi is the probability of the i-th branch

and ui is its utility

4 if n is a decision node then
5 un = max ui

2.2 Fundamentals of CEA

Cost-effectiveness analysis (CEA) consists of finding an intervention that maximizes the
net benefit for each value of λ; in practice, it consists in finding the intervals for which an
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Figure 1: Unicriterion decision tree for the Example 1. We have chosen λ=30,000e /QALY
to turn it into a unicriterion problem.
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intervention is more beneficial than the others. We formalize this idea by introducing tgIhe
concept of cost-effectiveness partition, CEP. Then we present two algorithms for finding a
CEP when the cost and effectiveness of each intervention are known explicitly. The key
idea of those algorithms is to eliminate the interventions dominated by others, i.e., the
interventions such that, for every value of λ, there is a more beneficial alternative.

2.2.1 Net benefit, dominance, and ICERs

Each intervention Ii has a cost, ci, and an effectiveness, ei. We assume that there are not
two interventions having the same cost and the same effectiveness. If that unlikely case
occurred, then both interventions would be indistinguishable from the point of view of
cost-effectiveness, and it would be indifferent to choose any of them.

Definition 2 (Simple dominance) An intervention Ii dominates another intervention
Ij if ci ≤ cj and ei ≥ ej.

1

Proposition 3 If Ii dominates Ij, then NMBIi(λ) > NMBIj(λ) for all λ.

The proof of all the propositions are in the appendix.
This proposition implies that when Ii dominates Ij then Ij is never the optimal inter-

vention, whatever the value of λ. This proposition implies that Ik is never the optimal
intervention: depending on the value of λ, either Ii or Ij is more beneficial than Ik, or
both. This is the reason for discarding some interventions in Algorithm 2, line 1.

Definition 4 (ICER) Given two interventions such that ei < ej and ci ≤ cj, the incre-
mental cost-effectiveness ratio is

ICER(Ii, Ij) =
cj − ci
ej − ei

. (2)

Proposition 5 Given two interventions Ii and Ij,

λ < ICER(Ii, Ij) =⇒ NMBIi(λ) > NMBIj(λ) (3)

λ = ICER(Ii, Ij) =⇒ NMBIi(λ) = NMBIj(λ) (4)

λ > ICER(Ii, Ij) =⇒ NMBIi(λ) < NMBIj(λ) . (5)

The importance of this proposition is that it allows us to determine, for each value of
λ, which is the most beneficial intervention by comparing the ICERs. Put another way,
the ICERs partition the interval (0,+∞) into a set of subintervals, each associated with
an intervention Ii, such that when λ falls in that subinterval the optimal intervention is Ii.
This property is the basis of the definition of cost-effectiveness partition (CEP), that we
will present in the next section. But first we introduce the concept of extended dominance.

1It is usual to define simple dominance by the condition “ci < cj and ei > ej”, which is more restrictive
than ours, as it excludes the cases “ci < cj and ei = ej” and “ci = cj and ei > ej”. (We have assumed
that the case “ci = cj and ei = ej” never occurs.) We will see in Section 4, when analyzing the Example 1,
that these two cases can occur in practice, and the usual definition, more restrictive, would fail to detect
in some cases that one intervention clearly dominates another one—see Figure 11(a).
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Definition 6 (Extended dominance) A pair of interventions, Ii and Ij, dominate an-
other intervention Ik if the following conditions hold:

• ci < ck < cj,

• ei < ek < ej, and

• ICER(Ii, Ik) > ICER(Ii, Ij).

Proposition 7 If Ii and Ij dominate Ik, then max(NMBIi(λ),NMBIj(λ)) > NMBIk(λ)
for all λ.

This proposition implies that Ik is never the optimal intervention: depending on the
value of λ, either Ii or Ij is more beneficial than Ik, or both. This is the reason for
discarding some interventions in Algorithm 2, line 2.

2.2.2 Cost-effectiveness partition (CEP)

Definition 8 A cost-effectiveness partition (CEP) of n intervals is a tuple Q = (ΘQ, CQ, EQ, IQ),
where:

• ΘQ = {θ1, . . . , θn−1} is a set of n − 1 values (thresholds), such that 0 < θ1 < . . . <
θn−1,

• CQ = {c0, . . . , cn−1} is a set of n values (costs),

• EQ = {e0, . . . , en−1} is a set of n effectiveness values, and

• IQ = {I0, . . . , In−1} is a set of n interventions..

For the sake of simplifying the exposition, we define θ0 = 0 and θn = +∞ for every
CEP.

Alternatively, a CEP can be denoted by a set of n 5-tuples of the form (interval, cost,
effectiveness, intervention),

Q = {((0, θ1), c0, e0, I0),
((θ1, θ2), c1, e1, I1),

. . . ,

((θn−1,+∞), cn−1, en−1, In−1)} ,

meaning that when λ is in the interval (θi, θi+1) the most beneficial intervention is Ii, which
has a cost ci and an effectiveness ci. When λ = θi+1, there is a tie between Ii and Ii+1.

