ProbModelXML. A format for encoding
probabilistic graphical models

M. Arias F. J. Diez M. A. Palacios
Dept. Artificial Intelligence, UNED
Juan del Rosal 16, 28040 Madrid, Spain

Version 0.2.0 (March 13, 2012)

Abstract

ProbModelXML is an XML format for encoding probabilistic graphical models, with a
special emphasis on dynamic models. The main advantages of this format are that it can
represent several kinds of models, such as Bayesian networks, Markov networks, influence
diagrams, LIMIDs, dynamic Bayesian networks, MDPs, POMDPs, DLIMIDs, etc., and the
possibility of encoding new types of networks and user-specific properties without the need
to modify the format definition.

Contents

1 Introduction
1.1 Antecedents: Formats proposed previously
1.1.1 Formats for Bayesian networks and influence diagrams
1.1.2 Specific formats for Markov decision processes

2 Basic definitions and notation
2.1 Probabilistic graphical models L.
2.2 Linksandpaths
2.3 Typesofvariables
24 Dynamicmodels e e e
2.5 Useofinformationarcs o i i e e e e

3 Overview of the format
3.1 Filecontent e
3.2 Version numberso e e e e e e

4 Specification of probabilistic networks
4.1 Network properties v v it e e e e e e e e
4.1.1 Networktype o
4.1.2 Constraints e e e e e e e
413 Comment e e e e e
4.1.4 DecCiSion Criteria v v v v v v o e e e e e
4.1.5 Agents e e e e e e
4.1.6 Language
4.1.77 Additional properties Lo
42 Variables e e e
4.2.1 Domain of a finite-states variable
4.2.2 Domain of a numeric variable, ..
4.2.3 Domain of a discretized variable
43 Links . ..o
4.4 Potentials e e
441 Uniform. e
442 Table e
443 Delta e e
444 Treeand ADD e
445 ICImodel e
44.6 Sumandproduct
447 Linear combination
4.4.8 LogiStiC TeZressiOn v v v v v vt e e e e e e e e e e
4.4.9 Conditional Gaussian
4.4.10 Exponential and mixture of exponentials
5 Special types of networks
5.1 Dynamicmodels
5.1.1 Networktags e
5.1.2 Dynamic variables
5.1.3 Potentials for dynamicmodels 0oL
5.2 Decision analysis networks (DANs)
6 Additional information
6.1 Inferenceoptions
6.1.1 General inference options L.
6.1.2 Inference options for dynamic models
6.2 Evidence
6.3 Policiesand strategies
7 Discussion
7.1 Aboutparsers and Writers L. L. oL e e
7.2 Future work e

55
55
55
55
56
56

8 Conclusion 57

Appendix A Constraints used in OpenMarkov 58
A.1 Constraints about nodes and variables, 58
A.2 Constraints about links (structure of the graph) 60

Appendix B Changelog 62

1. Introduction

A probabilistic graphical model (PGM) consists of a probability distribution and a graph, such
that each node in the graph represents one of the variables on which the probability is defined,
and the structure of the graph imposes some properties of independence on the probability distri-
bution. Some PGMs are purely probabilistic, such as Bayesian networks and Markov networks
[34], while others, such as influence diagrams [22] and decision analysis networks [15], include
decisions and utilities.

There are two main types of temporal PGMs: dynamic models and event networks. Dynamic
models [13, 32] discretize time in intervals of a fixed duration (cycle length) and create an in-
stance of each variable for each time period. Therefore, in the context of PGMs “dynamic” is
a synonym of “periodic”. In contrast, in an event network, each variable represents an event
and the values that the variable can take on represent the time at which the event may occur
[2, 19, 20].

Dynamic PGMs are a generalization of more simple Markovian models proposed several
decades earlier [30]. Thus, dynamic Bayesian networks [13, 32] extend both Markov chains [30]
and hidden Markov models [4] by allowing that the state of the system be represented by a set
of variables rather than by a single variable. In the same way, Markov Decision Process (MDPs)
[5] are extended by factored MDPs [8, 9]) and Partially Observable Markov Decision Process
(POMDPs) [3] are extended by factored POMDPs [10] and dynamic LIMIDs [17, 43].

Several formats have been developed for encoding PGMs , but almost all of them are designed
for a single software tool. One exception is Fabio Cozman’s XMLBIF (see Sec. 1.1.1.c), that has
been implemented by several software tools, but it is restricted to Bayesian networks containing
only discrete variables, with a very limited set of features. Another exception was DSC, proposed
by Microsoft as a standard format for Bayesian networks and influence diagrams, that would
receive contributions from the UAI (uncertainty in artificial intelligence) community; however,
some time later Microsoft removed the web pages of DSC and developed a new XML format,
MSBNXx, limited to Bayesian networks.

For this reason, we decided to develop a new format for PGMs, satisfying the following
requisites. First, it should be designed as a common language for several research groups and
several software tools. As a consequence, the format should accommodate different types of
models and a wide range of properties. However, given that it is impossible to foresee from
the beginning all the needs that will emerge in the future, the format should be extensible, i.e.,
it should be able to represent new types of models and new properties without changing the

specification of the format. Second, the syntax and the semantics of the format should be clearly
documented, in order to avoid ambiguities and misinterpretations. Third, the syntax of the format
should be based on the Extensible Markup Language (XML) specification produced by the World
Wide Web Consortium (W3C)!, mainly because XML is much easier to parse than other types of
syntaxes; in fact, there exist many utilities for parsing XML from several programming languages
(Java, C++, etc.). There are also several utilities for writing XML files from those languages, as
well as other tools for specifying XML formats and for validating them: DTD, XML Schema
(XSD), Relax NG, ISO DSDL, etc.

The format proposed in this paper is called ProbModelXML.? It presents two main advantages
with respect to previous proposals. First, it can encode several types of PGMs: its current version
includes Bayesian networks, Markov networks, influence diagrams, LIMIDs, dynamic Bayesian
networks, MDPs, POMDPs, and DLIMIDs, and it also permits to encode new models by com-
bining the existing constrains or by defining new ones (see Sec. 4.1.2). The second advantage is
that it that can encode user-specific features by using the AdditionalProperties tag (see
Sec. 4.1.7).

The rest of the paper is structured as follows: in Section 1.1 we review preceding XML for-
mats for PGMs. Section 2 presents the basic notions of PGMs. Section 3 contains an overview of
ProbModelXML. The next sections explain how to encode different types of information: prob-
abilistic networks (Sec. 4), inference options (Sec. 6.1), evidence (Sec. 6.2), policies (Sec. 6.3).
There are two sections devoted to specific types of models: decision analysis networks (Sec. 5.2)
and dynamic models (Sec. 5.1). We discuss the advantages and limitations of the new format in
Section 7 and conclude in Section 8.3

1.1. Antecedents: Formats proposed previously

Several formats have been developed for probabilistic graphical models (PGMs) and Markov
decision processes (MDPs). In this section we review briefly those that are more related to the
ProbModelXML format proposed in this paper.

1.1.1. Formats for Bayesian networks and influence diagrams

a) DNET (Netica)

DNET was developed by Norsys Software Corp. as the default format for their software package,
Netica.* This format can represent Bayesian networks, influence diagrams, MDPs and POMDPs,

ISee www.w3.org/XML.

’Its original name was CarmenXML, because it was the default format for an open-source tool called Carmen
[1]. When the name of the tool changed from Carmen to OpenMarkov, the name of the format was changed to
OpenMarkovXML. In May 2011, we changed it again into ProbModelXML, because since the beginning we intended
to propose it as a common format for the interchange of PGMs. Therefore we thought that the name of our format
should not be attached to any particular software tool.

3The web page www.cisiad.uned.es/ProbModel XML contains additional information, including several net-
works encoded in this format, and possibly an updated version of this document.

4See www.norsys.com/netica.html.

www.w3.org/XML
www.cisiad.uned.es/ProbModelXML
www.norsys.com/netica.html

with both discrete (finite-states) or continuous variables.” The specification of this format is
available at:
www.norsys.com/downloads/DNET_File_Format.txt

b) Elvira

Elvira [18] started in 1997 as a join project of several Spanish universities.® The Elvira for-
mat, which uses a C-like syntax, can represent Bayesian networks and influence diagrams with
continuous and finite-state variables, canonical models [14], uncertain parameters (defined by
intervals), etc. The specification of the Elvira format can be found at
leo.ugr.es/elvira/devel/Formato/formato.html

Some of the features of the Elvira format were inspired on DNET (Netica’s format), and in turn
many of the features of ProbModelXML are inspired on the Elvira format.

¢) XMLBIF

It was proposed by Fabio Cozman, with suggestions from Marek Druzdzel, Daniel Garcia, and
others.

www.poli.usp.br/p/fabio.cozman/Research/InterchangeFormat

This format is restricted to the representation of Bayesian networks with finite-state variables.
It is the default format for Fabio Cozman’s JavaBayes tool.” Weka® and many of the tools for
PGMs can read and write Bayesian networks in this format.

d) XBN

It is an XML format proposed by Microsoft as the default format for their Microsoft Bayesian
Network (MSBNXx) tool, thus replacing the previous format DSC, which was not XML.” This
format can only encode Bayesian networks.
research.microsoft.com/en-us/um/redmond/groups/adapt /msbnx/msbnx/File_Formats.
htm

http://xml.coverpages.org/xbn.html

e) XDSL

It is the default format for SMILE and GeNIE, two programs developed by Marek Druzdzel’s
group at the University of Pittsburgh.' SMILE is the inference engine. GeNIE, which offers
an intuitive and powerful GUI for Windows, is a front-end for SMILE. The XDSL format has a

SUnfortunately, this specification document, which is very clear in general, does not explain how to encode
MDPs and POMDPs.

6See leo.ugr.es/elvira and www.ia.uned.es/~elvira.

See www.pmr.poli.usp.br/ltd/Software/javabayes.

8See www.cs.waikato.ac.nz/ml/weka.

9See research.microsoft.com/en-us/um/redmond/groups/adapt /msbnx.

10See genie.sis.pitt.edu.

www.norsys.com/downloads/DNET_File_Format.txt
leo.ugr.es/elvira/devel/Formato/formato.html
www.poli.usp.br/p/fabio.cozman/Research/InterchangeFormat
research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/msbnx/File_Formats.htm
research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/msbnx/File_Formats.htm
http://xml.coverpages.org/xbn.html
leo.ugr.es/elvira
www.ia.uned.es/~elvira
www.pmr.poli.usp.br/ltd/Software/javabayes
www.cs.waikato.ac.nz/ml/weka
research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx
genie.sis.pitt.edu

simple version for SMILE and an extended version for GeNIE. The XML schemas (XSDs) for
this format can be downloaded from
genie.sis.pitt.edu/SMILEHelp/Appendices/XDSL_File_Format_-_XML_Schema_Definitions.
htm

The schema for GeNIE can be seen in HTML at
www . openmarkov.org/OpenMarkovXML/temp/genie/genie-xsd.html
Similarly to DNET (Netica’s format), XDSL can represent Bayesian networks, influence dia-
grams, and some dynamic models, with both continuous and finite-state variables. It can also
represent canonical models.

1.1.2. Specific formats for Markov decision processes

a) Cassandra’s format

Anthony Cassandra has used a format for flat (i.e., non-factored) POMDPs, that is available at
the following links:
www.cassandra.org/pomdp/code/pomdp-file-grammar.shtml
www.cassandra.org/pomdp/code/pomdp-file-spec.shtml
www.cassandra.org/pomdp/examples

The software package Perseus [39] can also read files in Cassandra’s format, by using this
MATLAB parser:
staff.science.uva.nl/~mtjspaan/software/pomdp.

b) SPUDD

SPUDD, which stands for ”Stochastic Planning using Decision Diagrams”, is a computer pro-
gram for evaluating MDPs and POMDPs [21]. The format used by this program is able to rep-
resent factored MDPs and POMDPs; potentials are represented by algebraic decision diagrams
(ADDs), which we describe in Section 4.4.4.b.

Some examples of POMDPs are included in a tar. gz file, together with SPUDD C++ source
code, which is available at:
www.computing.dundee.ac.uk/staff/jessehoey/spudd/index.html
(The examples are contained in files with the extension .txt.)

The tool Symbolic Perseus, ! by Pascal Poupart [35], uses a subset of the SPUDD format,
whose grammar is specified in this file:
www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems/SYNTAX.txt
Some examples encoded in this simplified version of SPUDD can be found at
www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems.

¢) PomdpX
It is an XML format for POMDPs, developed at the University of Singapore:

1See www.cs.uwaterloo.ca/~ppoupart/software.html. The file ParseSPUDD. java contains the parser for
the SPUDD format.

genie.sis.pitt.edu/SMILEHelp/Appendices/XDSL_File_Format_-_XML_Schema_Definitions.htm
genie.sis.pitt.edu/SMILEHelp/Appendices/XDSL_File_Format_-_XML_Schema_Definitions.htm
www.openmarkov.org/OpenMarkovXML/temp/genie/genie-xsd.html
www.cassandra.org/pomdp/code/pomdp-file-grammar.shtml
www.cassandra.org/pomdp/code/pomdp-file-spec.shtml
www.cassandra.org/pomdp/examples
staff.science.uva.nl/~mtjspaan/software/pomdp
www.computing.dundee.ac.uk/staff/jessehoey/spudd/index.html
www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems/SYNTAX.txt
www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems
www.cs.uwaterloo.ca/~ppoupart/software.html

bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation
It admits flat POMDPs, as well as MOMDPs. In a MOMDP the state space is factored into two
variables, X (observable) and Y (unobservable), and there is a third variable in each time slice,
O, which provides indirect information about Y [33].

There is a companion XML format for representing the policy obtained when evaluating a
POMDP:
bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PolicyXDocumentation

2. Basic definitions and notation

In this paper we denote the variables by capital letters, such as X, and their values by the cor-
responding lowercase letters, such as x. A set of variables is denoted by a bold capital letter,
X = {Xj,...,X,}, and a configuration by a bold lowercase letter, x = (x1,...,x,).

2.1. Probabilistic graphical models

A probabilistic graphical model (PGM) consists of a set of variables, V, a graph G such that
each node represents a variable in V, and a probability distribution P(v) that satisfies certain
properties of independence dictated by the structure (the links) of the graph [34]. Some PGMs
designed for decision analysis have, additionally, utility functions.

Given the one-to-one correspondence between variables and nodes, we will refer to them
indifferently, and use the same letter to represent a node and the variable it represents.

2.2. Links and paths

A link in a graph is a pair of nodes, (X,Y), which may be ordered or not. In the first case, we say
that the link is directed and denote it as X — Y; in the graphical representation, it is drawn as an
arrow from X to Y. In the second case, we say that the link is undirected and denote it as X—Y;
in the graphical representation, it is drawn as a line between X and Y. Link X—Y is the same as
Y—X, while X — Y is different from ¥ — X.

