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Probability in artificial intelligence

& A.l. was “born” in 1956, at the Dartmouth Conference

¢ In the first 25 or 30 years, many researchers doubted or
denied that probability could play a significant role in A.l.

& First reason (cf. [Sutton and Barto, 1998]).
> Computers were already good at arithmetic operations

> but could not perform “easy” tasks (easy for a little child):
vision (image understanding), natural language, planning...

> Those tasks could not be solved with arithmetic operations;
they require conceptual reasoning (symbol manipulation — LISP).

> Probabilistic “reasoning” consisted mainly in number crunching,
not in conceptual reasoning.

¢ Second reason: limitations of probabilistic methods.

Naive-Bayes method
for probabilistic diagnosis

¢ n diagnoses, m possible findings

¢ 1st hypothesis: diagnoses are mutually exclusive
(i.e., the patient has at most one disease)

¢ 2nd hypothesis: findings are conditionally independent

P(fl’ 'fm |di) = P( f1|di) Teeet P( fmldi)
¢ Bayes’ theorem (naive method)

P(ilfy, ... . f,)=a-P(fjd;)-...-P(f,d;)-P(d;)
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Succesfull applications of the naive-Bayes

Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone tumors: A
preliminary report,” Radiology 80 (1963) 273-275.

Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid function,”
JAMA 183 (1963) 307-313.

Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis of
congenital heart disease,” Progress in Cardiovascular Diseases 5 (1963) 362-377.

Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer diagnosis of
congenital heart disease,” Annals New York Acad. Sciences 115 (1964) 558-567.

de Dombal FT, Leaper JR Staniland JR, et al., “Computer-aided diagnosis of acute abdominal
pain,” BMJ 2 (1972) 9—13.

Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for computer-
aided management of acute renal failure,” Amer. J Med 55 (1973) 473-484.

Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program that
considers clinical responses to digitalis,” Amer. J. Med 64 (1978) 452-460.

Some approximations were necessary for the sequential selection of tests
[Gorry and Barnet, 1968].

Limitations of the naive-Bayes method

¢ In general the diagnoses are not mutually exclusive:
how to diagnose multiple disorders.

¢ In general findings are not conditionally independent.

Bacterial infection
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ABSTRACT

Medical decision making can be viewed along a spectrim, with categorical (er deterministic) reasoning
at ane extreme and probabilistic (or evidential) reasoning at the other, In this paper we examine the
fowchart as the prototype of categorical reasoning and decision analysis as the prototype of probabils
istic reasoning. Within this context we compare PIF, INTERNIST, CASNET, and M YCIN—four
of the present programs which apply the technigues of artificial intelligence to medicine. Althongh
these systems can exhibit impressive expert-like behavior, we believe that none of them is yet capable
of truly expert reasoning. We suggest that a program which can demonstrate expertise in the area
of medical consultation will have to use a judicious combination of gorical and probabili
reasoning—the former to establish a sufficiently marrow context and the latter to make comparisons
among hypotheses and eventually to recommend therapy.

Limitations of probability for Al in medicine

P. Szolovits. Artificial Intelligence in Medicine. Westview Press, 1982.

“The chief disadvantages of the decision theoretic approach are the
difficulties of obtaining reasonable estimates of probabilities and utilities for a
particular analysis. Although techniques such as| sensitivity analysis|he|p
greatly to indicate which potential inaccuracies are unimportant, the lack of
adequate data often forces artificial simplifications of the problem and lowers
confidence in the outcome of the analysis. Attempts to extend these
techniques to large medical domains in which multiple disorders may co-occur,

[temporal proqressions]of findings may offer important diagnostic clues, or
partial effects of therapy can be used to guide further diagnostic reasoning,
have not been successful. The typical language of probability and utility theory
is not rich enough to discuss such issues, and its extension within the original
spirit leads to untenably large decision problems. [...]

A second difficulty for decision analysis is the relatively mysterious reasoning
of a decision theoretic program—an(explanation]of the results is to he
understood in terms of the numeric manipulations involved in expected value
computations, which is not a natural way of thinking for most people.”
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Bayesian networks

Early publications on BNs

Pearl J. “Reverend Bayes on inference engines: A distributed hierarchical approach”, Proc.
AAAI, 1982, Pittsburgh, PA, pp. 133-136.

Kim J, Pearl J. “A computational model for combined causal and diagnostic reasoning in
inference systems”, Proc. IJCAI, pp. 190-193, 1983.

Cooper G. NESTOR: A Computer Based Medical Diagnostic Aid that Integrates Causal and
Probabilistic Knowledge, Ph.D. dissertation, Stanford Univ., 1984.