Put formally, we may define the function index :

indexQ(λ) = min{i|λ < i+ 1} (6)

7



0 Θ1 Θ2 Θ3 Θ4 +∞
c0, e0, I0 c1, e1, I1 c2, e2, I2 c3, e3, I3 c4, e4, I4

Figure 2: Cost-effectiveness partition (CEP).

and the following three functions:

costQ(λ) = ci (7)

effQ(λ) = ei (8)

intervQ(λ) = Ii , (9)

where i = indexQ(λ). The net monetary benefit for a particular value of λ is

NMBQ(λ) = λ · effQ(λ)− costQ(λ) (10)

It is easy to see that if two values of λ lie in the same subinterval of a partition, then
they have the same cost and the same effectiveness.

2.2.3 Deterministic CEA

When we have a set of interventions such that the cost and effectiveness of each one
are known with certainty, we can perform a deterministic cost-effectiveness analysis, which
returns a CEP that indicates the optimal intervention for each interval of the possible values
of λ. There are at least two algorithms for this operation: Algorithm 2 is an adaptation
of the standard method described in the literature ([20]); Algorithm 3 is introduced as a
contribution of this paper because it is more efficient than the former and because it does
not need to care about the distinction between simple dominance and extended dominance.

Both algorithms take as an input a set ofm interventions {I1, . . . , Im}, such that the cost
of Ii is ci and its effectiveness is ei, and return the same CEP. We can better understand the
difference between them by tracing their performance on the set of interventions displayed
in Figure 3. Algorithm 2 would first check for simple dominance by analyzing each pair of
interventions; it would rule out I1 and I2 because they are dominated by I3, and then I4
because it is dominated by I5 (and by I7). Then if would check for extended dominance
by analyzing each tern of interventions; it would rule out I6 because it is dominated by I3
and I7 (and by I5 and I7).

In contrast, Algorithm 3 would proceed as follows. First, it selects the intervention
having the lowest cost; as there is a tie between I1 and I3, it selects I3 because it has a
higher effectiveness, which implies that it dominates I1. Therefore, σ(0) = 3, which means
that the first intervention in the output set IQ is Iσ(0) = I3. The set R0, which contains
the indices of the interventions that remain after selecting the first one, is {4, 5, 6, 7, 8}.
We have discarded the interventions dominated by Iσ(0), i.e., I3.
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Algorithm 2: Deterministic CEA (standard)

Input: a set I = {I1, . . . , Im} of interventions.
Result: A CEP Q = (ΘQ, CQ, EQ, IQ), with IQ = {Iσ(0), . . . , Iσ(n−1)}.

1 Eliminate the interventions dominated by another interventions
(simple dominance)

2 Eliminate interventions dominated by a pair of other interventions
(extended dominance)

3 IQ = {remaining interventions in increasing-cost order}
4 Θi = ICER(Ii−1, Ii)
5 ci = cost(Ii)
6 ei = eff(Ii)

Algorithm 3: Deterministic CEA (new)

Input: a set I = {I1, . . . , Im} of interventions.
Result: A CEP Q = (ΘQ, CQ, EQ, IQ), with IQ = {Iσ(0), . . . , Iσ(n−1)}.

1 σ(0) = arg mini cost(Ii)
2 R0 = {i | Ii ∈ I ∧ eff(Ii) > eff(Iσ(0))}
3 i := 1;
4 while Ri−1 6= ∅ do
5 σ(i) := arg minj∈Ri

ICER(Iσ(i−1), Ij)
6 θi := minj∈Ri

ICER(Iσ(i−1), Ij)
7 ci := cost(Iσ(i))
8 ei := eff(Iσ(i))
9 Ri := {j | j ∈ Ri−1 ∧ eff(Ij) > eff(Iσ(i))}

10 i := i+ 1
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Effectiveness

Cost

I1

I2

I3

I4

I5

I6
I7

I8

λ35

λ57

λ78

Figure 3: Comparison between interventions. Dominated interventions (I1, I2, I4 and I6)
are shown in red and not dominated (I3, I5, I7 and I8) in blue.

Then the algorithm enters the while loop with i = 1. First it computes the ICER of each
remaining intervention with respect to Iσ(0), i.e., ICER(I3, Ij). The value of ICER(I3, Ij)
is the slope of the line that connects I3 and Ij in Figure 3. When looking for the minimum,
there is a tie between ICER(I3, I5) and ICER(I3, I7); therefore, it selects I7, because it
has a higher effectiveness: σ(1) = 7. The first threshold is θ1 = ICER(I3, I7). We have
discarded I4 and I6.