A path is an ordered set of links, complemented with an ordering of the nodes in each link
such that the second node in a link is the same as the first node in the next. Given a directed link
in a path, if the order of its nodes in the path is the same as the order in the definition of the link,
we say that the path traverses the link forwards; otherwise, we say that the path traverses the link
backwards. For example, the path X — Z <Y traverses the link X — Z forwards and the link
Y — Z backwards.

A path is closed if the second node in the last link is the same as the first node in the first link.
Given a closed path, if we move its first link to the last place and shift the i-th link to the (i — 1)-th
position, the new path is considered to be equal to the first. For example, the three closed paths,
A—-B—-C—-AB—-C—A—B,C—A— B— C,are considered to be equal.

If a closed path traverses all its directed links forwards, then it is called a cycle; otherwise it
is a loop. Figure 1 illustrates the difference between cycles and loops.

bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation
bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PolicyXDocumentation

Figure 1: Closed paths: three cycles (upper row) and two loops (lower row).

A self-loop is a link whose nodes are identical; for example, A — A or A — A. It can also be
defined as a closed path consisting of only one link.

2.3. Types of variables

Variables can be classified according to their domains. Following the terminology of the format
Elvira, finite-states variables are those whose domain is given by a finite set of values. These
variables are sometimes called discrete, but this term is not accurate, because the domain of a
discrete variable is not necessarily bounded in advance; for instance, the number of books in a
library is discrete because it cannot take on non-integer values, but it should not be represented
by a finite-state variable. Finite-state variables are also similar to categorical variables, but this
term is generally used in opposition to ordinal variable, while finite-state variables are ordered
in many cases.

A variable is numeric when it represents the result of a measurement, including the counting
of the number of elements in a set (its cardinal). A continuous variable can take on any value in a
given interval; therefore, it is the opposite of discrete variable. However, a numeric variable can
be discretized by defining a set of intervals. When the number of intervals is finite, the discretized
variable can be treated for some operations as if it were a finite-state variable.

In practice, the set of intervals is defined by a set of thresholds. A threshold in ProbModel-
XML is essentially the same as a level in DNET (Netica’s format); the only difference is that
ProbModelXML specifies whether the number used to establish the threshold belongs to the left
or to the right interval. For example, there are two ways of partitioning the real numbers using 0
as a cutting point: {(—eo,0], (0,4o)} and {(—e0,0), [0, +o<)}. In the first partition, O belongs to
the interval on the left, while in the second it belongs to the one on the right. In Section 4.2.3 we
explain how to specify in ProbModelXML the thresholds used to discretize numeric variables.

2.4. Dynamic models

As mentioned in the introduction, there are several types of dynamic PGMs. In ProbModelXML
we have included six of them: dynamic Bayesian networks [13, 32], simple Markov models
[16], factored MDPs [8, 9]), factored POMDPs [10], Dec-POMDPs [6], and dynamic LIMIDs
[17, 43].

In dynamic models, some variables are indexed by time: 7 € {0,...,h}, where A is the horizon
of the model, which can be infinite.!? If there is a variable X’ for a certain #, then there is also a
variable X' for each ¢’ € {0,...,h}—see Figure 2, where the number between brackets denotes
the index 7. The subgraph that contains all the nodes X’ having the same temporal index ¢ and the
links between them is known as the ¢-th time slice.

Disease [0]

< Quality of life [0] >

Dec:Test [0]

Quality of life [1])

DeciTest [1]

|

‘ Dec: Therapy [0] ‘ ‘ Dec:Therapy [1] ‘

! |

< Cost of therapy [0] > < Cost of test [l] Cost of therapy [0] >

/ N

< Economic cost [0] > Economlc cost [1]

Cost of test [0]

Figure 2: Compact representation of a simple Markov model: a stationary first-order model can
be represented by just two time slices. Ovals represent chance variables, rectangles represent
decisions, and hexagons represent utilities.

A constraint of dynamic models is that they can not have links to the past, i.e., of the form
X' — Y" with t > ¢'. If there is a k € N such that every link X’ — Y* satisfies that /' —¢ < k
(which means that all the parents of a node Y " are in the #'-th slice or in the previous k slices),
we say that the model is of k-th order. In practice, it is usual to work with first-order models
(k=1).

121n standard MDPs and POMDPs all the variables are indexed by time. However, we admit the possibility of
atemporal variables, whose value does not change with time, and therefore do not need to have an instance of each
of them in each time slice. For instance, the variable Sex in Figure 2 is atemporal.

9

A variable X is stationary after k if it has the same neighbors and the same potentials (prob-
abilities and utilities) after the k-th slice. Put formally, for each ¢ > k,

« there is a link between X’ and Y if and only if there is a link of the same type between X*
and Y*;

« if there is a conditional probability P(x*|pa(X*)), then P(x'|pa(X")) = P(x*|pa(X*));
« if there is a utility function U*(pa(U*)), then U (pa(U")) = U*(pa(U*));

and some of these properties are not fulfilled for any k' < k.

A dynamic model is stationary after k if all its variables are stationary after k and there is no
other kK’ < k that makes the model stationary. Such a model admits a compact representation that
contains only the first k slices. Stationary first-order models, which constitute the most common
case, can be represented by only the first two time slices, as in Figure 2. MDPs and POMDPs
are almost always represented in this compact form. If the horizon £ of the DLIMID is finite, we
can unroll it completely by cloning the last slice & — k times.

A model that is stationary after kK may contain variables that become stationary earlier, i.e.,
after k', with k' < k. The repeated nodes can be removed from the compact representation, to
make it even more concise without loss of information, as we have done in Figure 3, assuming
that the probabilities and utilities for all the removed nodes are the same in both time slices.
When unrolling the model, we must replace back those nodes and their links.

2.5. Use of information arcs

In a PGM, an information arc is a directed link from a chance or a decision node X to a decision
node D. It means that the value of variable X is known when making decision D. Information arcs
where used by the first time in influence diagrams [22]. We will use them in the ProbModelXML
to indicate which nodes in a factored POMDP [10] or in a DLIMID [43, 17] are observable. For
example, in the DLIMID in Figure 2 the link from “Symptom [0]” to “Dec:Test [0]” means that
when we make the decision about whether to perform the test, we already know whether the
patient has the symptom.

On the contrary there are other models that do not require information links. One type of
them are MDPs [5, 9], which assume that all the variables are observable. Other type are decision
analysis networks (Sec. 5.2), which use revelation arcs to indicate when some variables become
observed [15].

3. Overview of the format

The recommended extension for ProbModelXML files is .pgmx, which stands for probabilistic
graphical models in XML.
The skeleton of a ProbModelXML file is:

10

p Disease [1]

Disease [0]

< Quality of life [0] A
Dec:Test [0]

‘ Dec: Therapy [0] ‘

.

< Cost of test [0] > < Cost of therapy [0] >

N,

< Economic cost [0] >

Figure 3: A compact representation, such as the one in Fig. 2, can be made even more concise
by omitting the nodes that repeat themselves, with identical potentials, after a certain time slice.

11

<?xml version="“1.0" encoding=“UTF-8" ?>

<ProbModelXML formatVersion=string >
<ProbNet type=enumNetworkType />,
<InferenceOptions />(|
<Policies />
<Evidence />

</ProbModelXML>

The first line specifies that the file contains an XML document using version 1.0 of the XML
specification. The default encoding for ProbModelXML is UTF-8, the same as for XML. There-
fore, it is redundant to write encoding="“UTF-8”, but we prefer to say it explicitly to avoid any
confusion. It is allowed to use a different encoding, but we do not recommend it.

The second line indicates that the file uses the ProbModelXML format. The version is a string
consisting of three non-negative integers, separated by dots, as explained in Section 3.2.

3.1. File content

In most cases, the content of a ProbModelXML file is a probabilistic network, given by a set
of variables, a set of links, a set of potentials, and some additional information (Sec. 4). The
inference options may include, for example, an inference algorithm chosen by the designer of
the network or a near-optimal elimination ordering obtained off-line—see Section 6.1. These
options can be stored with the network in order to evaluate it more efficiently.

Each policy is associated with a decision; it may be an optimal policy obtained by an algo-
rithm or a sub-optimal policy imposed by the user (for example, to perform what-if reasoning
[26])—see Section 6.3. Policies can be stored independently of the network for which they are
intended, but in some cases it may be convenient to store them together. For example, a POMDP
designed for controlling a robot may be stored in the same file as a near-optimal policy obtained
off-line.

The evidence consists of one or several evidence cases, each one consisting in turn of one or
several findings (Sec. 6.2). In general, evidence should not be stored with the network, but in
some cases the user might decide to store them together in the same file to do some experiments.

3.2. Version numbers

As mentioned above, the version is indicated by string consisting of three non-negative integers.
A change in the third one (for example, from 1.0.0 to 1.0.1) indicates an extension of the format
due to the inclusion of new tags or attributes or to enlarging the domain of some enumerations—
for instance, by defining a new type of network or potential. This way, a parser for version x.y.z
should also be able to parse a file in version x.y.Z', with 7 > z, unless it encounters a property that
it does not recognize. If the extension of the format is due to a new value for an enumeration (for
example, a new type of network), the parser should throw an error or an exception. However,
when the parser encounters a new tag or a new attribute, it may ignore the unrecognized item,
limiting itself to writing a warning to the standard output or to the log file.

12

An increase in the second integer (for example, from 1.0.0 to 1.1.0) means a change in the
syntax that specifies the model. For example, if a version uses the syntax <Coordinates>integer
integer</Coordinates>, and a posterior version uses the syntax <Coordinates x=integer
y=integer />, this change would imply an increase in the second of the integers that denote the
version. Therefore, a parser for version x.y.z will throw an error or an exception when the file is
encoded in version x.y’.z/ with y > y/; at least, it should warn the user that the parsing may give
unpredictable results.

A change in the first integer (for example, from 1.0.0 to 2.0.0) would mean a drastic change
in the specification of the ProbModelXML format, which is not expected to occur.

4. Specification of probabilistic networks

In this section we describe how to encode probabilistic networks in the ProbModelXML format.
The skeleton for a probabilistic network is as follows:

<ProbNet type=enumNetworkType >
<AdditionalConstraints /> i
<Comment /> |
<DecisionCriteria /> |
<Agents /> |
<Language />(_|
<AdditionalProperties /> |
<Variables />
<Links />
<Potentials />

</ProbNet>

4.1. Network properties

In this section we describe some of the general properties of probabilistic networks.

4.1.1. Network type

The tag ProbNet is necessarily followed by an attribute type, which indicates the type of net-
work. It is an enumerate, which in the current version of the format can take the following values
(see also Table 5, page 59):

1. BayesianNetwork [34],
2. MarkovNetwork [34],
3. InfluenceDiagram [22],

4. LIMID (limited memory influence diagram) [28],

13

5. DecisionAnalysisNetwork (DAN) [15],

6. DynamicBayesianNetwork [13],

7. SimpleMarkovModel [16],

8. MDP (Markov decision process) [5], including factored MDPs [8, 9],

9. POMDP (partially observable MDP) [3], including factored POMDPs [10] and
MOMDPs [33],

10. Dec-POMDP (decentralized POMDP) [6],

11. DynamicLIMID [42, 43].

Decision analysis networks (DANs), which have specific features not available in other mod-
els, are treated in Section 5.2.

Dynamic Bayesian networks, simple Markov models, MDPs, POMDPs, and dynamic LIM-
IDs are temporal models. They have been explained in more detail in Section 2.4. The syntax
for encoding them is given in Section 5.1.

4.1.2. Constraints

The main purpose of constraints is to prevent the user from doing illegal operations at the graph-
ical user interface (GUI), such as giving an empty name to a variable or creating a cycle in a
Bayesian network. Most software tools implement these constraints by embedding them in the
source code of the GUI. However, in OpenMarkov constraints are objects that can be assigned to
networks. Appendix A describes the constraints associated to each network type by definition—
see Table 5.

Additionally, in OpenMarkov the user can assign to a network other constraints that are not
imposed by the network type; they are denoted by “O” (meaning “optional”) in Table 5. For
example, OnlyFiniteStates is an optional constraint. An algorithm that applies only to Bayesian
networks with finite-state variables must make sure that the network satisfies this constraint.
The fastest way to check it is to see whether the network has this constraint assigned as an
object; if not, the algorithm can ask the constraint to examine the network, which involves a
higher computational cost. Another use of constraints may be, for example, to prevent a learning
algorithm from adding more than n parents to a node.

The syntax for assigning optional constraints to a network is as follows:

<AdditionalConstraints>
<Constraint name=string>
<Argument name=string value=string >o ,
</Constraint>| ,
</AdditionalConstraints>

14

Example 1. We might use the following constraint to prevent that a learning algorithm assigns
more than 5 parents to each node:

<Constraint name=“MaxNumParents’>
<Argument name=“numParents” value="“5" >
</Constraint>

4.1.3. Comment

The tag Comment denotes a comment in HTML format. The main reasons for writing the
comments in HTML rather than in plain text is the possibility of having formatted text and
URLs.

In order to avoid conflicts between OpenMarkov’s XML syntax and the HTML comment, it
is advisable to use the CDATA option of XML languages.

Example 2. The comment “This network was created by Arias & Diez.” can be encoded as
follows:

<Comment><![CDATA|
<html>
<body>
This network was <i>created</i>
by Arias & Diez.
</body>
</html>
]]></Comment>

93]

Please note that the accented character ‘i’ can be encoded directly, but it would also be possible
to use the HTML encoding “í”. The ampersand in “Arias & Diez” cannot be encoded
directly because it is a reserved character in HTML.

A comment can also be stored as plain text instead of HTML, but it is still necessary to scape
the reserved XML characters, such as ‘<’, *>’, and ‘&’, as in the following example:

<Comment >This network was created by Arias & Diez.</Comment >

4.1.4. Decision criteria

The tag DecisionCriteria is used in multicriteria decision making. as follows:

<DecisionCriteria>
<Criterion name=string>
<AdditionalProperties /> |
</Criterion>; ,
</DecisionCriteria>

15

Example 3. In a probabilistic network for cost-effectiveness analysis we may include the follow-
ing declaration:

<DecisionCriteria>
<Criterion name="“cost” />
<Criterion name="effectiveness” />
</DecisionCriteria>

Then, each utility variable can be associated to a particular criterion, as explained in Sec-
tion 4.2.

4.1.5. Agents

The tag Agents is used for encoding multi-agent systems. Currently, the only type of multi-
agent network in ProbModelXML is Dec-POMDP—see Appendix A, Table 5. Its skeleton is:

<Agents>
<Agent name=string>
<AdditionalProperties /> |
</Agent>2,.n
</Agents>

Example 4. In a surveillance system we might have two agents:

<Agents>
<Agent name="video camera” />
<Agent name="“mobile robot” />
</Agents>

Then, each decision variable can be assigned to a particular agent—see Section 4.2.

4.1.6. Language

This tag indicates the language in which the names of variables and states are written. It is
possible to indicate the name of a variable or a state in a different language by using the tag
AdditionalProperties, as shown in Example 6.