Pearl J. “How to do with probabilities with people say you can’t’, 2nd Conference on Al
Applications, Miami, FL, 1985.

Pearl J. “Fusion, propagation and structuring in belief networks”. Al 29 (1986) 241-288.

Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San
Mateo, CA: Morgan Kaufmann, 1988.

Lauritzen SL, Spiegelhalter DJ. “Local computations with probabilities on graphical structures
and their application to expert systems”. J. Royal Stat. Soc. B 50 (1988) 157-224.

Andreassen S, Woldby M, Falck B et al. MUNIN-A causal probabilistic network for
interpretation of electromyographic findings. Proc. IJCAI, pp. 366-372, 1987.

Heckerman D.E. Probabilistic Similarity Networks. Ph.D. dissertation, Stanford Univ., 1990.
Published as a book: MIT Press, 1991.

MIT, October 13, 2015




F. J. Diez (UNED)

BNs vs. naive Bayes

# BNs can diagnose several diseases simultaneously

¢ BNs do not assume conditional independence

# Three types of reasoning:

> abductive
> deductive
> inter-causal

OpenMarkov. Main features

# Strengths

» Written in Java: portability (Windows, linux, MacOS...)
» Open source

» Software engineering tools: JUnit, maven, mercurial (bitbucket),
nexus, bugtracker, etc.

» Easily extensible: users can adapt it to their needs

» Many types of models, potentials, etc.

» Very active: new features are continuously added

» Support for users and developers: wiki, lists, mail...

» Well-documented format for encoding networks: ProbModelXML.

& Weaknesses

» Written in Java: relatively slow (in some cases)

» No on-line help, documentation still poor

» Still a prototype; needs debugging

» Support is limited, due to scarcity of human resources.

MIT, October 13, 2015
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OpenMarkov
Espafiol
Horme
Users / Download o penMa rkov
Developers
References OpenMarkov is a software tool for probabilistic graphical medels (PGMs) developed by the Research Centre for
Acknowledgments ) .
e Intelligent Decision-Suppoert Systems of the UNED in Madrid, Spain.
It has been designed for:
* editing and evaluating several types of several types of PGMs, such as Bayesian networks, influence diagrams,
factored Markov models, etc.;
* learning Bayesian networks from data interactively;
» cost-effectiveness analysis.
You can read the tutorial to have a glimpse of its capabilities.
Visit the ugers’ page to d | P and obtain add |
CISIAD. Research Center on Intelligent Decision-Support Systems, UNED. Madrid, Spain.
Prob ProbModelXML
Model A format for encoding probabilistic graphical models
XML E
Home
Hetworks References

* M. Arlas, F. ). Diez, M. A. Palacios. ProbModelXML. A format for i ilistic graphical
modals, Technical Report CISIAD-11-02. UNED, Madrid, Spain, 2011.

Examples
Erobabilistic networks encoded in this format.
Software

Software packages that can read andfor write networks in this format:
= OpenMarkoy
Contact

Iinfo@probmodelml.org

CISIAD. UNED, Madrid, Spain.
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The MADP Toolbox 0.3.1
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Our research on Bayesian networks (1/4)

¢ Medical Bayesian networks we have built

> DIAVAL: echocardiography (valvulopathies)
F. J. Diez' thesis, 1994

» Prostanet: urology (prostate cancer)
Carmen Lacave's thesis, 2003

» Nasonet: nasopharyngeal cancer spread
Severino Galan's thesis, 2003

» HEPAR lI: liver dieseases
Agnieszka Onisko's thesis, 2003

» Catarnet: Cataract surgery
Nuria Alonso’s thesis, 2009

DIAVAL

T
Archivo  Datos previos Hallazgoseco  Diagndstico  Especial Ayuda
S
Eco nimero: |164382 Fecha: [20]16]03] Transtoricico: SI
Cinta: @ Hora grabacidn: |1.23.56 Transesofdgico: NO
Hombre: ‘MRRIR |
apellidos: [PEREZ |[eaRc1A

Sexo: HUJER  DNI: [123456 | Edad: [51 |afios

Peso: Kg Estatura: cm Sup. corporal: 1.58 m?