2

Then the algorithm performs another iteration of the while loop, now with i = 2 and
R1 = {8}. Therefore, σ(2) = 8 and θ2 = ICER(I7, I8). In the third iteration, i = 3
and R2 = ∅, which makes the algorithm terminate, returning a CEP of three intervals:
I = {Iσ(0), Iσ(1),Iσ(2)} = {I3, I7, I8} and Θ = {ICER(I3, I7), ICER(I7, I8)}.3

It is easy to prove that this algorithm always terminates, because Ri  Ri−1 and R0 is
finite.

2.3 CEA with uni-decision trees

In some cases, we do not know the cost and effectiveness of each intervention, but we do
know that each one may lead to different outcomes with different probabilities and this

2Please note that I4 is dominated by I7, while I6 is jointly dominated by I3 and I7. However, this
algorithm does not make any distinction between both types of dominance.

3In this example, ICER(I3, I5) = ICER(I5, I7) = ICER(I3, I7), which implies that I5 is never more
beneficial than I3 or I7; but when λ = ICER(I3, I5) = ICER(I3, I7), the three interventions have the
same NMB. For this reason, it might be not to discard I5, which would have even ethical implications
[2]; in this case, we should modify the algorithm so that when it finds a tie in the ICERs, it selects first
the intervention having the lower cost and lower effectiveness. In this example, the modified algorithm
would return a CEP of four interventions, I = {I3, I5, I7, I8} and three thresholds, Θ = {ICER(I3, I5),
ICER(I5, I7), ICER(I7, I8)}, but the first and the second thresholds would be the same. In any case,
this issue is irrelevant in practice, as the probability of having an absolute tie is virtually null.
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may result in other outcomes, each having a known cost and effectiveness. In this case, the
standard analysis method consists of building a decision tree such that each node, instead
of representing a single utility, represents the cost and effectiveness of the corresponding
scenario. The evaluation of this kind of tree is very similar to the unicriterion case: we
proceed from the leaves to root, averaging at each chance node, with the only difference
that the cost and effectiveness are computed separately throughout the evaluation process;
when evaluating the root node, we have a cost and effectiveness for each of its branches,
and we can then perform a deterministic CEA, as explained in Section 2.2.3, which returns
a CEP.

A limitation of this method is that the tree can contain at most one decision node,
that must be the root, because if the tree contained an embedded decision node, its evalu-
ation would not return a cost-effectiveness pair, but a CEP, which can not be propagated
backwards. For this reason, we present in the next section a method for combining CEPs,
which will permit to evaluate decision trees with embedded nodes.

3 New algorithm: multi-decision CEA

3.1 Combination of cost-effectiveness partitions

When evaluating a unicriterion decision tree, chance nodes are processed by taking the
average of the utilities of its branches, and decision nodes by taking the maximum. In
this section we generalize the average and maximization operations from single utilities
(unicriterion analysis) to cost-effectiveness partitions.

3.1.1 Weighted average of partitions

Definition 9 (Weighted average) Given a set of m CEPs {Q1, . . . , Qm}, a chance vari-
able X whose domain is {x1, . . . , xm}, and a probability distribution for X, P (xj), we say
that a CEP Q is a weighted average of the CEPs if

∀λ, costQ(λ) =
m∑
j=1

P (xj) · costQj
(λ) (11)

and

∀λ, effQ(λ) =
m∑
j=1

P (xj) · effQj
(λ) . (12)

Due to Equation 10, a straightforward consequence of this definition is the following:

∀λ, NMBQ(λ) =
m∑
j=1

P (xj) · NMBQj
(λ) . (13)

These three equalities mean that for a every value of λ, the cost, effectiveness, and NMB of
the weighted average partition Q are the same as if we had performed a weighted average

11



for the values of cost and effectiveness of the Qj’s. Clearly, Q cannot be computed by
performing a weighted average for each single value of λ, because this parameter can take
on infinite values, but we can compute Q efficiently by applying the Algorithm 4.

The intervention composed at the fifth line of the algorithm means: “if the chance
variable X takes on the value xj, then follow the policy indicated by the corresponding
branch of the tree (for the values of λ corresponding to the interval (θi, θi+1))”.

Algorithm 4: Weighted average of CEPs

Input: A set of m CEPs {Q1, . . . , Qm}, with Qj = (Θj, Cj, Ej, Ij)
a chance variable X whose domain is {x1, . . . , xm}, and
a probability distribution for X, P (xj).