4.1.7. Additional properties

This tag permits to extend the ProbModelXML format by representing other properties defined by
the user.

An additional property can appear in the context of a ProbNet, an Evidence Case, a Criterion
(for multicriteria decision making), an Agent (in multi-agent models), a Variable, a State of a
variable, a Potential and a Policy. In all the cases, the skeleton for encoding additional properties
is as follows:

16

<AdditionalProperties>
<Property name=string value=string /> ,
</AdditionalProperties>

The attributes defined in each additional property are:

* name: it is a string but if the additional property comes from another system, the name
contains a previous ‘“context” separated from the real name with a point. To translate
strings from a language to others we can add a localization suffix with two letters.

* value: a string.

Example 5. In Elvira each variable has a name, which is a string with some restrictions, for
example, that it cannot contain spaces. For this reason, it also offers the possibility of assigning
a title to each variable, which is a string without those restrictions. However, in ProbModelXML
titles are not necessary, because this format does not impose any restriction on the names of
variables. When translating a network from Elvira into ProbModelXML, we may be interested in
keeping its title, such that we can later translate it back to Elvira. A way to do it is to store it in
ProbModelXML as an additional property:'3

<Property name="elvira.title” value=*X ray result”/>

Example 6. As mentioned in Section 4.1.6, each network has a tag Language which indicates
in what language the names of variables and states are written. Therefore, when displaying the
network in that language (for instance, at the GUI), those names are used. However, if the user
prefers to visualize the network in a different language, the GUI will use the name assigned as an
additional property, if available. For example, in a network using English as the default language,
we may have the following definition:

<Variable name=“Fever” .. .>
<AdditionalProperties>
<Property name="name.es’ value="“Fiebre” />
<Property name="name.fr” value=“Fievre” />
<Property name="“name.de” value=“Fieber” />
</AdditionalProperties>

When displaying the network in English, the name of this variable will appear as “Fever”, when
in Spanish, as “Fiebre”, etc.

13 An alternative would be to use Elvira’s title as ProbModelXML’s name, and store Elvira’s name as an additional
property:

<Property name="‘elvira.name” value="X_ray_result”/>

17

4.2. Variables

The skeleton for encoding a variable is:

<Variable name=string type=enumDomainType role=enumNodeRole>
<Comment />
<AdditionalProperties /> |
<Coordinates x=integer y=integer />,
<Criterion name=string >¢. |
<Agent name=string > 1
<AlwaysObserved>(|
specification_of_domain
</Variable>

The three attributes of a variable—name, type, and role—are mandatory. The name is a
string. The type is an enumerate that can take on three values: FiniteStates, Numeric, and Dis-
cretized. The role is an enumerate that can take on three values: Chance, Decision, and Utility.

Comment and AdditionalProperties have the same structure and meaning as for
probabilistic networks (Secs 4.1.3 and 4.1.7 respectively).

The Coordinates give the position of the node in the GUI. Following the Java convention,
we assume that the origin of coordinates is the upper left corner, as shown in figure 4. Therefore,
a network created with a tool that follows the C++ convention (which places the origin of coor-
dinates in the lower left corner), such as Netica, GeNIE, or Hugin, will look upside down when
opened with a Java tool, such as Elvira or OpenMarkov.

>

60

180

\ 4

Figure 4: ProbModelXML follows the Java convention of placing the origin of coordinates at the
upper left corner.

The Criterion tag is present if and only if role=*Utility” and the network contains a
DecisionCriteria tag (Sec. 4.1.4). Obviously, the string that denotes the name of the
criterion must be one of the criteria defined by the tag DecisionCriteria of the network.

Similarly, the Agent tag is present if and only if role=*Decision” and the network contains
an Agents tag (Sec. 4.1.5). Obviously, the string that denotes the name of the agent must be
one of those defined by the Agents tag.

18

The tag <AlwaysObserved> is used as a complement of revelation arcs, and therefore it
is incompatible with the constraint NoRevelationArcs. By default all types of network have this
constraint, except decision analysis networks (see Table 5), which implies that this tag can only
be present in this type of network (cf. Sec. 5.2).

The specification of domain for each type of variable is explained in the next subsections.

4.2.1. Domain of a finite-states variable

The domain of a finite-states variable is specified by the tag <States>, which encloses a list of
states, as follows:

<States>
<State name=string>
<AdditionalProperties /> |
</State>; ,
</States>

The tag AdditionalProperties plays the same role as in the case of networks and
variables.

The order of the states in the ProbModelXML format is relevant, as it will affect the probabil-
ities and utilities assigned to them. We recommend to follow this convention for the most typical
domains, which in general implies to order them in increasing severity degrees: “false” < “true”;

“absent” < “present”; “no” < “yes”; “negative” < “null” < “positive”; “absent” < “mild” <
“moderate” < “severe”’; “low” < “medium” < “high”.

Example 7. The domain for a finite-states variable might be as follows:

<States>
<State name="“absent” />
<State name="“present” />
</States>

4.2.2. Domain of a numeric variable

The domain of a numeric variable is specified by two thresholds, that define an interval, plus a
number that denotes the precision with which its value is measured, as explained below.

<Unit>string</Unit>(|
<Precision>decimalNumber</Precision>
<Thresholds>

<Threshold value=number belongsTo=enumSide />»
</Thresholds>

19

The tag <Unit> specifies the unit of measure which is given by a string, for example, “euro”
or “second”.
The tag <Precision> determines the rounding of the numerical values of this variable.

Example 8. <Precision>0.0]</Precision> means that T will be rounded down to 3.14;
if the precision were 1, 0.1, 0.001, 0.5, 0.25, or 0.05, it would be rounded to 3, 3.1, 3.142, 3.0,
3.25, or 3.15, respectively.

A threshold separates two intervals. The attribute belongsTo is an enumerate whose possible
values are “Left” or “Right”. The former indicates that the threshold (its numerical value) belongs
to the interval on the left, while the latter means that it belongs to that on the right.

Example 9. The interval [0,1] can be defined as follows:

<Thresholds>
<Threshold value="“0" belongsTo="Right” />
<Threshold value=“1" belongsTo="Left” />
</Thresholds>

while the interval (0, 1) would be specified as follows:

<Thresholds>
<Threshold value="“0" belongsTo="Left” />
<Threshold value=“1" belongsTo="Right” />
</Thresholds>

Similarly, the interval (—oo,4o0) can be encoded as follows:

<Thresholds>
<Threshold value="“~Infinity” />
<Threshold value="“+Infinity” />
</Thresholds>

because when the value of a threshold is —oo or +oo the attribute belongsTo does not make sense.

4.2.3. Domain of a discretized variable

Given that a discretized variable can be viewed as being finite-states and numeric at the same
time, its skeleton has the tags of both:

<Unit />
<Precision />
<Thresholds>
<Threshold />3 ,
</Thresholds>
<States />, ,

20

A set of i thresholds defines i — 1 intervals, i.e., i — 1 states. Given that a finite-state variable
must have at least two states (in our opinion, a one-state variable would not make sense), the
specification of a discretized variable must contain at least three thresholds (i > 3). This contrasts
with the specification of a numeric variable, which involves only two thresholds because in this
case there is only one interval (cf. Section 4.2.2).

Example 10. A variable whose domain is (—oo,+o0) can be discretized in three intervals:
(—0,0), [0,0], and (0,4o0), as follows:

<Variable name="“Balance” type="“Discretized”
role="Chance” order="Increasing” >
<Coordinates x="100" y="300" />
<Unit>euro</Unit>
<Precision>0.0l1</Precision>
<Thresholds >
<Threshold value="“~Infinity” />
<Threshold value=“0.00" belongsTo="“Right” />
<Threshold value=“0.00" belongsTo="Left” />
<Threshold value="“+Infinity” />
</Thresholds>
<States>
<State name="“negative” />
<State name="“null”’/>
<State name="positive” />
</States>
</Variable>

Please note that there are two thresholds having the same numerical value, but the attribute
belongsTo is “Right” for the first and “Left” for the second; the interval delimited by these
thresholds contains exactly one value.

The attribute declaration order="Increasing” means that the ordering of the states is the same
as the ordering of the thresholds. This is the most frequent situation. For example, higher tem-
peratures entail higher degrees of fever. However, there are some cases in which lower values of
the numerical measurement entail higher degrees of severity; in this case, we use the declaration
order=*Decreasing’.

Example 11. In cardiology, the smaller the area of a heart valve, the more severe the stenosis:'*

<Variable name="“Mitral stenosis” type="Discretized”
order=“Decreasing” role="“Chance” >
<Coordinates x="563" y="785" />

4“The 2 in “mm?” is a special character (number 0xb2 in Unicode), not a superindex, because the argument of the
Unit tag is plain text, not HTML.

21

<Unit>mm?</Unit>
<Precision>(0.1</Precision>
<Thresholds>
<Threshold value="“0.0" belongsTo="Left” />
<Threshold value=“1.0" belongsTo="Left” />
<Threshold value=“1.5" belongsTo="Left” />
<Threshold value="“2.0” belongsTo="Left”/>
<Threshold value=“15.0" belongsTo="Left” />
</Thresholds>
<States>
<State name="no stenosis”/>
<State name="mild stenosis’/>
<State name="moderate stenosis’/>
<State name="‘“severe stenosis’’/>
</States>
</Variable>

The first state, no stenosis, corresponds to the last interval, (2.0, 15.0], and vice versa. It might
seem more coherent that the order of the states were the same as that of the thresholds but this
would contravene our recommendation—in Section 4.2.1—that the order of the states should be
absent < mild < moderate < severe, which is important when working with canonical models.

4.3. Links

The structure of the list of links is similar to that of the list of variables; it is enclosed between
the tag Links. Its skeleton is as follows:

<Links>
<Link directed=boolean >
<Variable name=string >
<Comment /> |
<AdditionalProperties /> |
<Potential type=enumPotentialType role="“Restrictions” >(_;
<RevelationConditions>(
</Link>(,
</Links>

The declaration directed="true”/*“false” means that the link is directed/undirected.
Example 12. The link A — B can be represented as follows:

<Link directed="true >
<Variable name=“A" />
<Variable name=“B” />
</Link>

22

The Potential with role=*Restrictions” is used to indicate that some values of one of the
variables are incompatible with some values of the other (see Section 5.2). This tag cannot be
present when the network has the constraint NoRestriction. The tag RevelationConditions
indicates that some values of the first variable reveal the value of the second (see again Sec-
tion 5.2). This tag is incompatible with the constraint NoRevelationArc. Given that currently all
the network types except decision analysis networks (cf. Table 5 on page 59) have these two con-
straints, these two tags can only be present when the network type is DecisionAnalysisNetwork.

4.4. Potentials

A potential y defined on a set of variables V is a function that assigns a real number to each
configuration v of X. The skeleton of a potential in ProbModelXML is:

<Potential type=enumPotentialType role=enumPotentialRole >
<Comment /> |
<AdditionalProperties /> |
specification of the potential

</Potential>

ProbModelXML can represent several types of potentials, some of them with subtypes. The
subtype is indicated by the attribute type, that has a different set of values for each potential type.
One optional attribute is function, whose value is a String with the function name and only exists
when type=function.

The enumerate enumPotentialType can be any of the potentials defined in the next sections.
In the case of a dynamic model, it can also be any of the potentials defined in Section 5.1.3.

The role of a potential is used only for top level potentials, not for the subpotentials, i.e.,
for potentials that make part of another potential. The enumerate enumPotentialRole has these
possible values:

1. JointProbability: there is a table or function in the potential that determines the probability
of each possible configuration of the variables of the potential.

2. ConditionalProbability: there is a table or probability function of one conditioned variable
and between zero and several conditioning variables.

3. Utility: there is a table or function that determines the utility of each possible configuration
of the variables of the potential.

4. Policy: defines the value of a variable decision that maximizes an objective.

5. Restrictions: indicates that some pairs of values of the variables involved in a link are
incompatible, as explained in Section 5.2.

23

4.4.1. Uniform

It is the most basic potential. It admits any type of variables: finite-states, numerical, discretized,
and any combination of them. When the role is ConditionalProbability this potential represents
a family of probability distributions, P(y|x), in which the probability of Y is always the same. In
particular, if Y is a finite-states variable,

1
VX, P(y|x) = |7 ,

where |Y| is the number of values of Y; if Y is continuous, then

vx, ¥y, Wy, p(y|x) = p(y/|x)

and
VX, /p(y\X) dy=1.

When the role is jointProbability this potential represents a probability distribution P(x) such
that

P(x) =

B

where |X| is the number of configurations of the set of variables X.
When the role is Utility, this potential represents a null utility function:

vx, U(x) =0.
The skeleton of a uniform potential is:

<Potential type="“Uniform” role=enumPotentialRole >
<UtilityVariable name=string /> |
<Variables>
<Variable name=string>|_,
</Variables>(
</Potential>

Please note that this specification contains no numerical information, because it is not necessary.

The reason for having this type of potential in our format is that when editing a new network
with a GUI, it is convenient to assign to each chance or utility node a potential that admits any
number and types of variables, does not require any parameter, and does not change when we
modify the domain of any of the variables on which the potential is defined.

24

4.4.2. Table

One of the most basic types of potentials is a table, defined on a set of finite-states or discretized
variables.!> Its skeleton is as follows:

<Potential type="“Table” role=enumPotentialRole >
<UtilityVariable name=string /> i
<Variables>
<Variable name=string>1
</Variables>(
<Values>decimal_numbers</Values>
<UncertainValues>
<Value /> ,
</UncertainValues>(
</Potential>

The tag UtilityVariable makes sense only if role="Utility”. When role="“Conditional-
Probability”, the conditioned variable is the first in the list of Variables.

The tag Values denotes the numerical values that define the potential. A constant can be
represented as a table that does not depend on any variable; in this case, the tag Values contains
only one decimal number, as we will see in Example 19. The tag UncertainValues is used
to give more information about each parameter, as explained below.

a) Order of the values

The values enclosed by the tag Values or UncertainValues increase in accordance with
the ordering of the variables within the tag Variables. This remark is important because the
ordering of the values within each potential is specific of each format.

Example 13. The utility potential U(a,b) defined in Table 1 can be encoded as follows:

Position
a b in table Ula,b)
no no 0 =5
yes no 1 -5
no yes 2 10
yes yes 3 80

Table 1: Order of the values in the potential U (a,b).

5Tn fact, any potential that involves only finite-states or discretized variables—such as an ICI potential and, in
some cases, a tree, a logistic regression, or a Weibull regression—is equivalent to a table. Therefore, an easy way of
doing inference is to convert them to explicit tables, although for some of them there are much more efficient ways

to do it.

25

<Potential type="“Table” role="Utility” >
<UtilityVariable name="“Cost of test”/>
<Variables>
<Variable name=“A"/>
<Variable name=“B”/>
</Variables>
<Values>-5-510 80</vValues>
</Potential>

Please note that in Table 1 and in the specification of the Values of the potential the first
variable that changes is the first variable on which the potential depends, and so on.

