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Probability in artificial intelligence

 A.I. was “born” in 1956, at the Dartmouth Conference

 In the first 25 or 30 years, many researchers doubted or 
denied that probability could play a significant role in A.I.

 First reason (cf. [Sutton and Barto, 1998]):
Computers were already good at arithmetic operations

but could not perform “easy” tasks (easy for a little child):
vision (image understanding), natural language, planning…

Those tasks could not be solved with arithmetic operations;
they require conceptual reasoning (symbol manipulation  LISP).

Probabilistic “reasoning” consisted mainly in number crunching, 
not in conceptual reasoning.

 Second reason: limitations of probabilistic methods.

Naïve-Bayes method
for probabilistic diagnosis

 n diagnoses, m possible findings

 1st hypothesis: diagnoses are mutually exclusive
(i.e., the patient has at most one disease) 

 2nd hypothesis: findings are conditionally independent

)|()|()|,,( 11 imiim dfPdfPdffP  

)()|()|(),,|( 11 iimimi dPdfPdfPffdP   

 Bayes’ theorem (naïve method)
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Succesfull applications of the naïve-Bayes

• Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone tumors: A 
preliminary report,” Radiology 80 (1963) 273-275.

• Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid function,” 
JAMA 183 (1963) 307-313. 

• Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis of 
congenital heart disease,” Progress in Cardiovascular Diseases 5 (1963) 362-377.

• Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer diagnosis of 
congenital heart disease,” Annals New York Acad. Sciences 115 (1964) 558-567.

• de Dombal FT, Leaper JR Staniland JR, et al., “Computer-aided diagnosis of acute abdominal 
pain,” BMJ 2 (1972) 9—13.

• Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for computer-
aided management of acute renal failure,” Amer. J Med 55 (1973) 473-484. 

• Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program that 
considers clinical responses to digitalis,” Amer. J. Med 64 (1978) 452-460. 

Some approximations were necessary for the sequential selection of tests 
[Gorry and Barnet, 1968].

Limitations of the naïve-Bayes method

 In general the diagnoses are not mutually exclusive:
how to diagnose multiple disorders.

 In general findings are not conditionally independent.

Bacterial infection

SignOrganism 2 Lab. testOrganism 1
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11 (1978) 115-144

Limitations of probability for AI in medicine

“The chief disadvantages of the decision theoretic approach are the 
difficulties of obtaining reasonable estimates of probabilities and utilities for a 
particular analysis. Although techniques such as sensitivity analysis help 
greatly to indicate which potential inaccuracies are unimportant, the lack of 
adequate data often forces artificial simplifications of the problem and lowers 
confidence in the outcome of the analysis. Attempts to extend these 
techniques to large medical domains in which multiple disorders may co-occur, 
temporal progressions of findings may offer important diagnostic clues, or 
partial effects of therapy can be used to guide further diagnostic reasoning, 
have not been successful. The typical language of probability and utility theory 
is not rich enough to discuss such issues, and its extension within the original 
spirit leads to untenably large decision problems. […]

A second difficulty for decision analysis is the relatively mysterious reasoning
of a decision theoretic program—an explanation of the results is to he 
understood in terms of the numeric manipulations involved in expected value 
computations, which is not a natural way of thinking for most people.”

P. Szolovits. Artificial Intelligence in Medicine. Westview Press, 1982.
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Bayesian networks

Early publications on BNs

• Pearl J. “Reverend Bayes on inference engines: A distributed hierarchical approach”, Proc. 
AAAI, 1982, Pittsburgh, PA, pp. 133-136.

• Kim J, Pearl J. “A computational model for combined causal and diagnostic reasoning in 
inference systems”, Proc. IJCAI, pp. 190-193, 1983.

• Cooper G. NESTOR: A Computer Based Medical Diagnostic Aid that Integrates Causal and 
Probabilistic Knowledge, Ph.D. dissertation, Stanford Univ., 1984.

• Pearl J. “How to do with probabilities with people say you can’t”, 2nd Conference on AI 
Applications, Miami, FL, 1985.