* solicitante: [CARDIOLOGIA |

Situacidn: INGRESADO Sector: [3_| Cama: [512n

""Continuar

Introducir los datos del paciente.
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NTRODUCIR ECO

archivo  Datos previos Hallazgos eco  Diagndstico  Especial Ayuda

Il PARAMETROS DEL ECO DOPPLER (M ¥ T) _ (ol x|

cm/s "+185%" "mod. aumentada™
Jews
GCociente E/R

T.R.IV. [ ms
T. desaceleracidn l:| ns

]
> m

lalsls sl sls slslslsls

Grad. mdx. mitral 108.8 mnnHg “est. moderada”
Grad. med. mitral mHg "ley. aumentado”
T.H.P. mitral ns "+183%" "seu. aumentado™
Area mitral {THP) 8.9 cm? i "esten. critica"
Uel. max. tric. |:|cm/s

Grad. mix. tric. mmHg

Grad. med. tric. |:||ang

Anterior | Continuar

Pulsar "?" para obtener mds informacidn sobre un parimetro.

NTRODUCIR ECO

archivo  Datos previos Hallazgos eco  Diagndstico  Especial Ayuda
ECO BIDIMENSIONAL: ¥ALYULA MITRAL i ] ll
Ausente SCORE MITRAL: ¢

Reduc. leve
Hoderado

CALC. VUALVAS EMGR. UALUAS HOVILIDAD

fusente Simétrica

Fus. mod.

CALC. COMIS. FUS. GOMIS.

Ho vegetaciones

Afect. moderada

APARATO SUBUALU.

Anterior Resto normal Continuar

MIT, October 13, 2015
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-Igix]

Archiva  Datos previos Hallazgos eco  Diagndstico  Especial Ayuda

ol

Estenosis mitral reunmdtica moderada. {108%)
Insuficiencia mitral leve. (96%)

Estenosis reumdtica severa de la wilvula adrtica. (106%)
Insuficiencia tricuspidea funcional lewe. (72%)

Retraso de la relajacidn diastdlica. (65%)

Hipertensidn pulmonar moderada. (1086%)

Anterior | Resto normal Continuar

=

Archivo  Datos previos  Hallazgos eco  Diagndstico  Especial Ayuda

-Iolx

Dr. Rio Aguilar

Dr. Enrique Gonzdlez
Dra. Elena Iturralde
br. Javier Jiménez
pr. Ifiigo Lozano

Dr. Javier Lozano

Dra. Sonia Rodriguez

Modificar
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INFORME.TXT - Bloc de notas =10 x|

Archivo Edicisn  Formato Wer Ayuda

patos administrativos
N® eco: 104382, Fecha: 29/10/3. cCinta: 512.
MARIA GARCIA PEREZ. DNI: 1234587.
Edad: 51 afios. Mujer.
Peso: 58 Kg. Estatura: 158 om. Sup. corporal: 1,58 m=.
solicitante: CARDIOLOGIA.
Ingresada, sector 3, cama 512A.

Sintomas

risnea de grado II.

valvula mitral

1.2 cmE.

velocidad onda E: 164 om/fs.

Gradiente maximo: 10.8 mmHy

Gradiente medio: 7.0 mmHg

Tiempo de hemipresion: 255 ms.

Area (THPD: 0.9 cm=.

Engrosamiento moderado de las valvas.
no calcificacion de Tas valvas mitrales.
reduccion Teve de Ta movilidad

contractilidad segmentaria normal.
rericardio normal.

DIAGNOSTICO

Estenosis mitral reumatica moderada
Insuficiencia mitral leve.

Estenosis reumdtica severa de Ja valvula adrtica.
Insuficiencia tricuspidea funcional Teve.

retraso de la relajacidn diastdlica.
Hipertensian pulmonar moderada.

pra. Elena Iturralde |

-

Prostanet (prostate diseases)

Vaciado incompleto
e
‘@

P

[ Pais de origen
T

Vegetariano
T

|_Obesidad
—

\ Factores hormonales

Antecedentes

iy

— S Biopsia

Céncer de prostata

p

Cosasans F 1 e

— e e
psa v )
e |
|_IPss
PSA total “1
; Exploracién rectal
Masa supra |

Anemia
(
Dolor { PsAI/PSAt |
Afeccién higado Sindrome constitucional I—J

Cultive

| Fiebre
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Nasonet (nasopharyngeal cancer)

'u--n-;-c—. -—--—un-u-dqd— E“" ;....,...].u- o e P%q [ becien s sasapharyss ""'“‘J""

|m'.jm. { L«/r-’ . ,_;____Abéra—,_"‘""'ﬁ??f /‘

[ Psinerthen ol ellars o e bt ot | ot e b right 10

[ i e spread s o middle aue [Wéle cae il e of skl [y ol kg P50 N'ﬁ - "“-1 B FL%"_M et e ,nl. ight aar

[ et sing samas sprand i nmmuupd# w__
1 -
|m-¢_qnu..n-.ma. i e uma yrightshde Tivk side bt side oo |
— =
(onw g e 'T.\m- e Jhaside |