Example 14. The conditional probability P(c|a,b) defined in Table 2 can be encoded as follows:

Position
¢ a b in table P(cla.b)
no no no 0 0.9
yes no no 1 0.1
no yes no 2 0.7
yes yes no 3 0.3
no no yes 4 0.9
yes no yes 5 0.1
no yes yes 6 0.2
yes yes yes 7 0.8

Table 2: Order of the values in the potential P(c|a,b).

<Potential type="“Table” role="“ConditionalProbability” >
<Variables>
<Variable name=“C”’/>
<Variable name=“A"/>
<Variable name=“B”/>
</Variables>
<Values>090.10.70.30.90.10.20.8</Values>
</Potential>

b) Uncertainty about the parameters (values) of the potential

As mentioned above, the uncertainty about the parameters can be expressed in the form of second
order probabilities. The skeleton for defining a Value within the UncertainValues tag is
as follows:

<Value distribution=enumDistributionType name=string>arguments</Value>

26

An empty tag, <Value/>, means that there is no uncertainty for the corresponding parameter.

The name of the parameter is optional, but it makes more sense to assign a name to a pa-
rameter when we intend to perform sensitivity analysis on it than when the numeric value of a
parameter is known with precision.

The types of distributions are shown in Table 3. The Exact distribution is used when we know
with certainty the value of the parameter, v; properly speaking, this is a Dirac delta distribution,
but we believe that the name Exact is more intuitive for most users. The Range distribution means
that the probability of the parameter is uniform inside the interval [a,b] and 0 outside. The Tri-
angular distribution implies that the probability of the parameter is zero when v < a and when
v > b, and reaches its maximum at v = c. Normal, LogNormal, and Gamma are the well-known
statistical functions. Gamma-myv, where “mv” stands for “mean and variance”, is an alternative
parametrization of the Gamma distribution—see Example 15. The “distribution” Complement is
used to make the probabilities add to 1; its argument, v, is used to distribute the remaining prob-
ability proportionally among all the parameters having a Complement distribution, as explained
in the Examples 16 and 17. The use of the Dirichlet distribution is explained in Example 18.

Distribution | Parameters Cond%t%o.ns COIldltl(.)I?S. Domain Mean
for utilities for probabilities
Exact v none 0<v<1 {v} %
Range a,b a<b 0<a<b<l [a,b] ath
0<a<c

Triangular a,b,c { ascs<b } c ; b ; 1 (a,b) atbtc

a<b 3
a<b

Normal u,o >0 incompatible (—o0, 4-o0) u

LogNormal u,o >0 incompatible (0,+0) eli+o’/2

Gamma k,0 k>0,0>0 incompatible [0, +) kO

Gamma u,o u>0,6>0 incompatible [0, +o) u

Beta o, B meaningless oa>0,>0 (0,1) aLHS

Dirichlet o incompatible o>0 (0,1) *

Complement % incompatible v>0 [0,1] *

Table 3: Distributions for specifying second order probabilities (x = the mean of this distribution
depends not only on its own parameters, but also on the parameters of other distributions).

Example 15 (Gamma distribution). Let us assume that the cost of a treatment is 0 when no
therapy is applied, and 300 € if we apply a certain therapy. The uncertainty about the cost of
the therapy may be represented by a Gamma distribution with a mean u = 300 and a variance
6 = 30. Using the standard representation of the Gamma, in which u =k and 6 = k6, we have
k = 100 and © = 3. The utility potential may be encoded as follows:

161t may seem redundant to give explicitly the Values of a potential when they can be obtained from the

27

<Potential type="“Table” role="Utility” >
<UtilityVariable name="“Cost of treatment”/>
<Variables>
<Variable name=“Treatment”/>
</Variables>
<Values>0 300</Values>
<UncertainValues>
<Value distribution="Exact”’>0</Value>
<Value distribution="Gamma” name="cost of therapy”’>100 3</Value>
</UncertainvValues>
</Potential>

The same potential can be encoded using the Gamma-mv distribution, which is more intuitive in
this case, because its parameters are the mean and the variance:

<UncertainValues>

<Value distribution="Exact”’>0</Value>

<Value distribution="“Gamma-mv’’ name="cost of therapy”>300 30</Value>
</UncertainValues>

The above example refers to a utility potential, in which there is no constraint among the
values of the potential. However, in the case of a joint probability potential P(x) there are some
constraints on the types and the parameters of the distributions (the second-order parameters),
because the probabilities (the first-order parameters) must add up to 1. Similarly, in the case of a
conditional probability potential P(y|x) the probabilities corresponding to the same configuration
of x must add to 1. These constraints can be encoded in the following rules:

1. If one of the distributions is Exact with v # 0, Range, or Triangular, then:
* all the others must be either Exact, Range, Triangular, or Complement;
* at least one of the others must be Complement;
* the sum of the maxima of all the distributions (different from Complement) cannot
be greater than 1.

2. If one of the distributions is a Beta, then:

* all the others must be Exact with v = 0 or Complement;

UncertainValues. However, it is not always clear how to obtain the former from the latter; for example, in
the case of a triangular distribution, the value might be either the mean of the distribution, (a +b+ c) /3, or its
maximum, c¢. Another reason for having both tags in the specification of a potential is that the user might wish to
have Values inconsistent with the mean of the distributions in UncertainValues; we found this situation when
building a probabilistic model aimed at reproducing the results of a model built by a different research group. A third
reason is that there might be a parser that does not know how to obtain the Values from the UncertainvValues;
that parser might read the Values and ignore the UncertainValues tag; in that case, the network might be
used for inference, but not for sensitivity analysis.

28

* at least one of the others must be Complement.
3. If one of the distributions is a Dirichlet, then:

¢ all the others must be Exact with v = 0 or Dirichlet;
¢ at least one of the others must also be a Dirichlet.

The next examples illustrate the scenarios described by each of these rules, respectively.

Example 16 (Exact, triangular, and complement distributions). Let us assume that there are four
models of cars. We know that 15% of the cars are of the first model and between 0.08 and 0.12
are of the second model; we also know that the number of cars of the third model is twice the
number of cars of the fourth. Then the prior probability for the variable “Car model” can be

given as follows:""

<Potential type="“Table” role="jointProbability” >
<Variables>
<Variable name=“Car model”/>
</Variables>
<Values>0.150.100.25 0.5</vValues>
<UncertainValues>
<Value distribution="Exact”>0.15</Value>
<Value distribution="Triangular”’>0.08 0.12 0.10</Value>
<Value distribution="Complement”>1</Value>
<Value distribution="Complement”’>2</Value>
</UncertainvValues>
</Potential>

When creating a sampled copy of this potential, the first value will always be 0.15. The second
value will be sampled from the triangular distribution, and the remaining probability will be
assigned proportionally to the parameters of the Complement distributions. For example, if the
sampled value obtained for the second parameter is 0.097, the values for the sampled potential
will be (0.15, 0.097, 0.251, 0.502).

Example 17 (Beta and complement distributions). The sensitivity and specificity of a test with
respect to a disease can be given as follows:

<Potential type="“Table” role="“ConditionalProbability” >
<Variables>
<Variable name="“Result of test” />
<Variable name=“Disease” />
</Variables>

17A joint probability that depends on only one variable can be understood as a conditional probability with no
conditioning variables.

29

<Values>0.97 0.03 0.05 0.95</Values>
<UncertainValues>
<Value distribution="Beta” name="specificity”’>97 3</Value>
<Value distribution="Complement”’>1</Value>
<Value distribution="Complement”>1</Value>
<Value distribution=""Beta” name="sensitivity”’>95 5</Value>
</UncertainValues>
</Potential>

Example 18 (Dirichlet distribution). Given that the Beta distribution is a particular case of the
Dirichlet, the potential in Example 17 can also be encoded as follows:

<Potential type="“Table” role="“ConditionalProbability” >
<Variables>
<Variable name=“Result of test”/>
<Variable name="“Disease”’ />
</Variables>
<Values>0.97 0.03 0.05 0.95</Values>
<UncertainValues>
<Value distribution="Dirichlet” name="specificity”>97</Value>
<Value distribution="Dirichlet”’>3</Value>
<Value distribution="Dirichlet”’>5</Value>
<Value distribution="Dirichlet” name="sensitivity”’>95</Value>
</UncertainValues>
</Potential>

This potential encodes two Dirichlet distributions: the first one, with parameters 97 and 3, is
used to sample the values of P(—y|—x) and P(+y|—x); the second, with parameters 5 and 95, is
used to sample the values of P(—y|+x) and P(+y|+x).

Please note that, according with the above three rules, it is possible that all the distributions
be of type Complement. In this case there would be no uncertainty, but this specification might
be used to give unnormalized probability values, from which the normalized Values would be

computed.

4.4.3. Delta

This potential is used to assign a probability distribution to a variable whose value is known with
certainty, such that the probability is O for all the values except one. Its skeleton is very simple:

<Potential type=“Delta” role=enumPotentialRole>
<Variable name=string/>
<State>string</State>(
<StateIndex>non-negative_integer</StateIndex>(|
<NumericValue>number</NumericValue>(|
</Potential>

30

where role is either jointProbability or ConditionalProbability, and exactly one of the tags State,
StateIndex, and NumericValue, must be present in each case. The tags State and
StateIndex are used for finite-states and discretized variables to denote the state whose prob-
ability is 1; the probability for the other states is 0. In this case, the potential represents a
Kronecker delta. The tag NumericValue is used for numerical variables to denote the value
on which all the probability density concentrates. In this case, the potential represents a Dirac
delta.

This type of potential might be used to assign a prior probability to a variable without parents,
but in general it does not make sense to have a “variable” whose value is always the same. The
typical use of this type of potential is inside a tree, to indicate, for instance, that if variable X
takes on the value x then variable Y takes on the value y—see Example 32 in Section 5.1.3.b.

4.4.4. Tree and ADD
a) Trees

There may be several advantages of using trees instead of tables when the potential has a sub-
structure that repeats itself several times. First, it would be boring and time-consuming to intro-
duce the same parameters again and again in a table. Second, it is easier to maintain a model
in which each parameter appears only once. Third, in sensitivity analysis, having a parameter
that appears several times in a table is different from having several parameters, even if all of
them have the same probability distribution; the difference becomes apparent when sampling the
potential. Fourth, a tree may reduce the storage space, both in disk and in working memory. And
fifth, inference can be more efficient with trees than with tables [12].

The skeleton of a tree (which is a particular case of an ADD, as we will see below) is very
simple:

<Potential type="“Tree/ADD” role=enumPotentialRole >
<UtilityVariable name=string />q. |
<Variables>
<Variable name=string /> ,
</Variables>(
<TopVariable name=string />
<Branches>
<Branch /> ,
</Branches>
</Potential>

The tag Variables specifies the set of variables on which the potential is defined; the
Variables must be declared for a top-level tree, but it is not necessary to declare them for em-
bedded trees, as we will see in the examples below. If role=*Utility”, the UtilityVariable
must be specified, but this variable cannot appear inside the tree. The other Variables may
appear explicitly inside the tree/ADD or not.

31

The potential must have at least one variable—in addition to the UtilityVariable and
the conditioned variable—that will be used as the TopVariable. If this variable is finite-states
or discretized, the skeleton for its branches is:

<Branch>
<States>
<State names=string/>o. ,
</States>
<Potential />
</Branch>

Each state of the TopVariable must be assigned to exactly one of the branches of the tree, but
a branch may have several states assigned.
If the TopVariable is numerical, the skeleton for its branches is:

<Branch>
<Thresholds>
<Threshold value=number belongsTo=enumSide / >»
</Thresholds>
<Potential />
</Branch>

The thresholds of the branches must cover the domain of the variable (Sec. 4.2.2), without over-
lapping, in the right order; i.e., the first threshold of the first branch must be the same as the first
of the thresholds that define the domain of the variable; the second threshold of the last branch
must be the same as the second of the thresholds that define the domain of the variable; and
the second threshold of the i-th interval must be the same as the first threshold of the (i+1)-th
interval.'®

Using thresholds for a numerical variable that appears within a tree can be interpreted as
a discretization of that variable. The difference with a discretized variable is that the latter is
discretized when defining it (see Sec. 4.2.3), once and forever, while the “discretization” of a
numeric variable is done within a tree, and therefore may different for each tree involving that
variable.

The leaves of a tree are always non-tree potentials, as shown in the following examples.

Example 19. The utility potential U (a,b) defined by Table 1 (page 25), which is equivalent to
the tree in Figure 5, can be represented by a combination of tree and table potentials:

<Potential type="“Tree/ADD” role="Utility” >
<UtilityVariable name="“U"/>

8This ordering of the intervals is required only for numerical variables. In the case of discretized variables, each
interval is associated to a state, and the states/intervals can be associated to the branches in any order; it is also
possible to have non-consecutive states/intervals in the same branch.

32

no yes

10 80

Figure 5: A tree for the potential U (a,b).

<Variables>
<Variable name=“A"/>
<Variable name="“B”/>
</Variables>
<TopVariable name=“B”/>
<Branches>
<Branch>
<States>
<State name=“no”/>
</States>
<Potential type="“Table”>
<Values>-5</Values>
</Potential>
</Branch>
<Branch>
<States>
<State name="yes”/>
</States>
<Potential type="“Table”>
<Variables>
<Variable name="A"/>
</Variables>
<Values>10 80</Values>
</Potential>
</Branch>
</Branches>
</Potential>

In this example, the value —5 has been represented as a table that does not depend on any
variable. It may look cumbersome to represent a constant as a table, but it has the advantage
that this way we can express uncertainty about this value by using the UncertainValues tag
of the table, as explained in Section 4.4.2.b. With respect to the node A, we might have used a
subtree with two branches instead of a table, as in Figure 5, but it would occupy more space.

33

Example 20. The conditional probability potential P(c|a,b) shown in Table 2 (page 26) can be
represented as follows:

<Potential type="“Tree/ADD” role="“ConditionalProbability” >
<Variables>
<Variable name=“C"/>
<Variable name=“A"/>
<Variable name=“B”/>
</Variables>
<TopVariable name=“A"/>
<Branches>
<Branch>
<States>
<State name=“no”’/>
</States>
<Potential type="“Table”>
<Variables>
<Variable name=“C"/>
</Variables>
<Values>0.90.1</Values>
</Potential>
</Branch>
<Branch>
<States>
<State name="yes”’/>
</States>
<Potential type="“Table”>
<Variables>
<Variable name=“C"/>
<Variable name="“B”/>
</Variables>
<Values>0.70.3 0.2 0.8</Values>
</Potential>
</Branch>
</Branches>
</Potential>

In this example, the first lines have declared that the potential represents the conditional
probability of C given A and B, therefore each leave in the tree must represent a conditional
probability for C.

The format ProbModelXML allows each variable to appear at several levels of the tree, pro-
vided that the intervals and the sets of states of the branches are coherent, as shown in the fol-
lowing example.