Result: A new CEP Q = (Θ, C, E, I).
1 Θ =

⋃n
j=1 Θj, (n = card(Θ))

2 for i← 1 to n do
3 ci =

∑m
j=1 P (xj) · costQj

(θi)

4 ei =
∑m

j=1 P (xj) · effQj
(θi)

5 Ii = “If X = x1, then intervQ1(θi); if X = x2, then intervQ2(θi); etc.”

3.1.2 Optimal partition

Definition 10 (Optimal partition) Given a set of m CEPs {Q1, . . . , Qm} and a deci-
sion D whose domain is {d1, . . . , dm}, a CEP Q is optimal if

∀λ, ∃j, NMBintervQj
(λ)(λ) = maxj′NMBintervQj′

(λ)(λ) , (14)

intervQ(λ) = “choose option dj; then apply intervQj
(λ)” , (15)

costQ(λ) = costQj
(λ) , (16)

effQ(λ) = effQj
(λ) . (17)

The interpretation of this definition is as follows: for each value dj (a possible choice) of
the decision D there is a CEP Qj and for each value of λ there is an intervention intervQj

(λ)
in Qj which is optimal for di. Equation 14 means that we select j such that intervQj

(λ) is
the intervention that attains the highest NMB for that particular value of λ. In fact, there
is only one possible choice for j, except in the case of a tie between several interventions.
The optimal intervention for decision D, intervQ(λ), is to choose first the option dj and
then apply the intervention intervQj

(λ), which maximizes the expected NMB for that value
of λ (cf. Eq. 15). The cost and effectiveness associated with intervention intervQ(λ) are the
same as those in the CEP chosen, Qj. In practice, Q can not be computed by performing
a maximization for each single value of λ, but we can compute Q efficiently by applying
the Algorithm 5.
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The key property of this definition is Equation 14, which states that for every λ the NMB
of the optimal partition, Q, is the same as if we had performed a unicriterion maximization
of the NMB for each single value of λ.

The optimal CEP for a set of Qj’s and a decision D can be obtained by applying Algo-
rithm 5, which collects all the thresholds of the Qj’s and performs a deterministic CEA (cf.
Sec. 2.2.3) on each interval. Finally, it fuses some intervals by eliminating the unnecessary
thresholds. In Section 4 why show with an example how this algorithm operates and why
it is sometimes necessary to fuse intervals.

Algorithm 5: Optimal CEP.

Input: A set of m CEPs {Q1, . . . , Qm}, with Qj = (Θj, Cj, Ej, Ij) and
a decision node

Result: A new CEP Q = (Θ, C, E, I).
1 Θ = ∪iθi
2 for i← 1 to n do
3 perform a deterministic CEA analysis of interval i with Algorithm 2 or 3

4 Fuse contiguous intervals having the same intervention, the same cost,
and the same effectiveness

3.2 CEA with multi-decision trees

Finally, we can present the algorithm for performing cost-effectiveness analyses on decision
trees that contain several decisions, Algorithm 6, which is based on the above methods
for combining CEPs. It is very similar to the method for evaluating unicriterion decision
trees (Algorithm 1), with the only difference that instead of operating with single utility
values, it operates with CEPs: for each chance node, it computes the weighted average of
the partitions (Algorithm 4) and for each decision node, it computes the optimal partition
(Algorithm 5).

This algorithm computes a CEP for every node in the tree, but we are interested only
in the nodes for decision nodes, because they determine the optimal strategy for each value
of λ.

4 Example: CEA of a test

To better explain our algorithm, we apply it to the Example 1, presented in the intro-
duction. First, we build the decision tree shown in Figure 4. It is very similar to that
in Figure 1: the structure and the probabilities for the branches of the chance nodes are
exactly the same. The first difference is that instead of assigning a single utility value to
each leaf node, we assign a CEP with only one interval, (0,+∞), the same for all branches.
The effectiveness of each partition is taken from Table 1. The costs are also taken from
Table 1, but in all the leaves of the branch “do test” we have added the cost of the test.
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Algorithm 6: Roll-back algorithm for CEA in decision trees with several decisions

Input: A decision tree having a cost and an effectiveness value at each leave.
Result: A CEP Q = (ΘQ, CQ, EQ, IQ) for each decision node.

1 foreach node n do
2 if n is a chance node then
3 Evaluate it using Algorithm 4

4 if n is a decision node then
5 Evaluate it using Algorithm 5

The interventions are null for these nodes, because no decision node has been evaluated
yet.

The evaluation begins by performing a weighted average of partitions (Algorithm 4)
for each of the chance nodes, numbered from 6 to 14. As the leaf nodes do not contain
thresholds—each input partition consisted of only one interval—and the weighted average
operation does not introduce new thresholds, the CEPs obtained for those nodes do not
contain any thresholds either—see Figure 5.

Now we evaluate the decision nodes 3 to 5 using Algorithm 5 (optimal CEP). For node 3,
the input CEPs are those shown in Figure 5. As they do not contain any threshold, there
is only one interval on which to perform a deterministic CEA: (0,+∞). The output CEP
contains two thresholds, corresponding to the slopes of the two lines in Figure 6, and three
intervals, as shown in Figure 9.