• Pearl J. “Fusion, propagation and structuring in belief networks”. AI 29 (1986) 241-288.

• Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San 
Mateo, CA: Morgan Kaufmann, 1988.

• Lauritzen SL, Spiegelhalter DJ. “Local computations with probabilities on graphical structures 
and their application to expert systems”. J. Royal Stat. Soc. B 50 (1988) 157-224.

• Andreassen S, Woldby M, Falck B et al. MUNIN–A causal probabilistic network for 
interpretation of electromyographic findings. Proc. IJCAI, pp. 366-372, 1987.

• Heckerman D.E. Probabilistic Similarity Networks. Ph.D. dissertation, Stanford Univ., 1990. 
Published as a book: MIT Press, 1991.
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BNs vs. naïve Bayes

 BNs can diagnose several diseases simultaneously 

 BNs do not assume conditional independence

 Three types of reasoning:

 abductive

 deductive

 inter-causal

OpenMarkov. Main features
 Strengths

 Written in Java: portability (Windows, linux, MacOS…)

 Open source

 Software engineering tools: JUnit, maven, mercurial (bitbucket), 
nexus, bugtracker, etc.

 Easily extensible: users can adapt it to their needs

 Many types of models, potentials, etc. 

 Very active: new features are continuously added

 Support for users and developers: wiki, lists, mail…

 Well-documented format for encoding networks: ProbModelXML.

Weaknesses
 Written in Java: relatively slow (in some cases)

 No on-line help, documentation still poor

 Still a prototype; needs debugging

 Support is limited, due to scarcity of human resources.



F. J. Díez (UNED)

MIT, October 13, 2015



F. J. Díez (UNED)

MIT, October 13, 2015



F. J. Díez (UNED)

MIT, October 13, 2015

Our research on Bayesian networks (1/4)

Medical Bayesian networks we have built

 DIAVAL: echocardiography (valvulopathies)
F. J. Díez’ thesis, 1994

 Prostanet: urology (prostate cancer)
Carmen Lacave’s thesis, 2003

 Nasonet:  nasopharyngeal cancer spread
Severino Galán’s thesis, 2003

 HEPAR II: liver dieseases
Agnieszka Onisko’s thesis, 2003

 Catarnet: Cataract surgery 
Nuria Alonso’s thesis, 2009

DIAVAL



F. J. Díez (UNED)

MIT, October 13, 2015



F. J. Díez (UNED)

MIT, October 13, 2015



F. J. Díez (UNED)

MIT, October 13, 2015

Prostanet (prostate diseases)
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Nasonet (nasopharyngeal cancer)

Hepar II (liver diseases)
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Catarnet (cataract surgery)

General model

 Probability table: 
P(y | x1, … , xn)

 Factors that  
influence the prob. of X

Obesity

Age

Sex

AHT

Smoking MeningitisPneumonia

Paludism

Fever

Flu

 Efficiency of each link:
ci

 Causes that 
may produce X

Noisy OR

Canonical models
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Our research on Bayesian networks (2/4)

 Canonical models

 The noisy MAX, noisy AND and noisy MIN. 

• Díez. Parameter adjustment in BN's. The generalized noisy OR-gate. UAI, 1993

 Inference with canonical models

• Díez, Galán. Efficient computation for the noisy-MAX. 2003

 A review of canonical models

• Díez, Druzdzel. Canonical probabilistic models for knowledge engineering. 2007
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Our research on Bayesian networks (3/4)

Explanation in BNs

 Review of the literature
• Lacave, Díez. A review of explanation methods for Bayesian networks. 2002.

 New explanation facilities, implemented in Elvira
• Lacave, Luque, Díez. Explanation of BNs and IDs in Elvira. 2007.

 which are useful for tuition
• Díez. Teaching probabilistic medical reasoning with the Elvira software. 2004

 and for building and debugging BNs
• Lacave, Onisko, Díez. Use of Elvira's explanation facility for debugging probabilistic 

expert systems. 2006.
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Sign of influences (coloring of links)

Sign of influences (coloring of links)
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How to build a Bayesian network

 From a database

Data
base

algorithm Bayesian
network

 There are many algorithms, several new algorithms every year 

 Similar to statistical methods (logistic regression, neural nets...)