34

Example 21. The potential in Table 4 can be represented by the tree in Figure 6. The root
node A has a branch whose associated interval is (O, 1]. The inner node A has two branches;
their associated intervals, (0,0.5) and [0.5,1], do not overlap and their union is (0,1]. Similarly,
the first node B has a branch for the set of states {b1,b,}. The second node B has two branches;
their associated sets of states, {b } and {b,}, and their union is {by,b,}. Therefore the intervals
and the sets of states for the branches of the tree are coherent.

U(a,b) | a=0 0<a<05 05<a<l1
by 0 10 30
by 0 10 20
by 0 0 0

Table 4: This table can be represented by the tree in Figure 6.

20 30

Figure 6: A tree for the potential U (a,b) defined in Table 4.

b) Algebraic decision diagrams

An algebraic decision diagram (ADD) is very similar to a tree, as it is also an acyclic directed
graph (ADG). The only difference is that ADDs may contain loops, while trees do not. Therefore,
trees are a particular type of ADDs in which no node has more than one parent. When a node
in an ADD has more than one parents, the corresponding branch is assigned a label that can be
later referenced in another branch.!'”

19Tt might be more intuitive to assign the label to the potential, but in that case we should define an attribute
for potentials that would be used only inside tree/ADDs. Therefore, it is more coherent to define labels as a tag

35

Put formally, in an ADD, if the TopVariable is finite-states or discretized, the skeleton
for its branches is:

<Branch>
<States>
<State names=string/>o. ,
</States>
<Potential />
<Label>string</Label>(
<Reference>string</Reference>(|
</Branch>

where either Potential or Reference must be present, and the latter is incompatible with
both Potential and Label. In the case of a numerical TopVariable, the skeleton is very
similar:

<Branch>
<Thresholds>
<Threshold value=number belongsTo=enumSide />»
</Thresholds>
<Potential />()..1
<Label>string</Label>(
<Reference>string</Reference>(|
</Branch>

Therefore, ADDs include trees as a particular case in which it is not necessary to use labels nor
references.

Example 22. The ADD in Figure 7 can be represented by the following code, where the potential
-5 has been labeled as “negative utility” in the branch B="“no”, and there is a reference to that
potential in the branch A=“no”:

<Potential type="“Tree” role="Utility” >
<UtilityVariable name=“U”" />
<Variables>
<Variable name="“A"/>
<Variable name="“B”/>
</Variables>
<TopVariable name=“B”/>
<Branches>
<Branch>

of branches. This way the tags and attributes of potentials do not depend on whether they are inside or outside a
tree/ADD.

36

no

no yes
-5 80

Figure 7: An ADD containing a loop.

<States>
<State name="“no”/>
</States>
<Potential type="“Table”>
<Values>-5</Values>
</Potential>
<Label>negative utility</Label>
</Branch>
<Branch>
<States>
<State name="yes”/>
</States>
<Potential type="“Tree”>
<TopVariable name="“A"/>
<Branches>
<Branch>
<States>
<State name="“no”’/>
</States>
<Reference>negative utility</Reference>
</Branch>
<Branch>
<States>
<State name="yes”/>
</States>
<Potential type=“Table”>
<Values>80</Values>
</Potential>
</Branch>
</Branches>

37

</Potential>
</Branch>
</Branches>
</Potential>

4.4.5. ICI model

ICI potentials [14] were designed to represent conditional probabilities, such as P(y|xi,...,x,),
but they can also be used to represent a policy imposed by the user [26]. The term ICI stands for
independence of causal influence. An ICI potential is composed of several subpotentials, one for
each link X; — Y. The skeleton of an ICI potential is:

<Potential type="“ICIModel” role=enumRoleType >
<Model>enumlCIModel< /Model>
<Variables>
<Variable type=enumVariableType [/>> ,
</Variables>
<Subpotentials>
<Potential type=enumSubpotentialType /> ,
</Subpotentials>
</Potential>

In this context, enumRoleType can only be ConditionalProbability or Policy. In turn, enumICI-
Model can take one of this values: {Or, CausalMax, GeneralizedMax, And, CausalMin, Gener-
alizedMin, Tuning}; in the future we might include in ProbModelXML other types of ICI models.
In the rest of this paper, enumSubpotentialType is either Table, Tree/ADD, Delta, or Uniform.

Each subpotential is a potential of two variables: X; — Y, except the last subpotential, which
represents the leak probability [14] and depends only on Y.

Example 23. A noisy Or potential for a node Y with two parents, P(y|x1,x2), can be defined as
a composition of three subpotentials, P(y|xy), P(y|x2), and P(y)—see [14]:

<Potential type=“ICIModel” role="ConditionalProbability” >
<Model>Or</Model>
<Variables>
<Variable name="Y"/>
<Variable name=“X1"/>
<Variable name="“X2"/>
</Variables>
<Subpotentials>
<Potential type="“Table” >
<Variables>
<Variable name="Y"/>
<Variable name="“X1"/>

38

</Variables>
<Values>0.30.7 0.8 0.2</Values>
</Potential>
<Potential type="“Table” >
<Variables>
<Variable name=“Y"/>
<Variable name="“X2"/>
</Variables>
<Values>0.90.1 0.2 0.8</Values>
</Potential>
<Potential type=“Table” >
<Variables>
<Variable name=“Y"/>
</Variables>
<Values>0.999 0.001</Values>
</Potential>
</Subpotentials>
</Potential>

4.4.6. Sum and product

Each potential of type Sum involves m + 1 numeric variables {U,Uj,...,U,,}, where U is usually
a supervalue node?” and each U; is another utility node and a parent of U. If the parents of U; are
X, and X = N;X,, then

m

U(X) = ;Ui(X,‘) . (D)

We require that m > 2 because we must sum at least two utilities. (If m were 1, then U(x) =
U (x;) and node U would be useless.)

The skeleton of the Sum potential is very simple because it does not involve any numeric
parameters:

<Potential type="“Sum” role="“Utility” >
<UtilityVariable name=string />
<Variables>
<Variable name=string>> ,
</Variables>
</Potential>

The definition of the Product potential is analogous.

20In the context of influence diagrams, a utility node is said to be supervalue if its parents are other utility nodes
[41].

39

4.4.7. Linear combination

This type of potential is used when a numeric variable Y depends deterministically on a mixed
set of variables X = D U C (usually these variables will be the parents of node Y in the graph
that represents the probabilistic model), where C = {C},...,C,,} is a set of m numeric variables
and D = {Dy,...,D,} is a set of n finite-states variables, such that ¥ is a linear combination
of the numeric variables (c;) with coefficients (;) that depend on the finite-states or discretized
variables:>!

y=a(d)+ Y Bi(d)-c. 2)

i=1

The potential Sum is a particular case of LinearCombination in whichn =0, a =0, and B; = 1
for all i.

The specification of this model is similar to that of an ICI model, in the sense that each
subpotential B;(d) is associated with a link, C; — Y, and the potential o(d) is similar to the
leak probability, as it is not associated with any link. As each subpotential depends on a set of
finite-states variables, it can be expressed as a table or a tree (or even by an ICI model, but we
think that it does not make sense to apply ICI models in this context). The skeleton would be as
follows:

<Potential type=“LinearCombination” role=“Utility”>
<UtilityVariable name=string />
<Variables /> ,
<Subpotentials>
<Subpotential type=enumSubpotentialType [/>> ,
</Subpotentials>
</Potential>

We have restricted the role to Utility because we think that it does not make sense to use this
kind of potential to define probability distributions; however, we might relax this restriction
in the future. The tag Variables encloses first the m numeric variables (m > 1) and then
the n finite-states variables (n > 0). The tag Subpotentials encloses the m + 1 subpoten-
tials, {ou(d),B1(d),...,Bn(d)}.>*> As mentioned above, enumSubpotentialType is either Table,
Tree/ADD, Delta, or Uniform. Each subpotential depends on the finite-states variables D (or on
a subset of them).

Example 24. In cost-effectiveness analysis, the net health benefit of an intervention [40] is given
by
NHB=E—-\-C, 3)

2IThis type of interaction was proposed in [34, sec. 7.2] for networks consisting only of numeric variables. It
is also used in DANs [15] when Y is a supervalue node and the set of parents of ¥ (X = Pa(Y)) consists of some
utility nodes—which represent numeric variables, by definition—and some chance and decision nodes representing
finite-states variables.

22We have assumed that m > 1 because if there were no numeric variables, then the only subpotential would be
o(d), and it would be much more simple to use directly a Table or a Tree/ADD instead of a LinearCombination.

40

where E is the effectiveness, C is the economic cost, and A is a parameter that transforms the
effectiveness into a monetary scale; clearly, it depends on the wealth of the country. Assuming
that the variable Country takes on two values, developingCountry and developedCountry, we
may have A(developingCountry) = 20,000 and A(developedCountry) = 30,000. Then, the above
equation may lead to the following potential:

<Potential type=“LinearCombination” role=“Utility”>
<UtilityVariable name="“Net health benefit” />
<Variables>
<Variable name="Effectiveness” />
<Variable name="Cost” />
</Variables>
<Subpotentials>
<Potential type="“Table”>
<Values>I1</Values>
</Potential>
<Potential type="“Table”>
<Variables>
<Variable name=“Country”>
</Variables>
<Values>-20000 -30000</Values>
</Potential>
</Subpotentials>
</Potential>

4.4.8. Logistic regression

A logistic regression potential is used to represent the conditional probability of a boolean vari-
able Y given a set of n conditioning variables X = DU C. A variable is said to be boolean when
its domain is {false, true}, {no, yes}, {absent, present}, or {negative, positive}. We will denote
the domain of Y by {—y,+y}. The probability of Y is

P(+y[x) =

—1
14 exp (—Bo — Y Bi-index(d;) = Y Bj-(c; —bj))] , (4)
i=1 j=1

where n is the number of finite-states variables and m is the number of numerical variables.
Each finite-states variable D; is treated, in the terminology of statistics, as an ordinal categorical
variable. In this expression index(d;) is the index of the value d; in the domain of D;. If D; is a
boolean variable, index(+d;) = 1 and index(—d;) = 0; therefore, the contribution of +d; to the
sum inside the parenthesis is [3; and that of —d; is 0. Similarly, ¢ j 1s the value of the numerical
variable C;, and b; is the baseline value for variable C;. Usually, b; = 0.

The skeleton of a potential of this type is:

41

<Potential type="“LogisticRegression” role=*“ConditionalProbability”’>
<Variables>
<Variable name=string base=number>; ,
</Variables>
<Coefficients>numbers</Coefficients>
<CovarianceMatrix>numbers</CovarianceMatrix>(|
</Potential>

Again, the first of the Variables is the conditioned variable, Y, and the others are the
conditioning ones, X. The coefficient of each variable denotes its 3. The attribute base, if
present, denotes b;.

The optional tag CovarianceMatrix means that there is a second order probability for
the B parameters: a multivariate normal distribution, whose mean vector, p, is given by the
Coefficients and whose covariance matrix is

600 O01 -+ O0n
010 O11 -+ Oiln

r= . .) ®)
G6n0 Onl -+ Omn

As this matrix is symmetric, we only need to specify (n+ 1) -n/2 of its values, as follows:

<CovarianceMatrix>Gyy C19 O11 O20 O21 022 30 ... O
</CovarianceMatrix>

Example 25. The prevalence of a certain disease Y depends on the patient’s sex (X1) and age
(X2). The domain of X, is {female, male} and the age, X;, is measured in years, about 50. A
regression analysis has yielded the following results:>

Bo = —4.2 B =0.78 B, = 0.035
0.13 0.001 —0.0003.
r=| 0001 0.52 —0.00006

—0.0003 —0.00006 0.0012

This model can be represented as follows:

<Potential type="“LogisticRegression” role=“ConditionalProbability”>
<Variables>
<Variable name="“Disease Y’>
<Variable name="“Sex”’>
<Variable name="Age” base="“50">

23The fact that both By and B; are positive means that age and being male are risk factors for this disease. The
probability that an 80 year old woman has the disease is [1 +exp(4.2—0.78-0—0.035- (80 — 50))]~! = 0.042.

42

</Variables>
<Coefficients>-4.20.78 0.035</Coefficients>
<CovarianceMatrix>0.13 0.001 0.52 -0.0003 —-0.00006 0.0012
</CovarianceMatrix>

</Potential>

4.4.9. Conditional Gaussian

As in the previous case, this type of potential is used when a numeric variable Y depends on a
mixed set of variables X = DUC, which in general will be the parents of Y. The main difference
is that in this case Y depends probabilistically on X, while a linear combination entails deter-
ministic dependence. More specifically, the conditional probability density for Y is a univariate

normal distribution:%*

f(1d,¢) ~ N (u(d.¢),6(d)) (6)
where .

p(d,c) =o(d)+) Bi(d)-c;. (7)

i=1
The skeleton of a conditional Gaussian is:

<Potential type="“ConditionalGaussian” role="“ConditionalProbability”>
<Variables /> ,
<Subpotentials>
<Subpotential type=enumSubpotentialType />3,
</Subpotentials>
</Potential>

The tag Variables must enclose first the conditioned variable Y, then the m numeric vari-
ables in C (m > 0) and finally the n finite-states variables (n > 0). The m + 2 subpotentials are
{a(d),Bi(d),....Bn(d),c*(d)}.

Clearly, the specification of a ConditionalGaussian potential is similar to that of a Linear-
Combination (cf. Sec. 4.4.7). The main difference is that linear combinations represent utility
potentials, while conditional Gaussians represent conditional probabilities. A minor difference
is that a conditional Gaussian contains m + 2 subpotentials instead of m 4 1, because there is one
extra potential for representing 62(d), the variance of Y.

24Conditional Gaussian potentials were proposed in [29]. Later, Lauritzen and Frank Jensen [27] used conditional
Gaussians of the form f (y|d,c)—a particular case of those in [29]—to build mixed Bayesian networks with the
restriction that finite-states nodes could not have numeric parents. The specification proposed here is even more
restrictive, in the sense that it assumes that there is only one conditioned variable Y, instead of a set Y. It would be
easy to extend the ProbModelXML format to represent more general conditional Gaussian potentials, but currently
we do not see the need for it.

43

4.4.10. Exponential and mixture of exponentials

a) Exponential potentials

Given a mixed set of variables, X = DUC, as in the above sections, an exponential potential q)(x)
is defined by a subpotential ¢'(d) and a vector of m parameters (one for each numeric variable),
such that

0(x) = ¢(d,c) = ¢'(d) -exp <Z Bi- Ci) . (8)
i=1
Accordingly, the skeleton of this type of potential is:

<Potential type="“Exponential” role=enumPotentialRole >
<Potential type=enumSubpotentialType />
<NumericVariables /> |
<Coefficients /> |

</Potential>

The inner potential represents ¢'(d), which is defined on the n finite-states variables. The tag
NumericVariables encloses the m numeric variables (m > 1). The number of Coefficients
must be m.

b) Mixtures of exponentials

A MixtureOfExponentials potential is given by the sum of several exponential potentials:
O(x) =) 0r(x).)
Its skeleton is very simple:

<Potential type=“MixtureOfExponentials” role=enumPotentialRole >
<Variables>
<Subpotentials>
<Potential type=“Exponential” /> ,
</Subpotentials>
</Potential>

For coherence with the rules for other types of potentials, the tag Variables must enclose first
the numeric variables and then the finite-states variables.