The analysis for node 4 is similar, but in this case it does not produce new thresholds,
because no therapy dominates both therapy 1 and therapy 2, as we can observe in Figure 7.
The output CEP contains only one interval—see again Figure 9.

The analysis for node 5 produces only one threshold, because therapy 2 is dominated
by therapy 1, as shown in Figure 8. The output CEP contains two intervals—see Figure 9.

The chance node Test (number 2) is evaluated as a weighted average of partitions
(Algorithm 4). The CEP for the positive branch contains two thresholds, 10,730 and
33,384 e/QALY, as displayed in Figure 9; the CEP for the negative branch contains none.
Therefore, there is a total of two thresholds, i.e., three intervals. For each one of them, the
algorithm computes the weighted average of the costs and that of the effectiveness values.
The output CEP is shown in Figure 10.

Finally, the root node, Dec:Test, is evaluated with Algorithm 5 (optimal CEP). The
branch do test contributes two thresholds, and the branch do not test contributes one,
which makes a total of three: {10, 739, 33, 384, 65, 359}. Thus, there are four intervals on
which to perform a deterministic CEA, as shown in Figure 11.

In the first interval, (0, 10,739), the option do test has the same effectiveness as do not
test—see Figure 11(a)—because when λ < 10, 739 no therapy will be applied, whatever the
test result. Given that the option do test has a cost and does not increase the effectiveness,
it is dominated by the option do not test.
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Figure 4: Initialization of the decision tree for the Example 1. Each leaf node has a CEP
consisting of only one interval, (0,+∞). All the interventions for the leaf nodes are null,
because no decision node has been evaluated yet.
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Figure 5: Tree obtained after evaluating the nine Disease chance nodes (6 to 14).

In the second interval (10,739, 33,384), the cost and effectiveness of each option are
those shown in Figure 11(b). As no option dominates the other, we have to calculate the
ICER, which is 11,171 e/QALY. This threshold splits the interval in two: (10,739, 11,171)
and (11,171, 33,384). In the first one, the best option is do not test and in the second do
test.

In the third interval (33,384, 65,539), no option dominates the other, as shown in
Figure 11(c). The ICER is 21,072 e/QALY, that lies outside the interval being analyzed.
Therefore, the interval is not divided. The best option for this interval, in which λ >
21, 072 e/QALY, is do test.

Effectiveness

Cost

4 8
0

70, 000

N.Th.
Th.1

Th.2

Figure 6: Evaluation of decision node 3. The values of cost and effectiveness are taken
from the three input CEPs, shown in Figure 5. There is only one interval on which to
perform a deterministic CEA: (0,+∞). The output CEP is shown in Figure 9.
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Effectiveness

Cost

9 10
0

70, 000
Th.2

Th.1

N.Th.

Figure 7: Evaluation of decision node 4, in the interval (0,+∞). The input CEPs are
shown in Figure 5; the ouput, in Figure 9.

Eff.

Cost

8.7 9.2
0

70, 000

N.Th.
Th.1

Th.2

Figure 8: Evaluation of decision node 5, in the interval (0,+∞). The input CEPs are
shown in Figure 5; the ouput, in Figure 9.

In the fourth interval (65,539, +∞), shown in Figure 11(d), the ICER is 21,300e/QALY,
which, as in the previous case, lies outside the interval. The best option for this interval is
do test.

The resulting CEP, which is shown in Table 2, has four thresholds: three proceeding
from the input CEPs, plus one arisen when analyzing the second input interval.

However, we can see in that table that the first and second output intervals have
the same cost, effectiveness, and optimal intervention. Therefore, the first threshold,
10,730 e/QALY is unnecessary and should be removed. For the same reason, the forth
threshold, 65,539 e/QALY, which separates the forth and fifth intervals, must be removed.
The result is the CEP shown in Table 3.

The result of evaluating the node Dec:Test is shown in Figure 10. We can observe that
the two first intervals have the same cost, effectiveness and recommended therapy, so we
can fuse them in only one. Same happens with the last two intervals.

We may wonder why some of the thresholds that arose in the analysis are later removed
from the final CEP. If we look at the first threshold removed, 10,730 e/QALY, we observe
that it appeared when evaluating node 3 (branch do test, positive result): it determined
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Figure 9: Decision tree obtained after evaluating the three Therapy nodes (3 to 5).

Figure 10: Decision tree after evaluating the node 2, Test.

Interval Cost Effectiveness Dec:Test Therapy

(0, 10,739) 0 8.77 Do not test No therapy
(10,739, 11,171) 0 8.77 Do not test No therapy

(11,171, 33,384) 3,874 9.11 Do test

{
test:positive→Therapy 1

test:negative→No therapy

(33,384, 65,539) 13,184 9.39 Do test

{
test:positive→Therapy 2

test:negative→No therapy

(65,539, +∞) 13,184 9.39 Do test

{
test:positive→Therapy 2

test:negative→No therapy

Table 2: CEP obtained after evaluating the four input intervals of the root node, Dec:Test.