 With a human expert’s help

Causal 
knowledge

modeling Causal
graph

probabilities Bayesian
network

 Hybrid methods: 
 experts structure;   database probabilities

 experts initial model;   new cases refine the probabilities

Our research on Bayesian networks (4/4)

 Learning Bayesian networks interactively

 The system proposes, the user decides

 Very useful for tuition

 Useful for combining data with expert knowledge

 Useful for debugging new algorithms (workbench).

 Implemented in OpenMarkov:
www.openmarkov.org/docs/tutorial
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Influence diagrams

A medical problem
Disease X

 Prevalence: P(+x) = 0’14

Therapy D
 Utility:

u (x, d)  +x   ¬x  

+d 8 9 

¬d 3 10 
 

 

Test Y
 Sensitivity: P(+y|+x) = 0’91 

 Specificity: P(¬y|¬x) = 0’97

 Cost: utest(x, d) = unot-test(x, d) – 0’2

Decisions:
 Is it worth to do the test?

 In what cases should we apply the therapy?
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D

u (+x, +d , +t) = 7’8

u (¬x, +d , +t) = 8’8

X

D

u (+x, +d , +t) = 7’8

u (¬x, +d , +t) = 8’8

X

u (+x, ¬d , +t) = 2’8

u (¬x, ¬d , +t) = 9’8

X

antibiótico
U(+d|+y) = 7’97

no antibiótico
U(¬d |+y) = 3’98

antibiótico
U(+d |¬y) = 8’78

no antibiótico
U(¬d |¬y) = 9’70

u (+x, ¬d , +t) = 2’8

u (¬x, ¬d , +t) = 9’8

X

infección
P(+x|+y) = 0’83

no infección
P(¬x|+y) = 0’17

infección
P(+x|+y) = 0’83

no infección
P(¬x|+y) = 0’17

infección
P(+x|¬y) = 0’015

no infección
P(¬x|¬y) = 0’985

infección
P(+x|¬y) = 0’015

no infección
P(¬x|¬y) = 0’985

Y

Y positivo
Dopt = +d

U(+y) = 7’97

Y negativo
Dopt = ¬d

U(¬y) = 9’68

D

u (+x, +d, ¬t) = 8

u (¬x, +d, ¬t) = 9

X

u (+x, ¬d, ¬t) = 3

u (¬x, ¬d, ¬t) = 10

X

antibiótico
U(+d) = 8’86

no antibiótico
U(¬d) = 9’02

infección

P(+x) = 0’14

no infección

P(¬x) = 0’86
infección

P(+x) = 0’14

no infección

P(¬x) = 0’86

T

no hacer test
Dopt = ¬d

U(¬t) = 9’02

hacer test
U(+t) = 9’43

P(+y) = 0’15

P(¬y) = 0’85

An ID for this example
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Arthronet (total knee arthroplasty)

Equivalent to a decision tree containing ~104 branches.

Mediastinet (lung cancer)

Equivalent to a decision tree containing ~107 branches.
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Advantages of influence diagrams (1/3)

 IDs are more compact than decision trees

An ID having n binary nodes ~ a DT having 2n branches

 Explicit representation of causality
a link indicates causal influence

 the absence of a link means “no causal influence” (hypothesis)

 IDs are much easier to build than decision trees

 IDs use direct probabilities (prevalence, sensitivity, specificity...)
and costs (mortatility, morbidity, economic cost...)