Hepar Il (liver diseases)

Comer) ( )

Crmmsion g =) Gz
- flatulence
\ o) (Fepttoe )

obsaky °‘““°"’ 77 1\
S
m“i{‘\\ mnma 4 —_. 1’1»‘1"

ar.; paln ruq -— --
E‘ -g f.'ll. A‘v "-‘_ anorexla
"‘ 'f‘v'i.—z =iy
“h “, 194 = %?ﬂ\ ‘f';o
'! mn—rm ns m m T
hbsag_ann ﬂ, J' -
nbﬂu v v L- dl ERCSpHATEY itehing

hev_anti [ hbe_antl : (_Jm_e"r:a edge | ~ 4‘ \ ama | ¥
sp:m'[ gular_|lver I ascltes -J ][IK jaund_sgj-mmoms m
¥

.&

alcohol
(otnts ) (pain )
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Catarnet (cataract surgery)

___M )‘_.:__ . :i'"fl'?‘;: J —_—_ :H‘I'DJPIIIS-J_ r‘*x’",‘““'::‘::"" I apu‘_ellenmlu )

rmlnph mngna al; — —
oS :\ rlHlmlet nd =

IR, o4
\Xf\ )((}{ i\ _1. llnlqulal)nt

(_comtec_baja_RAND ,' IIn mum : V \‘ ,"lJr'll ll
| W1 m ; [y 1
I qg [ av_contral |
‘I ez N T T N 4 \ TN
| comtec .:-:%m “‘4-! / -_II' ) e \\ / .’f{ =m¢|¢1_mn )
flwhr:n zllil;hlhn b \\\ \/X\L Lnne sontral_ ]‘
T AV ooy L ) a
oo lm 7 vl N N \ .. )'Ir/y\,;?{“‘x rlmu_pu_::: oh:/c trast_fv l;[f.' / rw}
T \ 4 "\ a8 \\ \ ,"'I ,/’/ \\ ...“"ul‘x\_ r\\ l’l/ deslu :omnl)
Lo ol mecha_v N L tL) I 7 |
| )/ru:lurl.lcmynJ__"__ Inll_ irea \_\ mw . ‘f\\ \ J /;,»/’_ ,/
7 e - [ desiy glnha]_pl'l v_deslu_pre |/ / rWJW'J"J

-—’_u\mmmm: \|' -;__""-:- ™ ‘ P
) ‘£.¢...., comeal /k/(;/‘ ’H__!/ f‘u_mahiyl

[ aiter_ Inddun “w_
- hé'adema mac_cist %{ I
ﬁupr :nwidlu.i_\‘:'—___)—l‘
T _'_—_,L I '\m\‘l lobal_post |
‘i&-"“/ mummnenmpm - Y 7—/ _global_p DA '
eulnumn . i F :: | funcion_RAND J

av_complic
‘ J?‘ "/ — — (—;«-" fv_global_post |
{Lavpost |-~ -—L\ ganancia_desiu | / S D] . T ——
desglu_global_post | ——#_funcion_post |

|_ganancia_av | . -
-
k v_q-nnlh dlxlu

Canonical models
General model Noisy OR

¢ Probability table: ¢ Efficiency of each link:
Gi

Py | Xy -y %)
& Factors that ¢ Causes that
may produce X

influence the prob. of X

Pneumonia
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Our research on Bayesian networks (2/4)

& Canonical models

> The noisy MAX, noisy AND and noisy MIN.
» Diez. Parameter adjustment in BN's. The generalized noisy OR-gate. UAI, 1993

> Inference with canonical models
+ Diez, Galan. Efficient computation for the noisy-MAX. 2003

> A review of canonical models
» Diez, Druzdzel. Canonical probabilistic models for knowledge engineering. 2007

lechnical Report CISIAD-D6-01 Version 00 {April 28, 2007

Canonical Probabilistic Models
for Knowledge Engineering

Contents

1 Introduct

L1 Owvery
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Our research on Bayesian networks (3/4)

¢ Explanation in BNs

» Review of the literature
+ Lacave, Diez. A review of explanation methods for Bayesian networks. 2002.

» New explanation facilities, implemented in Elvira
« Lacave, Luque, Diez. Explanation of BNs and IDs in Elvira. 2007.

> which are useful for tuition
« Diez. Teaching probabilistic medical reasoning with the Elvira software. 2004

» and for building and debugging BNs

- Lacave, Onisko, Diez. Use of Elvira's explanation facility for debugging probabilistic
expert systems. 2006.