Interval Cost Effectiveness Dec:Test Therapy

(0, 11,171) 0 8.77 Do not test No therapy

(11,171, 33,384) 3,874 9.11 Do test

{
test:positive→Therapy 1

test:negative→No therapy

(33,384, +∞) 13,184 9.39 Do test

{
test:positive→Therapy 2

test:negative→No therapy

Table 3: Final CEP. It is obtained from the CEP in Table 2 after removing the unnecessary
thresholds.
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Effectiveness

Cost

8.7 10
0

200

Do Test

No Test

(a) Interval (0, 10,739)

Effectiveness

Cost

8.7 9.2
0

20, 150

No Test

Do Test

λ=11,171

(b) Interval (10,739, 33,384)

Effectiveness

Cost

8.7 9.4
0

70, 150

No Test

Do Test

λ=21,072

(c) Interval (33,384, 65,539)

Effectiveness

Cost

9 9.4
0

70, 150

No Test

Do Test

(d) Interval (65,539, +∞)

Figure 11: The evaluation of the root node, Dec:Test, consists of four deterministic CEAs,
one for each interval.

that, in that scenario, when λ > 10,730 e/QALY therapy 1 was more beneficial than no
therapy, and when λ < 10,730 e/QALY it was the opposite. However, the subsequent
analysis of node 1 showed that when λ < 11,171 e/QALY, the best option is do not test ;
i.e., the optimal path goes through the lower branch of Dec:Test, and for this reason the
threshold that appeared in the upper branch (do test) becomes irrelevant.

The other threshold removed, 65,359 e/QALY, arose when evaluating node 4 (branch
do not test), as the ICER between no therapy and therapy 1. However, the subsequent
analysis of node 1 showed that when λ > 33, 384 e/QALY, the best option is do test ; i.e.,
the optimal path goes through the upper branch of Dec:Test, and therefore the threshold
that appeared in the lower branch (do not test) is irrelevant.

5 Discussion

In Section 3 we have presented an algorithm for performing cost-effectiveness analysis
(CEA) in decision trees with several decisions. The result of the evaluation is a cost-
effectiveness partition (CEP) for each node. For each value of λ, the CEP of the root node
gives, the expected cost, the expected effectiveness, and the optimal intervention. The net
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monetary benefit (NMB)—that can be obtained from the cost, the effectiveness, and λ
with Equation 10—and the optimal intervention for each value of λ are the same as those
that we would have obtained if we had made the tree unicriterion by computing the NMB
of each leaf and evaluated it with the standard (unicriterion) method.

We have based our analysis on the NMB. We would have obtained the same results if
we had used the net health benefit (NHB) [?], defined as

NHBIi(λ) = eIi − cIi/λ . (18)

The reason is that NHBIi(λ) = λ ·NMBIi(λ) and therefore, when comparing two interven-
tions, the one having the higher NMB also has the higher NHB:

∀λ, NMBIi(λ) > NMBIi(λ)⇐⇒ NHBIi(λ) > NHBIi(λ) . (19)

5.1 Related work

To our knowledge, the problem of performing cost-effectiveness with multiple decisions
and uncertain outcomes had not been solved satisfactorily in the literature. In general,
textbooks on medical decision analysis discuss both CEA and decision trees, but not CEA
with decision trees [6, 10, 12, 13, 15, 16, 17]. There are other books that explain how to do
CEA with decision trees, but do not warn that embedded decision nodes are problematic
[1, 3, 4, 7, 18]. The only reference that we have found that discusses this issue is a paper
by Kuntz and Weinstein [11, Sec. 7.2.1]. This reference states the following:

Cost-effectiveness analyses can be performed with a decision tree that has
one decision node at the root. The branches of the initial decision node repre-
sent all of the strategies that are to be compared. Embedded, or downstream,
decision nodes are not useful in cost-effectiveness analysis because the optimal
branch cannot be determined when folding back the tree without an explicit
decision rule for comparing costs and consequences.

The difficulty in dealing with embedded decision nodes explains why it is hard to find a
case of CEA performed on a decision tree having more than one decisions in the literature.
One exception is the tree used by Goeree et al. [5]—reproduced in [1, sec. 2.3.1]—to eval-
uate the cost-effectiveness of alternative pharmaceutical therapies for gastro-oesophageal
reflux disease (GORD). This tree contains six embedded decision nodes, but each of them
has only one outgoing branch; hence, the evaluation is trivial, because the cost and effec-
tiveness of each of them are the same of the only child of that node.