 ID can use canonical models (noisy OR, noisy AND, etc)

Each parameter appears only once in the ID 
• in many cases it is not necessary to have parametric variables

 IDs can use super-value nodes: explicit combination of utilities

Advantages of influence diagrams (2/3)

 Having all the information, no debugging is usually needed

On the contrary, “all trees have bugs” (Primer on MDA)

 No external pre-calculation of probabilities is required

 IDs are much easier to modify than decision trees

Refine the model with new decisions and chance variables

Structural sensitivity analysis

Can adapt to different regional settings

Can adapt to patient’s medical characteristics and preferences

 IDs transform automatically into decision trees

 ... but the reverse is not true (no general algorithm)

 If you build a decision tree, you only have a decision tree.

 If you build an ID, you have both.
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Advantages of influence diagrams (3/3)

 Two possibilities of evaluation:

1. expansion of an equivalent decision tree
• exponential complexity (time and space)

• equivalent to the brute-force method for Bayesian networks

• many problems can not be solved by this method

2. operations on the ID (recursive reduction of the ID)
• direct manipulation of the graph and/or potentials of the ID

• similar to the best algorithms for Bayesian networks

• canonical models and SV nodes can lead to more efficient evaluations
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IDs in the literature on MDM (1/3)

 Books that mention decision trees but do not mention IDs

• Weinstein, Fineberg. Clinical Decision Making. 1980. 

• Sloan (ed.). Valuing Health Care. 1995.

• Gold et al. Cost-Effectiveness in Health and Medicine. 1996.

• Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).

• Petiti. Meta-Analysis, Decision Analysis and CEA. 2nd ed., 2000.

• Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.

• Levin and McEwan. Cost-Effectiveness Analysis. 2nd ed., 2001.

• Parmigiani. Modelling in Medical Decision Making. 2002.

• Haddix et al. Prevention Effectiveness. 2nd ed., 2003.

• Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.

• Kassirer et al. Learning Clinical Reasoning. 2nd ed., 2010.

• Mushlin and Greene. Decision Making in Medicine. 3rd ed., 2010.

• Gray et al. Applied Methods of CEA in Health Care, 2011.
(cont’d)
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IDs in the literature on MDM (2/3)

 Books that mention decision trees but do not mention IDs (cont.)
• Alfaro-LeFevre. Critical Thinking, Clinical Reasoning, and Clinical Judgment. 

5th ed., 2013.

• Sox et al. Medical Decision Making. Latest edition: 2013.

• Hunink et al. Decision Making in Health and Medicine. 2nd ed., 2014.

• Drummond et al. Methods for the Economic Evaluation of Health Care 
Programmes. 4th ed. 2015.

 Two books that mention IDs 
• Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000 

(5 pages out of 421, in a chapter authored by Mark Roberts).

• Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.

 Another book that mentions IDs 

• Muenning. Designing and Conducting Cost-Effectiveness Analyses in 
Medicine and Health Care. 2002.

“An influence diagram (also known as a tornado diagram) ...” [p. 242]

The mistake is (partially) corrected in the second edition of the book, 2008.

IDs in the literature on MDM (3/3)

 Summary of the informal survey of books on MDM and EBM

 22 books published after 1984 

 All of them explain DTs but only two describe IDs, very briefly.

 Some books on medical informatics that mention IDs:
• Shortliffe and Cimino. Biomedical Informatics. 4th ed., 2013 

(2.5 pages out of 991).

• Kalet. Principles of Biomedical Informatics. 2nd ed., 2013
(3 pages out of 708).

 Why are IDs almost unknown in health sciences after 30+ years?
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Limitations of IDs

1. The “reasoning” of an ID is not easy to understand

2. The evaluation returns large policy tables

3. Algorithms could only evaluate unicriterion IDs

 They cannot perform cost-effectiveness analysis

4. Temporal reasoning was not possible with IDs
 Dynamic IDs are computationally unfeasible.

5. IDs cannot model symmetric problems

 IDs require a total ordering of the decisions

 IDs cannot represent incompatibilities between values
• Non-standard versions of IDs partially solve this problem, 

but none of the alternatives is completely satisfactory.