The Knowledge Engineering Review, Yol, 17:2, 107-127. € 2002, Cambridge University Press
DOL: 10 10T T/S026988800200019X  Printed in the United Kingdom

Areview of explanation methods for Bayesian
networks”

CARMEN LACAVE' and FRANCISCO J DIEZ®

ex
* Depr. Artificial IntelNigence, UNED, Senda del Rey, 9. 28040 Midrid, Spairn; e-mail: feliez @ dia.wmed es

Ahbstract

One of the key factors for the acceptance of expert systems in real-world domains is the ability
explain their reasoning (Buchanan & Shonliffe. 1984 Henrion & Druzdzel. 1990). This paper

describes the basic properties that characterise explanation methods and reviews the methods

developed o date for explanation in Bayesian networks,

I Introduction

Expert systems originated in the 1970s as computer programs capable of imitating human experts and
even substituting them when necessary. One of the essential qualities of real expents is their ability to
communicate their knowledge and explain their reasoning. This ability is especially imporiant in the
case of expert systems, not only for tracing performance during the construction and evaluation of the

system, but also for justifying their resulis when the system is
n experiment performed at the MYCIN project showed that physicians are very reluctant to
the advice of a machine if they do not understand how it was obtained (Teach & Shortliffe,

leployed in an of ing envi

In the decades thut followed, i.e. the 1980s and 1990s, the main goal of artificial intelligence shifted

from imitating natural intelligence 1o supporting human beings in a syne ay. In fact, Clancey

(1993) points 10 the notes o authors’ in the Knewledge Acquisition journal: “The key issue is not

MIT, October 13, 2015




F. J. Diez (UNED)

Sign of influences (coloring of links)
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How to build a Bayesian network

¢ From a database

Data algorithm Bayesian
base network

» There are many algorithms, several new algorithms every year
» Similar to statistical methods (logistic regression, neural nets...)

¢ With a human expert’s help

Causal modeling Causal probabilities Bayesian
knowledge graph network

¢ Hybrid methods:

» experts — structure; database — probabilities
» experts — initial model; new cases — refine the probabilities

Our research on Bayesian networks (4/4)

# Learning Bayesian networks interactively
> The system proposes, the user decides
> Very useful for tuition
> Useful for combining data with expert knowledge
> Useful for debugging new algorithms (workbench).

Implemented in OpenMarkov:
www.openmarkov.org/docs/tutorial

v
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Influence diagrams

A medical problem

¢ Disease X
> Prevalence: P(+x)=0'14
¢ Therapy D
> Utility: ud)| i
+d 8 9
—d 3 10
¢ TestyY

» Sensitivity:  P(+y|+x) =091
» Specificity:  P(ay]=x) = 0'97
» Cost: utest(xv d) = unot—test(X1 d) -02

¢ Decisions:
> Is it worth to do the test?
» In what cases should we apply the therapy?

MIT, October 13, 2015
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infeccién U (+x, +d, 1) = 8
antibiético P(+x) =0'14
U(+d) = 8'86 no infeccién
no hacer test
Dot = —d
U(-t) =9'02

P(-x) = 086

u(=x, +d,=t)=9
infeccion

no antibiético P(+x) =014

U(~d) = 9'02

u(+x,-d, =t) =3
no infeccién

P(-x) = 0'86

u (=x, =d, =t) = 10

antibidtico
U(+d|+y) = 7'97

infeccion
P(+x|+y) =083
Y positivo

D = +d m

U(+y) = 797

u(+x, +d, +t)=7'8

no infeccién U (X, +d, +1) = 88
P(-x|+y) = 017
infeccion
no antibiético
U(~d |+y) = 398

u(+x,-d, +t)=2'8
P(+x|+y) = 0'83
no infeccién U (X ~d, +1) = 9'8
P(-x|+y) = 0'17
infeccion
antibidtico

U(+d |-y) =878

P(+x]-y) = 0015

u(+x, +d, +t)=7'8
U(-y) =9'68

no infeccién U (X, +d, +1) = 88
P(=x|-y) = 0'985
infeccion
no antibiético
U(=d |-y) = 9'70

u(+x,-d, +t)=2'8
P(+x|-y) = 0'015

no infeccién U (=X, —d , +1) = 9'8
P(-x|-y) = 0'985
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Arthronet (total knee arthroplasty)

i | AN | nnu;vwnpu- Sinovial |
4 | N =
{Evac mplante | ¥ N\ ,_\_A‘ ",
N { Moleating G N cort -’?‘"{\ T Ttaritecon PR

Equivalent to a decision tree containing ~10* branches.