Another example can be found in [3, Sec. 5.2], based on a previous study by Hull et
al. [9]. The root node of that tree represents the five options decision about prophylaxis.
There are ten embedded decision nodes that represent the decision about the diagnostic
technique used to confirm the presence of venous thromboembolism. Again, each decision
node has only one outgoin branch, and the evaluation is trivial.
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The third exception is the example in [18, Chapter 11, Sec. B.1]. The root node
represents the main decision. There are three options: operating all patients, buying an
ultrasound machine, or referring patients to a neighbor hospital. The tree is split into three
figures (11-1, 11-2, and 11-3), one for each branch of the root not, that is not displayed
graphically. There are two embedded decision nodes (see Fig. 11-2), that represent the
choice between surgery and ultrasound therapy. Chance nodes are evaluated by averaging
the cost and effectiveness (life expectancy) of their branches, with the algorithm that we
have explained in Section 2.3. The parameters of this hypothetical example were chosen
so that when evaluating the two embedded decision nodes, ultrasound dominates surgery.
(If we applied our method to that tree, the CEA of the embedded decision nodes would
not introduce any threshold, and consequently each CEP would have only one interval,
i.e., the cost and effectiveness would be the same for all the values of λ.) Unfortunately,
that book do not explain how to evaluate embedded decision nodes when there is not an
option that dominates all its alternatives.

In contrast, the commercial program TreeAge evaluates embedded decision nodes by
applying an algorithm that, in essence, proceeds as follows: first, it eliminates the domi-
nated interventions; second, it discards the interventions whose ICER is higher than the
λ value (called WTP in TreeAge, for willingness to pay) chosen by the user, and finally
it selects the most effective remaining alternative—see the sections “CE roll back optimal
path parameters” and “The CE optimal path algorithm” in [19]. Clearly, the aim of this
algorithm is to select the intervention with the highest NMB for that λ value, even though
it is not explained this way in the user’s manual. The problem whith this method is that
in many cases the result of the CEA depends on the λ value chosen by the user, and con-
sequently, some of the choices of λ may lead to wrong results. For example, if we build in
TreeAge the decision tree shown in Figure 4 and evaluate it with λ = 10.000 e/QALY, its
algorithm will choose no therapy for each of the embedded nodes, and as the therapy will
not depend on the test, in counterproductive to do it. This makes the option do not test
dominate do test. On the contrary, if the user sets λ = 50, 000 e/QALY, TreeAge gives
an ICER of λ = 21.072 e/QALY, which is also wrong. If the user sets λ between 10,739
and 33,384, TreeAge returns the correct ICER, 11,171 e/QALY, but the user cannot know
whether this value is correct or not. And even when the ICER is correct, the cost and
effectiveness are not, because they depend on which therapy will be applied later (see again
Table 3).

5.2 CEA with uni-decision trees

There is another method, alternative to the one proposed in this paper, capable of perform-
ing cost-effectiveness analyses correctly in problems that involve several decisions, but at
the price of having to build much more complex decision trees. It is based on the advice of
Kuntz and Weinstein [11], cited above, that the branches of the root node represent all the
strategies; we can accomplish this by making each intervention include all the decisions.
For instance, in the Example 1, this method would give rise to 12 interventions:
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• Inn: do not test; no therapy;

• In1: do not test; therapy 1;

• In2: do not test; therapy 2;

• Itnn: do test; no therapy;

• Itn1: do test; if positive, no therapy; if negative, therapy 1;

• Itn2: do test; if positive, no therapy; if negative, therapy 2;

• It1n: do test; if positive, therapy 1; if negative, no therapy;

• It11: do test; always therapy 1;

• It12: do test; if positive, therapy 1; if negative, therapy 2;

• It2n: do test; if positive, therapy 2; if negative, no therapy;

• It21: do test; if positive, therapy 2; if negative, therapy 1,

• It22: do test; always therapy 2.

The corresponding tree would have 12 branches for the root node; each do test branch
has two leaves and each do test branch has four, which makes a total of 36 leaves. Using
some common sense reasoning, we may discard the interventions Itnn, It11, and It22 because
it is counterproductive to do the test when its result will not affect the decision about
therapy. In the same way, the interventions Itn1 and Itn2 are clearly suboptimal because
it does not make sense to apply a therapy when the test is negative and no therapy when
it is positive. Therefore, the tree can be pruned down to 22 nodes. We have built that
tree with TreeAge—see Figure 12—and it returns the same costs, effectiveness values, and
thresholds as our method (Table 3),which is not surprising, because TreeAge always gives
the right answer when every embedded decision node has only one outgoing branch.