¢) Mixtures of truncated exponentials

Given X = DUC, where D contains 7 finite-states variables and C contains m numeric variables,
a mixture of truncated exponentials (MTE potential) is defined by partitioning IR into a set of

44

hypercubes and assigning a mixture of exponentials to each one.”> When an MTE represents the
joint probability for the variables of X or the conditional probability of one variable in X (either
numeric or finite-states) given the others, it must be always non-negative; in principle, it should
be normalized, but it is also possible to work with unnormalized potentials, under the assumption
that there is an implicit normalization constant that is not relevant.

In ProbModelXML, a mixture of truncated exponentials can be encoded as a tree whose leaf
nodes are all MixtureOfExponential potentials.

Example 26. The MTE in Figure 8, which represents a utility function of two finite-states vari-
ables and two numeric variables, U (do,dl,co,cl), can be encoded as follows. Please note that
the sub-tree for D1 in Figure 8 has not been encoded in ProbModelXML as a tree containing two
exponentials, but as a single exponential, §' (dy) -exp(0.25 c1), where ¢/ (d1) is a Table potential
such that ¢’ (D1=no) = 10 and ¢'(D1l=yes) = 5.

yes

0.3-explCql+0.7
(-00,0) [0,+ co)

3-expld Cy-Cq)

10-exp(0.25C) S.expl0,25C)

Figure 8: A mixture of truncated exponentials.

2 The definition of MTE proposed in this section is somewhat more general than that proposed by Moral et al.
[31], because in their definition each exponential has the form

0(x) = ¢(d,c) =a-exp (Zn: bj 'dj> -exp <iBi'Ci¢/(> (10)
=1 i=1

¢'(d)

while in ours there are more degrees of freedom in the choice of ¢'(d). The constant term g in their definition
may correspond to an exponential in which all the [;’s are zero. Their definition does not only partition the joint
domain of the numeric variables, IR™, but also the joint domain of the finite-states variables; in our definition that
partitioning can be represented by means a tree, as explained below.

In this sense, our proposal is closer to that of Koller et al. [25], in which the probability of a finite-states variable
conditioned on a set of numeric parents is given by a mixture of expontials, each one being similar to that in
Equation 8.

45

<Potential type="“Tree/ADD” role="Utility” >
<UtilityVariable name=“Ul" >
<Variables>
<Variable name="“D0” />
<Variable name="“D1” />
<Variable name="C0” />
<Variable name="“C1” />
</Variables>
<TopVariable name="“D0” />
<Branches>
<Branch>
<States>
<State name=“no” >
</States>
<Potential type="“Tree/ADD” >
<TopVariable name=“C1” />
<Branches>
<Branch>
<Thresholds>
<Threshold value="“~Infinity” >
<Threshold value="“0" belongsTo="Left” >
</Thresholds>
<Potential type=“MixtureOfExponentials” >
<Variables>
<Variable name="C0”/>
<Variable name="“C1”’/>
</Variables>
<Subpotentials>
<Potential type="“Exponential” />
<Potential type="“Table”>
<Values>3</Values>
</Potential>
</Potential>
<Potential type=“Exponential” />
<Potential type="“Table”>
<Values>-1</Values>
</Potential>
<NumericVariables>
<Variable name="“C0”/>
<Variable name=“C1”/>
</NumericVariables>
<Coefficients>4 —1</Coefficients>
</Potential>

46

<Subpotentials>
</Potential>
</Branch>
<Branch>
<Thresholds>
<Threshold value="“0" belongsTo="Left”>
<Threshold value="“+Infinity” >
</Thresholds>
<Potential type=“MixtureOfExponentials”>
<Variables>
<Variable name=“C1”’/>
<Variable name=“D17/>
</Variables>
<Subpotentials>
<Potential type=“Exponential” />
<Potential type="“Table” >

<Variables>
<Variable name="“D1” />
</Variables>
<Values>105</Values>
</Potential>

<NumericVariables>
<Variable name="“C1”/>
</NumericVariables>
<Coefficients>(0.25</Coefficients>
</Potential>
</Subpotentials>
</Potential>
</Branch>
</Branches>
</Potential>
</Branch>
<Branch>
<States>
<State name="yes”>
</States>
<Potential type=“MixtureOfExponentials”>
<Variables>
<Variable name=“C0”/>
</Variables>
<Subpotentials>
<Potential type="“Exponential” >
<Potential type=‘“Table”>

47

<Values>0.3</Values>
</Potential>
<NumericVariables>
<Variable name="C0”/>
</NumericVariables>
<Coefficients>1</Coefficients>
</Potential>
<Potential type="“Exponential” >
<Potential type="“Table”>
<Values>(0.7</Values>
</Potential>
</Potential>
<Subpotentials>
</Potential>
</Branch>
</Branches>
</Potential>

5. Special types of networks

5.1. Dynamic models

The representation of dynamic models in their compact form (see Section 2.4) is not very differ-
ent from that of other types of models. In this section we explain only those aspects in which
they differ.

5.1.1. Network tags

In addition to the tags defined in Section 4, our format offers the following tags for a network
that represents a dynamic model:

<TimeUnit>string</TimeUnit>(|
<CycleLength>number</CycleLength>(|
<CoordinatesShift>number number</CoordinatesShift>(|

The meaning of TimeUnit and CycleLength is obvious. The default value for TimeUnit
is the empty string. The default value for CycleLength is 1, i.e., one time unit.

Example 27. The specification

<TimeUnit>year</TimeUnit>
<CycleLength>(0.5</CycleLength>

is equivalent to

48

<TimeUnit>month</TimeUnit>
<CycleLength>6</CycleLength>

The tag <CoordinatesShift> is used to maintain the relative positions of variables in
different time slices.

Example 28. The tag <CoordinatesShift>400 10</CoordinatesShift> means that
if the node “X [t]” has coordinates (80,60), then “X [t + 1] has coordinates (480,70), unless
there is a tag in the declaration of “X [t + 1]” that overrides this value.

5.1.2. Dynamic variables

Temporal variables are recognized because they have an attribute indicating the time slice that
contains the variable:*°

<Variable name=string timeSlice=non-negative_integer ... >

When the timeSlice is greater than O (for example, <Variable name="Disease” timeSlice="1">),
it is not necessary to specify the domain of the variable, because it is necessarily the same as that
of the corresponding variable at the first time slice (in our example, <Variable name="“Disease”
timeSlice=“0" >).

The attribute timeSlice is also used when denoting variables in links and potentials.

Example 29. The decision about therapy in the current time slice affects the probability of the
disease in the next one. This can be encoded as follows:

<Link directed="true ’>
<Variable name="“Dec:Therapy” timeSlice="“0" />
<Variable name="“Disease” timeSlice="“1" />
</Link>

5.1.3. Potentials for dynamic models

Temporal models can use all the potentials defined in Section 4.4, as well as the following po-
tentials defined specifically for temporal relations.

a) Same as previous

The SameAsPrevious type means that a potential defined on a set of variables is of the same type
and has the same Values as the potential defined on the corresponding variables of the previous
time slice. Its skeleton is:

26In OpenMarkov, the time slice of each variable is indicated in square brackets. For example, the variable
<Variable name="Disease” timeSlice="“0"> is depicted as “Disease [0]” in Figure 2.

49

<Potential type=“SameAsPrevious” role=enumPotentialRole >
<Variables>
<Variable name=string timeSlice=non-negative_integer>
</Variables>
</Potential>

Example 30. The following declaration means that the conditional probability P(Symptom [1]|
Disease [1]) for the model in Figure 2 is the same as P(Symptom [0] | Disease [0]):

<Potential type=“SameAsPrevious” role="“ConditionalProbability”>
<Variables>
<Variable name=“Symptom” timeSlice=*“1">
<Variable name="“Disease” timeSlice=*“1">
</Variables>
</Potential>

Please note that in the concise model depicted in Figure 3 we do not need a SameAs-
Previous potential for “Symptom [1]” because this variable does not appear explicitly, but
there are other cases in which this type of potential is necessary, or at least very useful. Also note
that the variables in a potential of this type may belong to different time slices.

b) Cycle length shift

This type of potential is used to increase the value of a variable that represents age, in a broad
sense, such as the age of a person or the “age” of a prosthesis (the time elapsed since it was
implanted).

<Potential type=“CycleLengthShift”>
<Variables>
<Variable name=string timeSlice=non-negative_integer>>
</Variables>
</Potential>

The two Variables must be temporal variables, sharing the same name, and the time index for
the second must be one unit greater than that of the first. This type of potential does not require
any numeric argument.

Example 31. The value of variable “Age [t]” is that of “Age [t — 1] plus the cycle length:

<Potential type="“CycleLengthShift”>
<Variables>
<Variable name="*Age” timeSlice="“0">
<Variable name="Age” timeSlice="“1">
</Variables>
</Potential>

50

Example 32. The following tree indicates that the age of a prosthesis increases with the passing
of time (first branch), but if the prosthesis is replaced, its age is reset to 0 (second branch):

<Potential type="“Tree/ADD” role="ConditionalProbability” />
<Variables>
<Variable name="“Prosthesis age” timeSlice=*1"/>
<Variable name="“Prosthesis age” timeSlice=*0"/>
<Variable name="Prosthesis replacement’” timeSlice="“1"/>
</Variables>
<TopVariable name="Prosthesis replacement” timeSlice="“1"/>
<Branches>
<Branch>
<States>
<State name=“no”/>
</States>
<Potential type=“CycleLengthShift”/>
<Variable name="“Prosthesis age” timeSlice="“0">
<Variable name="“Prosthesis age” timeSlice="“1">
</Potential>
</Branch>
<Branch>
<States>
<State name="yes”/>
</States>
<Potential type=“Delta”>
<Variable name="“Prosthesis age” timeSlice="“1">
<NumericValue>(0</NumericValue>
</Potential>
</Branch>
</Branches>
</Potential>

¢) Weibull distribution

The Weibull distribution [44, 45] is used mainly in survival analysis. Let variable “Y [¢]” rep-
resent the occurrence of a hazardous event between time t — 1 and 7. The probability of this
event may depend on a set of variables X, which represent the parents of “Y [¢]” in the network:
X = Pa(Y [t]). For example, the probability of death may depend on the sex and age of the
patient and on the presence of some diseases. Similarly, the probability of a prosthesis failure
may depend on its age (how long ago it was implanted), the model (some prostheses have better
quality than others), etc. [11].

If we assume that the probability that the hazardous event happens at time t—provided that it
has not happened earlier and the configuration of the conditioning variables X at time ¢ is x—the

51

probability density function is:

—k ck— —k +k :
Fltx) :{ l(c)?»(x) t*~Lexp(—A(x) *t*) igig’ (11

where the shape parameter k is a scalar, k > 0, and the so-called scale parameter A depends on
the variables in X:

A(x) = exp (BQ—I— zn: B; - index(d;) + i Bj-(c —bj)) . (12)
= j=1

i=1

The terms involved in this expression are the same as those in Equation 4. Therefore, the proba-
bility of the occurrence of a hazardous event between time r — 6 and 7 is

P(Y[t] = yes|x) =1 —exp{[(t—S)k—Ik]/X(x)_k} , (13)

where § is the cycle length (see [11] for a derivation of this equation).
The exponential distribution is a particular case of the Weibull in which k = 1, which implies

that)] N .

and, consequently, the probability of a hazardous event is a constant:

P(Y[t] = yes|x) =1 —exp{—8/A(x)} . (15)

The specification of this type of model in ProbModelXML can be done with the following
skeleton, where the Coefficients are listed in the order {k,Bo,B1,--.,Bn}:

<Potential type="“WeibullDistribution” role="ConditionalProbability”’>
<TimeVariable name=string >¢. i
<Variables>
<Variable name=string base=number> ,
</Variables>
<Coefficients>numbers</Coefficients>
<CovarianceMatrix>numbers</CovarianceMatrix>(|
</Potential>

The similarity with the logistic regression potential (cf. Sec. 4.4.8) is obvious.

The TimeVariable plays the role of ¢ in Equations 11 and 13. For example, when mod-
eling a recurrent disease, t may be the time elapsed since the previous episode. In this case, we
may have

<TimeVariable name="Prosthesis age” timeSlice="“1">

52

This variable must update its value at each time slice using the CycleLengthShift potential, as
explained with an example in the previous section.

When no TimeVariable is specified, we assume that ¢ is i - 8, where i is the index of the
current time slice and & is the cycle length.

The first of the Variables represents the occurrence of the event, i.e., “Y[¢t]”, while the
others represent the conditioning variables, X (cf. Eq. 13).

The tags Coefficients and CovarianceMatrix play the same role as in the case of a
logistic regression (see Sec. 4.4.8), but then the order of the parameters was {Bo,B1,...,B,} and

now it is {k,a,Br,...,Bx}-

5.2. Decision analysis networks (DANs)

Given that influence diagrams are not appropriate for representing asymmetric decision prob-
lems, several alternative formalisms have been proposed in the last years [7, 15]. Decision
analysis networks (DANSs) [15], which are one of those types of models, can be encoded in
ProbModelXML by using specific tags.

One of the features of DANs are restrictions. A restriction (x,y) associated to the link X — Y
means that the values x and y are incompatible [15]. In ProbModelXML, the restrictions associated
to a link can be represented by a potential ¥ defined on X x Y, such that y(x,y) = 0 means that
there is a restriction (x,y).

Example 33. Let us assume that a DAN contains a link X — Y, where the domain of X is
{—x,+x} and that of Y is {—y,+y}. In the following fragment:

<Link directed="true >
<Variable name=“X" />
<Variable name=“Y" />
<Potential type="“Table” role="Restrictions” >
<Variables>
<Variable name="“X"/>
<Variable name="“Y"/>
</Variables>
<Values>1110</Values>
</Potential>
</Link>

the value 0 denotes a restriction (+x,~+y), meaning that these two values are incompatible.”’

27We might have chosen a more compact way of representing restrictions, instead of specifying the variables
twice. However, potentials allow us to represent restrictions between all the types of variables (finite-states, dis-
cretized, numeric, and any pair of them) and several types of potentials (Table, Tree, Delta...) without introducing a
new syntax for each particular case.

53

DANSs have three specific ways to denote the flow of information [15]. The first one consists
in declaring a chance variable is always observed by using the AlwaysObserved tag intro-
duced in Section 4.2. This means that such variable can be observed without the need to perform
any action.