Solutions we have proposed

1. Explanation in influence diagrams

 showing the posterior probabilities and expected values

 introduction of evidence

 hypothetical reasoning (what if) by means of imposed policies

2. Synthesizing the optimal intervention

 in the form of a compact tree

3. Cost-effectiveness analysis with IDs

4. Markov influence diagrams 

 including cost-effectiveness analysis

5. Decision analysis networks

 an alternative to IDs for asymmetric decision problems.
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Decision analysis networks

Influence diagram Decision analysis network

 The ID contains two information arcs:

 because the symptom is always observed (spontaneously)

 because the result of the test is known just after doing the test

 The variable “Result of test” does not make sense when the test is not 
performed
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The diabetes problem
[Demirer & Shenoy, 2001]

The reactor problem
[Covaliu and Oliver, 1995; Bielza and Shenoy, 1999]
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The dating problem
[Nielsen & Jensen, 2000; Jensen et al., 2004]

The n-test problem

 Computationally complex: n! possible orderings of the tests.

 We have developed an any-space algorithm for this problem

 and a fast algorithm (9 minutes for the 7-test problem).

 We are developing more efficient algorithms.
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Mediastinet (DAN version)

Decisions are partially ordered.

DANs vs. IDs

 DANs can replace IDs as the standard decision analysis tool 
(in AI, MDM, operations research…) for these reasons:

 For every ID there is an equivalent symmetric DAN

 Virtually all real-world problems are asymmetric.

 There many problems that cannot be modeled with IDs.

 Even if a problem can be modeled with an ID, a DAN is 
usually better because it does not need dummy states.
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Cost-effectiveness analysis
with influence diagrams

Example: Cost-effectiveness of a test

 Disease  prevalence = 0.14

 Test sensitivity = 0.90, specificity = 0.93, 
cost = 150 €

 Therapy 1 cost = 20,000 €

 Therapy 2 cost = 70,000 €

 Effectiveness (QALYs)

No therapy Therapy 1 Therapy 2

Disease present 1,2 4,0 6,5

Disease absent 10 9,9 9,3

 Is the test cost-effective?

What is the most cost-effective therapy?
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A decision tree for cost-effectiveness analsysis

present

Disease

prev*sensit/_pJ_5
(cost_test+cost_ther_2) / e2pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_2) / e2abs

therapy-2

Therapy

present

prev*sensit/_pJ_5
(cost_test+cost_ther_1) / e1pres

absent

_pJ_1*_pJ_2/_pJ_5
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*sensit/_pJ_5
cost_test / e0pres

absent

_pJ_1*_pJ_2/_pJ_5
cost_test / e0abs

no-therapy

positive

Result
of test

_pJ_5

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_2) / e2pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_2) / e2abs

therapy-2

present

prev*_pJ_3/_pJ_6
(cost_test+cost_ther_1) / e1pres

absent

_pJ_4*spec/_pJ_6
(cost_test+cost_ther_1) / e1abs

therapy-1

present

prev*_pJ_3/_pJ_6
cost_test / e0pres

absent

_pJ_4*spec/_pJ_6
cost_test / e0abs

no-therapy

negative

_pJ_6

do_test

Dec:Test

present

prev
cost_ther_2 / e2pres

absent

#
cost_ther_2 / e2abs

therapy-2

present

prev
cost_ther_1 / e1pres

absent

#
cost_ther_1 / e1abs

therapy-1

present

prev
0 / e0pres

absent

#
0 / e0abs

no-therapy

no_test

cost-effectiveness

cost_test=150
cost_ther_1=20000
cost_ther_2=70000
e0abs=10
e0pres=1,2
e1abs=9,9
e1pres=4,0
e2abs=9,3
e2pres=6,5
prev=0,14

TreeAge usually returns wrong results for this tree. 
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Methods of Information in Medicine 54 (2015) 353-358.