The drawback of this method is that the size of the trees grows very fast. Thus, if
we have m therapies and a test with n possible outcomes, there are m + 1 do not test
interventions, one for each therapy option; each of these branches has two leaves, one
for the presence of the disease and one for its absence. There are also (m + 1)n do test
interventions; each one is a combination of n choices of therapy—one choice for each
outcome of the test. We may remove the m + 1 interventions that make the same choice
for every test outcome, as we did in the example above. Therefore, the tree would contain
[(m + 1)n − (m + 1)] do test branches, each having 2n leaves, as we can see in Figure 12.
This leads to a tree of 2[n(m+ 1)n − (m+ 1)(n− 1)] leaves.4

4In some cases, this one-decision tree might be pruned further, in the same way as we eliminated
the interventions Itn1 and Itn2 when building the tree in Figure 12. However, there is no algorithm for
deciding which branches can be pruned without risking to miss the optimal intervention, and in any case
the proportion of branches that may be pruned is small.
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Figure 12: A decision tree for the Example 1, built with TreeAge. Each branch of the root
node represents a complex intervention that includes all the decisions.
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In contrast, the tree used by our method is much smaller. It contains n + 1 Therapy
nodes: one for each test outcome plus one for the do not test branch, as shown in Figure 4;
each of them has m + 1 Disease nodes, which in turn have two branches. This makes a
total of 2(n+ 1) · (m+ 1) leaves in the tree.

In a problem involving 3 test outcomes (for example, low, medium, and high) and 4
therapies (which may be, for instance, different dosage patterns for a drug), our method
would analyze a tree of 20 leaves, while the one-decision tree of complex interventions
would have 730 leaves. With 4 test outcomes and 5 therapies, our method would analyze a
tree of 60 leaves, while the one-decision tree would have 10,332 leaves. Building a decision
tree with dozens of branches is hard, but feasible, while building a tree with hundreds or
thousands of nodes is impracticable. Consequently, our method permits to perform cost-
effectiveness analysis for many problems that are out of the reach of traditional methods.

6 Conclusion

In this paper we have proposed a method for performing cost-effectiveness analysis in
problems that involve several decisions and probabilistic outcomes. The method consists
in building a tree with the same structure as if it were a unicriterion decision problem;
this tree can be evaluated with a modified roll back algorithm that, instead of operating
on single utilities, operates on cost-effectiveness partitions (CEPs). The CEP obtained for
the root node gives, for each value of λ, the expected cost, the expected effectiveness, and
the optimal intervention. The net monetary benefit (NMB) and the optimal intervention
for each value of λ are the same as those that we would have obtained by computing the
NMB of each leaf and evaluating the tree with the standard roll back algorithm.

In the discussion, we have shown that this problem had not been addressed properly in
the past: most of the literature on medical decision analysis has ignored it, the algorithm
used by TreeAge gives wrong results in many cases, and the solution proposed by Kuntz
and Weinstein [11] is unfeasible, except for very small problems.

In a future paper we will show how the combination of CEPs, which is the basis of our
method, can be adapted to influence diagrams [8, 14]. Using a software package developed
by our group, we have been able to perform CEA on two influence diagrams for medical
problems: the first one contains 5 decisions and 8 chance variables; the second, 4 decisions
and 11 chance variables in its current version. The equivalent decision trees, which can
be obtained automatically from the influence diagrams, have thousands of leaves. Clearly,
those problems exceed by far the capabilities of standard CEA methods.
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A Appendix: Proofs

Proof of Proposition 3. It stems directly from Equation 1. (We have assumed that
either ci 6= cj, or ei 6= ej, or both.)

Proof of Proposition 5. From the definition of ICER we have that

λ < ICER(Ii, Ij) =⇒ λ · (ej − ei) < cj − ci
=⇒ λ · ej − cj < λ · ei − ci =⇒ NMBIj(λ) < NMBIi(λ) .

The proof of the other two implications is almost identical.

Before proving Proposition 7, we introduce the following lemma.

Lemma 11 If Ii and Ij dominate Ik, then ICER(Ii, Ij) > ICER(Ik, Ij).

Proof. From the definition of ICER, we have that

ICER(Ij, Ik) =
ej − ek
cj − ck

=
(ej − ei)− (ek − ei)

cj − ck

=
ICER(Ii, Ij) · (cj − ci)− ICER(Ik, Ii) · (ck − ci)

cj − ck
.

The fact that Ii and Ij dominate Ik implies that ICER(Ii, Ik) > ICER(Ii, Ij), and conse-
quently,

ICER(Ij, Ik) <
ICER(Ii, Ij) · (cj − ci)− ICER(Ii, Ij) · (ck − ci)

cj − ck

= ICER(Ii, Ij)
cj − ck
cj − ck

= ICER(Ii, Ij) .

Proof of Proposition 7. We analyze two cases. When λ ≤ ICER(Ii, Ij), we have,
because of Proposition 5, that NMBIi(λ) ≥ NMBIj(λ). We also have λ < ICER(Ii, Ik)
and

NMBIk(λ) ≤ NMBIi(λ) = max(NMBIi(λ),NMBIj(λ)) .

The proof for the case λ > ICER(Ii, Ij) is very similar.
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