Mediastinet (lung cancer)

\1/

¥ !
{_Economic_Cost_TENA ) _l 5““““—“

T~/ p= 1
N ,-/—' << / = ) | GRS
b | L ) o, | S '.I ; /
ey (:mm_:m_m)/ ‘ \*’/ /
(Eemuq_cw_m-uﬂKscmow.we), EK (m ooy ) (ueans) f;
Emm-lc_c-n_m / r,"
™, \\ J ,r / /
™, J \ [
\ I
\ MED_Morbidity
= V% <i>
{ Weighted_Ecanamic_Cost e
— T
T -
e —

Equivalent to a decision tree containing ~107 branches.
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Advantages of influence diagrams (1/3)

¢ IDs are more compact than decision trees
> An ID having n binary nodes ~ a DT having 2" branches

# Explicit representation of causality
> a link indicates causal influence
> the absence of a link means “no causal influence” (hypothesis)

& IDs are much easier to build than decision trees

> IDs use direct probabilities (prevalence, sensitivity, specificity...)
and costs (mortatility, morbidity, economic cost...)

> ID can use canonical models (noisy OR, noisy AND, etc)

> Each parameter appears only once in the ID
+ in many cases it is not necessary to have parametric variables

> IDs can use super-value nodes: explicit combination of utilities

Advantages of influence diagrams (2/3)

¢ Having all the information, no debugging is usually needed
> On the contrary, “all trees have bugs” (Primer on MDA)

& No external pre-calculation of probabilities is required

¢ IDs are much easier to modify than decision trees
> Refine the model with new decisions and chance variables
> Structural sensitivity analysis
> Can adapt to different regional settings
> Can adapt to patient’s medical characteristics and preferences

& IDs transform automatically into decision trees
> ... but the reverse is not true (no general algorithm)
> If you build a decision tree, you only have a decision tree.
> If you build an ID, you have both.
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Advantages of influence diagrams (3/3)

# Two possibilities of evaluation:

1. expansion of an equivalent decision tree
-exponential complexity (time and space)
-equivalent to the brute-force method for Bayesian networks
-many problems can not be solved by this method
2. operations on the ID (recursive reduction of the ID)
-direct manipulation of the graph and/or potentials of the ID
-similar to the best algorithms for Bayesian networks
-canonical models and SV nodes can lead to more efficient evaluations

DECISION ANALYSIS

p. 229-231
050204 | 0229

infIIH.

por 10.1287 / deca. 1050.0054
©2005 INFORMS

The Influence of Influence Diagrams on
Artificial Intelligence

Craig Boutilier
Department of Computer Science, University of Toronto, Toronto, Ontario, M55 3G5 Canada, cebly@cs. toronto.edu

Howard and Matheson's article “Influence Diagrams” has had a substantial impact on research in artificial

intelligence (Al). In this perspective, [ briefly discuss the importance of influence diagrams as a model for

decision making under uncertainty in the Al research community; but I also identify some of the less direct,

but no less important, influences this work has had on the field.

Key words: influence diagrams; decision theory; artificial intelligence; value of information; graphical models;
perspective, the focus on graphical modeling research

History: Received on November 14, 2005, Accepted by Eric Horvitz on November 23, 2005, without revision,

oward and Matheson's (1984/2005) “Influence

Diagrams” has had a profound impact on devel-
opments in artificial intelligence. Some of these influ-
ences have been quite direct; others are more indi-
rect, but in many ways, more substantial. The paper
N " .

ol D BT | R T T T

vision (Binford and Levitt 2003), dialog management,
user interface design, multiagent systems, and game
theory (Koller and Milch 2003), to name but a few.

Another reasonably direct impact of “Influence Dia-
grams” de from its role in the development
al e 4.1

melafaal cacdale fos accleabelliotia ceodali;. awd
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Vol. 2, No. 4, December 2005, pp. 238-244 g
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The Influence of Influence Diagrams in Medicine

Stephen G. Pauker, John B. Wong
Division of Clinical Decision Making, Informatics and Telemedicine, Department of Medicine,
Tufts-New England Medical Center, Tufts University Schoal of Medicine, 750 Washington St., NEMC 302,
Boston, Massachusetts 02111 [spauker - org, | - arg)

A]thnugh influence diagrams have used medical examples almost from their inception, that graphical repre-
sentation of decision problems has disseminated surprisingly slowly in the medical literature and among
clinicians performing decision analyses, Clinicians appear to prefer decision trees as their primary modeling
metaphor. This perspective examines the use of influence diagrams in medicine and offers explanations and
suggestions for accelerating their dissemination.