Example 34. In medicine symptoms are considered as “always observed” variables, because it
is not necessary to make any test to detect them:

<Variable name=“Symptom” .. .>
<AlwaysObserved>

The second way of representing the flow of information is to use revelation arcs [15], which
mean that certain values of a variable X reveal the value of variable Y and the evidence about
Y can be used when making subsequent decisions. This property is represented by the tag
RevelationCondition that may appear within the specification of the link X — Y (Sec. 4.3).
If X is finite-states variable or discretized, then the syntax is:

<RevelationConditions>
<State name=string /> ,
</RevelationConditions>

Example 35. Ifvariable X represents the decision of whether performing a test and Y represents
the result of the test, the value X = “do test” reveals the value of Y, which can be either “posi-
tive” or “negative”, but D = “do not test” does not reveal the value of Y. The link X — Y can
be encoded as follows:

<Link directed="“true ”>
<Variable name="“Dec:Test” />
<Variable name="“Result of test” />
<RevelationConditions>
<State name="“do test”/>
</RevelationConditions>
</Link>

If X is numeric, the syntax is (thresholds are explained in Sec. 4.2.2):

<RevelationConditions>
<Threshold value=number belongsTo=enumSide />> 1,
</RevelationConditions>

where the number of thresholds must be even, and each pair defines an interval of values of X.
The third way of representing the flow of information is to divide the DAN into several stages,

but we have not implemented it yet because we have found no real-world problem requiring it
[15].

54

6. Additional information

In this section we describe three types of information that can be used when doing inference with
a probabilistic network. Each of these types of information can be stored in the same file as the
network or in a different file, as explained in Section 3.

6.1. Inference options
6.1.1. General inference options

Inference options are used to indicate how to evaluate a probabilistic network. The skeleton for
the inference options is as follows:

<InferenceOptions>
<EliminationOrder>(,
<Algorithm name=string >
<EliminationOrder>(,
<Argument name=string value=string />q._,
</Algorithm>(,
</InferenceOptions>

The elimination order given outside the tag Algorithm is common to all the algorithms that
wish to use it; this order can be overridden for each particular algorithm. The skeleton of the
elimination order is:

<EliminationOrder>
<Variable names=string >,
</EliminationOrder>

6.1.2. Inference options for dynamic models

There are also specific options for evaluating dynamic models.

<Horizon>number</Horizon>(;
<DiscountRate numTimeUnits=number>string</DiscountRate>(|

The optional attribute numTimeUnits inside the tag <DiscountRate> means the period of
time for which the discount applies. If numTimeUnits is omitted, the discount applies to a cycle.

Example 36. If the cycle length of the model is one year (or 12 months), a discount of 5% per
annum can be expressed as

<DiscountRate>0.05</DiscountRate>
If TimeUnit is month, it can be expressed as

<DiscountRate numTimeUnits=“12">0.05</DiscountRate>

55

6.2. Evidence

A finding is the assignment of a value to a variable. A set of findings is an evidence case.
Therefore, the skeleton for evidence is:

<Evidence>
<EvidenceCase>
<Finding variable=string
state=string statelndex=integer numericValue=number />
</EvidenceCase>| ,
</Evidence>

The attribute variable is compulsory. If the variable is of type finite states, then either state or
stateIndex must be present. If the variable is numeric, then numericValue must be present. If the
variable is discretized, one of the three attributes—and only one—must be present.

6.3. Policies and strategies

A policy for a decision D given a set of informational predecessors X (the variables known
by the decision maker) can be expressed as a probability distribution on the domain of D for
each configuration of X: P(d|x). Therefore, a policy is very similar to a conditional probability
potential. In particular, a deterministic policy can be given by a delta potential (cf. sec. 4.4.3)
for each configuration of X.

The evaluation of a probabilistic network that includes decisions returns a policy for each
decision. There may also be policies imposed by the user. A set of policies constitutes a strategy.
Strategies can be stored with the purpose of doing inference on a probabilistic network without
the need to find the optimal strategy in each particular situation. The skeleton of a strategy is
very simple:

<Strategy>
<Potential type=enumPotentialType role=*Policy” > ,
</Strategy>

The specification of a policy potential is very similar to that of a conditional probability potential,

with the decision D playing the role of the conditioned variable.

7. Discussion

7.1. About parsers and writers

The main advantage of the format proposed in this paper is its expressive power: ProbModelXML
is able to represent more types of networks and potentials than any other format, and offers
facilities for encoding properties that are not explicitly included in the specification of the format.

56

Another advantage of ProbModelXML is the use of an XML syntax. Conceptually this is
not a significant difference with respect to other formats, but in practice this characteristic is
relevant mainly because XML is much easier to parse than other types of syntaxes: there exist
many tools for parsing XML from several programming languages (Java, C++, etc.), with the
corresponding utilities for writing XML files, as well as many other tools for specifying XML
formats and for validating them (DTD, XML Schema, Relax NG, ISO DSDL...).

At first sight, this expressive power might be disheartening for a programmer interested in us-
ing this format, due to the difficulty of building a parser that implements all its features. However,
we do not intend that each parser of ProbModelXML implements every tag and attribute of the
format. In fact, OpenMarkov, does not have yet all the data structures defined in the specification
of this format; consequently its parser and its writer are not yet able to deal with all the types of
potentials that ProbModelXML can encode. More generally, a writer of ProbModelXML included
in a software package does not need to be able to generate all the properties of ProbModelXML,
but only those corresponding to the data structures of that package. Similarly, a parser may limit
itself to a subset of ProbModelXML; it may ignore the tags and attributes that it does understand
and throw an error message when an attribute recognized by the parser has an unexpected value,
as explained in Section 3.2. This possibility of ignoring tags and attributes is facilitated by the
XML syntax of the format proposed in this paper.

7.2. Future work

The skeletons used in this paper to describe the syntax of ProbModelXML are very intuitive, but
due to the limited expressive power of skeletons, they are by themselves insufficient to specify
the format: they must be complemented with the explanations given in the text. One of the first
tasks that we will undertake when ProbModelXML reaches a relatively stable situation is to create
an XML schema, either an XML Schema Document (XSD) or a RELAX NG schema.

We will also extend ProbModelXML to cover submodels (as in GENIE), new types of po-
tentials (such as mixtures of polynomials [36, 37]) and new types of networks, such as object-
oriented Bayesian networks [47] and probabilistic relational models [24, 46].

8. Conclusion

In this paper we have described the main features of a new XML format for encoding proba-
bilistic graphical models (PGMs). One of its advantages is the possibility of representing several
types of models, such as Bayesian networks, Markov networks, influence diagrams, LIMIDs,
as well as dynamic models: dynamic Bayesian networks, MDPs, POMDP, and DLIMIDs, and
it is easy to add new types of models by combining the existing constraints or by defining new
ones. Another advantage is the possibility of encoding user-defined properties without modifying
the specification of the format, by placing them under the AdditionalProperties tag. In
contrast, the formats proposed previously can represent either Bayesian networks (sometimes in
conjunction with influence diagrams) or POMDPs—with the exception of Netica’s DNET, which
admits both types of models—and none of them can encode user-defined properties. An advan-

57

tage of our format with respect to others, such as DNET and Elvira, is its XML syntax, which
permits to use the utilities available for generating parsers and writers in different languages:
Java, C++, etc.

For these reasons, we believe that ProbModelXML may be very useful as an interchange
format for PGMs. Clearly, OpenMarkovXML is a very rich format, which makes it difficult to
implement all its features. However, each software package can implement only the subset of
features required for its purpose. It suffices to throw an error message when the parser encounters
such a feature. Even our software tool OpenMarkov is currently unable to cope with several
features of the format, but we have decided to include them in the format to satisfy the needs
of other research groups. For this reason, we believe that the format presented in this paper can
be very useful for interchanging several types of PGMs between different software tools and
research groups.

Acknowledgments

This work has been supported by grants TIN2006-11152 and TIN2009-09158 of the Spanish
Ministry of Science and Technology, by FONCICYT grant 85195, and by the OptiFox project
262266 (7th Frame Programme of the European Union).

Appendix A Constraints used in OpenMarkov

Table 5 lists the constraints implemented in the current version of OpenMarkov and whether each
one of the is associated with a particular network type; network types are defined in Section 4.1.1
and constraints in Section 4.1.2. The meaning of each constraint is given below. Please note that
influence diagrams and LIMIDs have the same constraints, but their semantic is different, and
consequently they should be evaluated with different algorithms. The same occurs for MDPs and
POMDPs.

A.1 Constraints about nodes and variables
NoEmptyName: The name of a variable must be a non-empty string.
DistinctVariableNames: The name of the variables must be different.

OnlyFiniteStateVariables: All the chance and decision variables must be of finite-state or dis-
cretized (see Sec. 2.3). However, this restriction does not affect utility variables, which
in ProbModelXMLare assumed to be always numerical. This constraint it is used by many
inference algorithms.

OnlyNumericVariables: All variables must be purely numeric. Discretized variables are not
admitted, because they are treated as finite-state variables.

OnlyChanceNodes: All nodes must have the role Chance. Decision and Utility nodes are not
allowed. This constraint is used, for instance, to define Bayesian networks.

58

NoEmptyName

DistinctVariableNames
OnlyFiniteStates Variables
OnlyNumericVariables
OnlyChanceNodes
OnlyOneUtilityNode
OnlyAtemporal Variables
OnlyTemporal Variables
OnlyOneAgent
DistinctLinks
NoMultipleLinks
OnlyDirectedLinks
OnlyUndirectedLinks
NoRestriction

| O| O| <| <| DynamicBayesianNetwork

| O| O| <| ~<| BayesianNetwork
| O| O| <| ~<| MarkovNetwork

NoRevelationArc
NoSelfLoop
NoCycle
NoClosedPath
MaxNumParents
NoUtilityParent
NoSupervalueNode
NoMixedParents
NoBackwardLink - | -

O| Q| K| K| K| <l Z| <= =|=]Z|=<]|I
O|O|O| K| K| <= Z| < =<|=<|Z| =[]
O| Q|| K| K| =|Z| <] <| <] =<|=|Z| |

O|O|O| 0| O <| =< |=|=|Z| =<| =<| =<| <|z|~<|O|Z| O] O| <| | InfluenceDiagram
O|O|O|O| 0| || K|Z|I<|=|~<|=lZ|<lO|Z O|O| || LIMID
O|O|O|O|O| <[<| 2| 2| Z| <|=<|=<|=<|Z|~<|O|Z| O|O|=| | DecisionAnalysisNetwork

~| O| O| O] O| O <| <[< | < | Z| <| =<| =<| =<| Z| 2| O| Z| O| O| <| =<| SimpleMarkovModel

<K|O|O|O| OO |Z|<|<|<|<|=<2Z| O|Z| O|O|~<|~<| MDP

K| O|O|O|O|O| || K| <K|Z|<|<|<|=<|=|Z| O|Z| O|O| <|~<| POMDP

K| O|O|O| Q| O |Z|I<|<|<|2 =<2 O|Z| O|O| || Dec-POMDP
~|O|O|O|O|O| ||| =] Z|=<| =<|<|=|=|Z| O|'z| Ol O|~|~| DynamicLIMID

Y

Table 5: Constraints used in the OpenMarkov tool. The letter in each cell indicates whether a
constraint is associated with a network type: Y = yes, N = no, O = optionally. A dash means that
a constraint does not make sense because of the presence of another constraint (see the text for
a more detailed explanation). Each constraint has a default behavior; a bold letter in this table
means that the default behavior has been overriden for a particular type of network.

59

OnlyOneUtilityNode: The network contains at most one atemporal utility node and, in the case
of dynamic models, at most one utility node per time slice. This constraint does not make
sense when OnlyChanceNodes is present.

OnlyAtemporal Variables: The model contains no temporal variable.

OnlyTemporal Variables: Used by most dynamic models (Secs. 2.4 and 5.1). In the current ver-
sion of ProbModelXML, the only type of dynamic model that does not have this constraint
is SimpleMarkovModel , which accept both temporal and atemporal variables.

OnlyOneAgent: All the variables in the network correspond to the same agent. Obviously, multi-
agent models do not have this constraint. Currently the only multi-agent type of model in
ProbModelXMLare Dec-POMDPs.

A.2 Constraints about links (structure of the graph)

There are several constraints relative to the structure of the graph. Some of them are self-
explanatory given the definitions in Section 2.2.

DistinctLinks: The network cannot have two equal links. For example, the network cannot have
two links X — Y. A link X — Y 1is different from ¥ — X and X — Y, but the latter is
considered to be the same as ¥ — X (see Sec. 2.2).

NoMultipleLinks: This constraint makes the undirected link A — B incompatible with bothA — B
and B — A; however A — B would be compatible with B — A. This restriction will be used,
for instance, when building chain graphs, but they are not included in ProbModelXML yet.

Co——D
Figure 9: The constraint DistinctLinks permits this graph, but NoMultipleLinks does not.

OnlyDirectedLinks: This constrain is used by most PGMs, such as Bayesian networks, influence
diagrams, etc.

OnlyUndirectedLinks: Currently this constraint is used only by Markov networks. It is incom-
patible with OnlyDirectedLinks and vice versa.

NoRestriction: A constraint (x,y) associated with an arc X — Y means that the values x and y
are incompatible [15]; for example, the decision of discharging a patient now (x) prevents
the performance of a test a few hours later (y). Currently all the network types have this
constraint, except decision analysis networks (see Sec. 5.2), but in the future we might in-
clude in ProbModelXML other types of networks free from this constraint, such as influence
diagrams with (link) constraints [38].

60

NoRevelationArc: Revelation arcs are used by DANSs to indicate that a variable reveals the value
of another variable [15]; for example, the decision of performing a test “reveals” the result
of the test (see Sec. 5.2). A network that admits revelation arcs can also indicate that some
variables are always observed (Sec. 5.2). Currently DANs are the only network type that
admits revelation arcs and always-observed variables.

NoSelfLoop: Self-loops were defined in Sec. 2.2 as a link connecting a node to itself. None of
the PGMs defined currently in ProbModelXMLcan contain self-loops. However, when rep-
resenting dynamic models in Netica and GeNIE, temporal nodes have self-loops indicating
that the value of a variable at a certain time influences the value of the same variable in the
future.

NoCycle: It is used by most PGMs, such as Bayesian networks, influence diagrams, etc. It
permits the presence of loops.

NoClosedPath: It forbids both cycles and loops (see Sec. 2.2 for the definitions). In the case of
undirected graphs, this constraint implies that the graph of the model is a tree. In the case
of directed graphs, it implies that the graph is polytree.

MaxNumParents: It limits the number of parents that a node may have, as specified by its argu-
ment.

NoUltilityParent: This constraint forbids that a chance or decision node has a utility node as a
parent. However, it does not forbid that a utility node be a parent of another utility node
(the latter would be called supervalue node [41]). This constraint does not make sense
when OnlyChanceNodes is present.

NoSuperValueNode: A supervalue node is a utility node such that some of its parents are other
utility nodes. This constraint implies that all the parents of a utility node must play the role
chance or decision. It does not make sense when OnlyChanceNodes is present.