PGMs for temporal reasoning
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Markov chain

One variable that evolves over time

 Transition probabilities:  P(xi+1|xi)

Hidden Markov model (HMM)

Observed variable:  Y

 Non-observed (hidden) variable: X

 Probability of each observation:  P(yi|xi)

 Transition probability:  P(xi+1|xi)
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Markov decision process (MDP)

Observed variable:  X

 Decision: D

 Transition probability:  P(xi+1|xi)

 Reward:  U(xi, di)

Partially observable MDP (POMDP)

 Hidden variable: X 

Observed variable : Y

 Decision: D

Observation prob.: P(yi|xi)

 Transition prob.: P(xi+1|xi)

 Reward: U(xi, di)
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Factored extensions of Markov models

Dynamic Bayesian network (DBN)

 Markov chain or hidden Markov model: 
– one variable, X
– one conditional probability: P(xi+1|xi)

 Dynamic Bayesian network: 
– several variables, {X, Y, Z…}
– factored probability: P(yi|xi), P(zi|xi, yi), P(xi+1|xi, yi)…
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IJCAI Workshop Decision Making in Partially Observable, 
Uncertain Worlds: Exploring Insights from Multiple Communities
Barcelona, July 2011

Our research on temporal PGMs

 New types of models

Networks of probabilistic events in discrete time (NPEDT)

• A non-Markovian extension of BNs

Dynamic limited-memory influence diagrams (LIMID)

• A Markovian extension of limited-memory IDs 
[Lauritzen & Nilsson, 2001]

Markov influence diagrams (MID)

• A Markovian extension of influence diagrams

 An algorithm for cost-effectiveness analysis with MIDs

 and several MIDs for different medical problems.
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Dynamic limited-memory IDs (DLIMIDs)

 Differences from POMDPs

 Several decisions in each time slice.

 Limited memory: the decision maker only knows the observations 
from the current and previous time slices

 Memory variables summarize the past.

A DLIMID for a carcinoid tumors

 Therapy selection for high-grade carcinoid tumors (van Gerven et al., 2007)
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A MID version of the HIV model
[Chancellor et al., 1997]

A MID version of the hip replacement model
[Briggs et al., 2004]
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A MID version of the HPV vaccination model
[Callejo et al., 2010]

Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21;8;TRUE)*(((BI5+BJ5)+BK5*u
CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC
+(BU5+BV5)*uDCC)+((BI4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_
3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU
P($C4;Variables!$A$4:$H$21;2;TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(
$C4;Variables!$A$4:$H$21;4;TRUE)+(BS4+BT4)*uRCC*VLOOKUP($
C4;Variables!$A$4:$H$21;5;TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C
4;Variables!$A$4:$H$21;2;TRUE))
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A MID version of the CHAP model
[Ryan et al., 2008]

Our model for malignant pleural effusion

 Meeting of the Society for Medical Decision Making,
St. Louis, October 19-21, 2015.
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Our model for bilateral cochlear implantation

 Cochlear Implant Symposium, Washington DC, October 15-17, 2015.

Probabilistic sensitivity analysis
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Probabilistic sensitivity analysis

98% probability that 
BCI is cost-effective

Conclusions (1/2)

 In the first decades of AI probabilistic methods seemed to be 
inappropriate for reasoning and decision making.

 BNs overcame the limitations of the naïve Bayes method.

 IDs have several advantages over decision trees,
but also have serious limitations for medical decision making.

 The main contributions of our group are:

 new types of models: DANs, DLIMIDs, Markov IDs…;

 new methods for the explanation of reasoning;

 new algorithms, especially for cost-effectiveness analysis;

 an open-source software package that implements these 
contributions (and the interactive learning of BNs); and

 an XML format for encoding probabilistic models.
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Conclusions (2/2)

 PGMs play a more and more relevant role in AI:
robotics, planning, natural language, learning…

 They are the preferred approach in medicine:

 normative basis: decision theory

 combine expert knowledge with data

What remains to be done:

 dissemination in the fields of MDM and health economics

• seminars, short courses, MOOC…

• tutorials, journal papers, book…

 better software tools:

• sensitivity analysis, cost-effectiveness analysis, explanation…

Thank you very much for your attention!