Key words: decision analysis; influence diagrams; clinical decision making: medicine
History: Received December 12, 2005. Accepted by Eric Horvitz on January 5, 2006, after 1 revision,

Introduction modeling paradigm slowly spread from Stanford,
Two decades after Howards landmark paper  both with courses offered at meetings of the Soci-
(Howard and Matheson 1984,/2005) that introduced ety for Medical Decision Making (Society for Medical
the concept of the influence diagram and three  Decision Making 2005) and with the development of
decades since Miller’s initial report (Miller et al.  software that could conveniently capture and evalu-
1976), De:

AWNE amd

sion Anmalysis reproduced that paper in ate such models.

SETRE Ry SRS SN | TP

IDs in the literature on MDM (1/3)

4 Books that mention decision trees but do not mention IDs

»  Weinstein, Fineberg. Clinical Decision Making. 1980.

« Sloan (ed.). Valuing Health Care. 1995.

« Gold et al. Cost-Effectiveness in Health and Medicine. 1996.

» Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).
- Petiti. Meta-Analysis, Decision Analysis and CEA. 2" ed., 2000.

» Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.
- Levin and McEwan. Cost-Effectiveness Analysis. 2" ed., 2001.

- Parmigiani. Modelling in Medical Decision Making. 2002.

- Haddix et al. Prevention Effectiveness. 2" ed., 2003.

- Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.

- Kassirer et al. Learning Clinical Reasoning. 2" ed., 2010.

« Mushlin and Greene. Decision Making in Medicine. 39 ed., 2010.

- Gray et al. Applied Methods of CEA in Health Care, 2011.
(cont'd)
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IDs in the literature on MDM (2/3)

& Books that mention decision trees but do not mention IDs (cont.)

« Alfaro-LeFevre. Critical Thinking, Clinical Reasoning, and Clinical Judgment.
5t ed., 2013.

« Sox et al. Medical Decision Making. Latest edition: 2013.
- Hunink et al. Decision Making in Health and Medicine. 2" ed., 2014.

«  Drummond et al. Methods for the Economic Evaluation of Health Care
Programmes. 4t ed. 2015.

& Two books that mention IDs

- Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000
(5 pages out of 421, in a chapter authored by Mark Roberts).

. Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.

& Another book that mentions IDs

«  Muenning. Designing and Conducting Cost-Effectiveness Analyses in
Medicine and Health Care. 2002.
“An influence diagram (also known as a tornado diagram) ..."” [p. 242]
The mistake is (partially) corrected in the second edition of the book, 2008.

IDs in the literature on MDM (3/3)

¢ Summary of the informal survey of books on MDM and EBM
> 22 books published after 1984

> All of them explain DTs but only two describe IDs, very briefly.

> Some books on medical informatics that mention IDs:

- Shortliffe and Cimino. Biomedical Informatics. 4t ed., 2013
(2.5 pages out of 991).

. Kalet. Principles of Biomedical Informatics. 2" ed., 2013
(3 pages out of 708).

¢ Why are IDs almost unknown in health sciences after 30+ years?
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Limitations of IDs

1. The “reasoning” of an ID is not easy to understand
2. The evaluation returns large policy tables

3. Algorithms could only evaluate unicriterion IDs
> They cannot perform cost-effectiveness analysis

4. Temporal reasoning was not possible with IDs
> Dynamic IDs are computationally unfeasible.

5. IDs cannot model symmetric problems
> IDs require a total ordering of the decisions

> IDs cannot represent incompatibilities between values
- Non-standard versions of IDs partially solve this problem,
but none of the alternatives is completely satisfactory.

Solutions we have proposed

1. Explanation in influence diagrams

» showing the posterior probabilities and expected values
> introduction of evidence
» hypothetical reasoning (what if) by means of imposed policies

2. Synthesizing the optimal intervention
> in the form of a compact tree

3. Cost-effectiveness analysis with IDs

4. Markov influence diagrams
> including cost-effectiveness analysis

5. Decision analysis networks
» an alternative to IDs for asymmetric decision problems.
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Decision analysis networks

Influence diagram

Disease

Result of test
Therapy

Health state Cost of test

performed

& The ID contains two information arcs:

Decision analysis network

Result of test

Health state Cost of test

» because the symptom is always observed (spontaneously)

» because the result of the test is known just after doing the test

¢ The variable “Result of test” does not make sense when the test is not
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The diabetes problem
[Demirer & Shenoy, 2001]

Symptom
Dec: Blood Test

/

Dec: Urine test

Cost of blood test ( Blood test result ) Urine test result ) Cost of urine test

Therapy
Quality of life

The reactor problem
[Covaliu and Oliver, 1995; Bielza and Shenoy, 1999]