NoMixedParents: This restriction establishes that all the parents of a utility node belong to only
one of these two sets of parents: (1) chance and decision nodes, or (2) utility nodes. This
constraint does not make sense when OnlyChanceNodes is present.

The standard definitions of most decision models (influence diagrams, LIMIDs, MDPs,
etc.) reject the possibility of supervalue nodes and mixed parents. The only exceptions
are decision analysis networks and dynamic LIMIDs. Given that ProbModelXMLadmits
super-value nodes and mixed parents in all decision models, most algorithms should check
that the constraints NoSuperValueNode and NoMixedParents are satisfied before trying to
evaluate any of those models (cf. Sec. 4.1.2).

NoBackwardLinks: In temporal models, it forbids links to the past. This constraint does not
make sense when OnlyAtemporal Variables is present.

61

Appendix B Changelog

Changes introduced in version 0.2.0

* We have introduced new inference options (Sec. 6.1) and the syntax for encoding policies
(Sec. 6.3).

* The arguments of the constraints are now encoded as “<Argument name=string
value=string >” instead of “<Argument>string</Argument>" (Sec. 4.1.2).

* There is a new potential, Sum (Sec. 4.4.6).

* Link constraints (Sec. 5.2) have been renamed as restrictions to avoid confusions with
network constraints. Consequently, the role LinkConstraints (Sec. 4.4) has been renamed
Restrictions

e There is a new constraint, NoRestriction (Sec. A.2).

* The tag NumericVariables has been replaced with Variables in the potentials
LinearCombination and ConditionalGaussian, but it is kept in Exponential. The tags
Variables and Subpotentials have been added to MixtureOfExponentials (Sec. 4.4.10.b).

* The tag SpontaneouslyObserved has been renamed as AlwaysObserved (Sec. 5.2).

* The tag Label, that was used in links, has been removed. Consequently, the constraint
OnlyUnlabeledLinks has been removed as well.

* In the previous version, a Potential might have the attributes label and ref, used to en-
code ADDs containing loops. These attributes have been replaced by the new tags Label
and Reference used inside the branches of ADDs (Sec. 4.4.4.b).

Changes introduced in version 0.1.9

This section describes the changes introduced with respect to previous versions of the format
(openmarkovXML-draft-110203.pdf, released on February 3, 2011).

* The name of the format has been changed from OpenMarkovXML to ProbModelXML to
detach it from any particular software tool—see Footnote 2.

* We have added the network tags DecisionCriteria and Agents, used for multicri-
teria decision making (Sec. 4.1.4) and for multi-agent models (Sec. 4.1.5), respectively.
Correspondingly, we have introduced the attributes criterion and agent in the specification
of variables (Sec. 4.2).

* The specification of the coordinates of a variable (Sec. 4.2) has changed from
<Coordinates>integer integer</Coordinates> to <Coordinates x=infeger
y=integer [>.

62

* In the specification of the domain of a numeric variable (Sec. 4.2.2), we now write <Intervals>
instead of <Thresholds>, to make it coherent with the case of discretized variables
(Sec. 4.2.3).

* The new specification of links does not use the old attributes vari and var2, but two
Variable tags (Sec. 4.3).

* We have replaced the tag ExtendedValues with UncertainValues. We have sim-
plified the specification of second order probability distributions for the parameters of ta-
bles (Sec. 4.4.2.b).

* Now tree/ADD potentials include a Variables tag that specifies the set of variables on
which the potential is defined. However, it may happen that some of these variables do not
appear inside the tree/ADD, as explained in Section 4.4.4.

Now the TopVariable is compulsory for each tree; in the previous version, it was al-
lowed to omit this tag when the tree depends on only one variable.

Similarly, now each branch must have a States or Thresholds tag; in the previous
version, these tags could be omitted in the last branch.

These changes, aimed at making all the information explicit, facilitate the parsing of
tree/ADDs.

* We have introduced the attribute timeSlice for dynamic variables (Sec. 5.1.2). Now we
write <Variable name="Disease” timeSlice=*0"> instead of <Variable name="Disease
[0]”>, which simplifies the parsing of dynamic variables.

* We have added the following potentials: Uniform (Sec. 4.4.1), Product (Sec. 4.4.6), Same-
AsPrevious (Sec. 5.1.3.a).

* We have introduced specific options for decision analysis networks (DANs, Sec. 5.2):

a new network type (Sec. 4.1.1),

— anew tag for variables, SpontaneouslyObserved (Sec. 4.2), renamed as Always—
Observed in version 0.2.0.

— anew tag for links, RevelationConditions (Sec. 4.3),

— anew role for potentials, LinkConstraints (Sec. 4.4), renamed as Restrictions in ver-
sion 0.2.0; a potential having this role can be attached to a link to declare some
restrictions (Sec. 4.3), and

— anew constraint, NoRevelationArc, in Section A.1 and Table 5.

* Appendix A, which describes the constraints used in OpenMarkov, has been completely
revised, especially Table 5.

63

References

[1] M. Arias. Carmen: Una Herramienta de Software Libre para Modelos Grdficos Proba-
bilistas. PhD thesis, UNED, Madrid, 2009. In Spanish. 4

[2] G. Arroyo-Figueroa and L. E. Sucar. A temporal Bayesian network for diagnosis and pre-
diction. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
(UAI’99), pages 13-20, Stockholm, Sweden, 1999. Morgan Kaufmann, San Francisco, CA.
3

[3] K. J. Astrém. Optimal control of Markov decision processes with incomplete state estima-
tion. Journal of Mathematical Analysis and Applications, 10:174-205, 1965. 3, 14

[4] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. Annals of Mathematical Statistics, 37, 1966. 3

[5] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.
3, 10, 14

[6] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentral-
ized control of Markov decision processes. Mathematics of Operations Research, 27:819—
840, 2002. 9, 14

[7] C. Bielza, M. Gémez, and P. P. Shenoy. A review of representation issues and modelling
challenges with influence diagrams. Omega, 39:227-241, 2011. 53

[8] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construction.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-
95), pages 1104-1111, Montreal, Canada, 1995. 3,9, 14

[9] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with fac-
tored representations. Artificial Intelligence, 121(1-2):49-107, 2000. 3, 9, 10, 14

[10] C. Boutilier and D. Poole. Computing optimal policies for partially observable decision
processes using compact representations. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence (AAAI-96, pages 1168—1175, Portland, OR, 1996. AAAI
Press. 3,9, 10, 14

[11] A. Briggs, K. Claxton, and M. Sculpher. Decision Modelling for Health Economic Evalu-
ation. Oxford University Press, New York, 2006. 51, 52

[12] A. Cano, S. Moral, and A. Salmerén. Penniless propagation in join trees. [International
Journal of Intelligent Systems, 15:1027-1059, 2000. 31

[13] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Com-
putational Intelligence, 5:142—150, 1989. 3,9, 14

64

[14] F.J. Diez and M. J. Druzdzel. Canonical probabilistic models for knowledge engineering.
Technical Report CISIAD-06-01, UNED, Madrid, Spain, 2006. 5, 38

[15] F. J. Diez and M. Luque. Representing decision problems with Decision Analysis Net-
works. Technical Report CISIAD-10-01, UNED, Madrid, Spain, 2010. 3, 10, 14, 40, 53,
54, 60, 61

[16] F.J. Diez, M. A. Palacios, and M. Arias. MDPs in medicine: opportunities and challenges.
In Decision Making in Partially Observable, Uncertain Worlds: Exploring Insights from
Multiple Communities (IJCAI Workshop), Barcelona (Spain), 2011. 9, 14

[17] E. J. Diez and M. A. J. van Gerven. Dynamic LIMIDs. In L. E. Sucar, J. Hoey, and
E. Morales, editors, Decision Theory Models for Applications in Artificial Intelligence:
Concepts and Solutions, pages 164—189. 1GI Global, Hershey, PA, 2011. 3,9, 10

[18] The Elvira Consortium. Elvira: An environment for creating and using probabilistic graph-
ical models. InJ. A. Gdmez and A. Salmeron, editors, Proceedings of the First European
Workshop on Probabilistic Graphical Models (PGM’02), pages 1-11, Cuenca, Spain, 2002.
5

[19] S. F. Galéan, G. Arroyo-Figueroa, F. J. Diez, and L. E. Sucar. Comparison of two types of
event Bayesian networks: A case study. Applied Artificial Intelligence, 21:185-209, 2007.
3

[20] S.F. Galéan and F. J. Diez. Networks of probabilistic events in discrete time. International
Journal of Approximate Reasoning, 30:181-202, 2002. 3

[21] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using decision
diagrams. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
(UAI’99), pages 279-288, Stockholm, Sweden, 1999. Morgan Kaufmann, San Francisco,
CA. 6

[22] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and J. E. Matheson,
editors, Readings on the Principles and Applications of Decision Analysis, pages 719-762.
Strategic Decisions Group, Menlo Park, CA, 1984. Reprinted as [23]. 3, 10, 13

[23] R. A. Howard and J. E. Matheson. Influence diagrams. Decision Analysis, 2:127-143,
2005. 65

[24] M. Jaeger. Relational Bayesian networks. In Proceedings of the Thirteenth Conference
in Artificial Intelligence (UAI-97), page 266273, San Francisco, CA, 1997. Morgan Kauf-
mann. 57

[25] D. Koller, U. Lerner, and D. Anguelov. A general algorithm for approximate inference and
its application to hybrid Bayes nets. In Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI’'99), pages 324-333, San Francisco, CA, 1999.
Morgan Kaufmann. 45

65

[26] C. Lacave, M. Luque, and F. J. Diez. Explanation of Bayesian networks and influence
diagrams in Elvira. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cyber-
netics, 37:952-965, 2007. 12, 38

[27]1 S. L. Lauritzen and F. Jensen. Stable local computation with conditional Gaussian distribu-
tions. Statistics and Computing, 11:191-203, 2001. 43

[28] S. L. Lauritzen and D. Nilsson. Representing and solving decision problems with limited
information. Management Science, 47:1235-1251, 2001. 13

[29] S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics, 17:31-57,
1989. 43

[30] A. A. Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot

druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya
seriya, 15:135-156, 1906. 3

[31] S.Moral, R. Rumi, and A. Salmer6n. Mixtures of truncated exponentials in hybrid Bayesian
networks. Lecture Notes in Artificial Intelligence, 2143:156-167, 2001. 45

[32] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, Computer Science Division, University of California, Berkeley, 2002. 3, 9

[33] S. C.W. Ong, S. W. Png, D. Hsu, and W. S. Lee. POMDPs for robotic tasks with mixed
observability. In Proceedings of Robotics: Science and Systems V, Seattle, WA, 2009. 7,
14

[34] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988. 3,7, 13, 40

[35] P. Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Observable
Markov Decision Processes. PhD thesis, Dept. of Computer Science, University of Toronto,
Canada, 2005. 6

[36] P. P. Shenoy. A re-definition of mixtures of polynomials for inference in hybrid Bayesian
networks. In W. Liu, editor, Proceedings of the 11th European conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’11), pages 98—109.
Springer, Heidelberg, 2011. 57

[37] P. P. Shenoy and J. C. West. Inference in hybrid Bayesian networks using mixtures of
polynomials. International Journal of Approximate Reasoning, 52:641-657, 2010. 57

[38] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring conditional relationships in
influence diagrams. Operations Research, 41:280-297, 1993. 60

66

[39] M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research, 24:195-220, 2005. 6

[40] A. A. Stinnett and J. Mullahy. Net health benefit: A new framework for the analysis of

uncertainty in cost-effectiveness analysis. Medical Decision Making, 18:S68-S80, 1998.
40

[41] J. A. Tatman and R. D. Shachter. Dynamic programming and influence diagrams. IEEE
Transactions on Systems, Man, and Cybernetics, 20:365-379, 1990. 39, 61

[42] M. A.J. van Gerven and F. J. Diez. Selecting strategies for infinite-horizon dynamic LIM-
IDs. In M. Studeny and J. Vomlel, editors, Proceedings of the Third European Workshop
on Probabilistic Graphical Models (PGM’06), pages 131-138, Prague, Czech Republic,
2006. 14

[43] M. A. J. van Gerven, F. J. Diez, B. G. Taal, and P. J. F. Lucas. Selecting treatment strate-
gies with dynamic limited-memory influence diagrams. Artificial Intelligence in Medicine,
40:171-186, 2007. 3,9, 10, 14

[44] W. Weibull. A statistical theory of the strength of materials. Ingenjorsvetenskaps-
akademiens Handlingar, 151:1-45, 1939. 51

[45] W. Weibull. A statistical distibution function of wide applicablity. ASME Journal of Applied

Mechanics, Transactions of the American Society of Mechanical Engineers, pages 293-297,
September 1951. 51

[46] D. Koller y A. Pfeffer. Probabilistic frame-based systems. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98, pages 580-587, Madison, WI,
1996. 57

[47] D. Kollery A. Pfeffer. Object-oriented Bayesian networks. In Proceedings of the Thirteenth
Conference in Artificial Intelligence (UAI-97), pages 302-313, San Francisco, CA, 1997.
Morgan Kaufmann. 57

67

	1 Introduction
	1.1 Antecedents: Formats proposed previously
	1.1.1 Formats for Bayesian networks and influence diagrams
	1.1.2 Specific formats for Markov decision processes

	2 Basic definitions and notation
	2.1 Probabilistic graphical models
	2.2 Links and paths
	2.3 Types of variables
	2.4 Dynamic models
	2.5 Use of information arcs

	3 Overview of the format
	3.1 File content
	3.2 Version numbers

	4 Specification of probabilistic networks
	4.1 Network properties
	4.1.1 Network type
	4.1.2 Constraints
	4.1.3 Comment
	4.1.4 Decision criteria
	4.1.5 Agents
	4.1.6 Language
	4.1.7 Additional properties

	4.2 Variables
	4.2.1 Domain of a finite-states variable
	4.2.2 Domain of a numeric variable
	4.2.3 Domain of a discretized variable

	4.3 Links
	4.4 Potentials
	4.4.1 Uniform
	4.4.2 Table
	4.4.3 Delta
	4.4.4 Tree and ADD
	4.4.5 ICI model
	4.4.6 Sum and product
	4.4.7 Linear combination
	4.4.8 Logistic regression
	4.4.9 Conditional Gaussian
	4.4.10 Exponential and mixture of exponentials

	5 Special types of networks
	5.1 Dynamic models
	5.1.1 Network tags
	5.1.2 Dynamic variables
	5.1.3 Potentials for dynamic models

	5.2 Decision analysis networks (DANs)

	6 Additional information
	6.1 Inference options
	6.1.1 General inference options
	6.1.2 Inference options for dynamic models

	6.2 Evidence
	6.3 Policies and strategies

	7 Discussion
	7.1 About parsers and writers
	7.2 Future work

	8 Conclusion
	Appendix A Constraints used in OpenMarkov
	A.1 Constraints about nodes and variables
	A.2 Constraints about links (structure of the graph)

	Appendix B Changelog