Advanced reactor reliability

Cost of test Result of test

Build decision

[ Result of conventional reactor ) Result of advanced reactor

Benefit of conventional reacter { Benefit of advanced reactor }
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The dating problem

[Nielsen & Jensen, 2000; Jensen et al., 2004]

U NCExp

. 1 .
!
|_Costoftesto )

The N-test problem

I - y i - - .
((symptom ] - / Y ~ ——
- S (Y ~ ——a -
- / (IR . Dec: Test4 | — = _TestResult4 |
Dec: Testd | T i i Y . \““-\_
™~ = ’ 1l A [ DeeiTemts | - o y
*, | Dec:Test1 Dec: Tost? || y L 2 e . { Costoftestd ;
. - : T T e kY [ Test Resutt3 |

(TestResutto ) | Tost Result1 |

{ Costoltest1 )

| TestResunz | "
(e - ™
{ costoftests )

1 1
{ costortest )}

| Therapy |

:‘A_:‘_
{quainy of ite )

¢ Computationally complex: n! possible orderings of the tests.
¢ We have developed an any-space algorithm for this problem
¢ and a fast algorithm (9 minutes for the 7-test problem).

¢ We are developing more efficient algorithms.
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Mediastinet (DAN version)

- “'j.‘?“f\_\:

£ 1 -~ -
7 [ mED SV |

( —aw) —:C%@_) AN
— \(ﬁgj— ‘,cm!!us\‘ (oo ;\‘
/?"“x A ﬂ"_‘,’i" (aw mluy Y w y \:._’!/nﬂ)

¢ Total Economic Cost )
( Weighted Economic Cast % { e )
—

’ Net Effectiveness

Decisions are partially ordered.

DANSs vs. IDs

¢ DANSs can replace IDs as the standard decision analysis tool
(in Al, MDM, operations research...) for these reasons:

> For every ID there is an equivalent symmetric DAN
> Virtually all real-world problems are asymmetric.
> There many problems that cannot be modeled with IDs.

> Even if a problem can be modeled with an ID, a DAN is
usually better because it does not need dummy states.

MIT, October 13, 2015



F. J. Diez (UNED)

Cost-effectiveness analysis
with influence diagrams

& Effectiveness (QALYS)

¢ Therapy 1 cost = 20,000 €
& Therapy 2 cost = 70,000 €

Example: Cost-effectiveness of a test

¢ Disease prevalence = 0.14
& Test sensitivity = 0.90, specificity = 0.93,
cost=150 €

No therapy | Therapy 1 | Therapy 2
Disease present 1,2 4,0 6,5
Disease absent 10 9,9 9,3

¢ s the test cost-effective?

¢ What is the most cost-effective therapy?
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A decision tree for cost-effectiveness analsysis

,,,,,,,,, present
(cost_test+cost ther 2) ] e2pres
therapy-2 prevesensi p 50 (oS ther_2)/ e2p
[ 1 absent
[ Result (cost_testrcost_ther_2) / e2abs

present
(cost_test+cost_ther_1) / elpres
prevtsensit_pJ_5
absent
(cost_test+cost_ther_1) / elabs

present
cost_test/ eOpres
previsensit_pJ_5
absent
cost_test/ edabs

present
(cost_test+cost_ther_2) / e2pres
prevt_pd_3/_pJ_6
absent
(cost_test+cost_ther_2) / e2abs

_pJ_4*spec/_p)_6

therapy-1

do_test

therapy-2
present

(cost_test+cost_ther_1) / elpres
prevt_pd_3/_pJ_6
absent

(cost_test+cost_ther_1)/ elabs

_pJ_4*spec/_p)_6

therapy-1

cost-effectiveness present

cost_test / e0pres
cost_test=150 prev:_pJ_3/_p)_6
cost_ther_1=20000 absent

er_2=70000 cost_test/ edabs

_pJ_4*spec/_p)_6
present

therapy-2 pow cost_ther_2/ e2pres
absent
= cost_ther_2 / e2abs
present her 1/
Ino_test therapy-1 pow cost_ther_1/elpres
absent
= cost_ther_1/elabs
present

no-therapy prev 0/e0pres
absent
% 0/ e0abs

TreeAge usually returns wrong results for this tree.

prev=0,14

0

PharmacoEconomics (2014) 32:1141-1145
DO 10.1007/540273-014-0195-1

RESEARCH LETTER

The Problem of Embedded Decision Nodes in Cost-Effectiveness
Decision Trees

Manuel Arias - Francisco Javier Diez

Published online: 31 July 2014
© Springer Imemational Publishing Switzerland 2014

1 Introduction build a decision tree with one decision node at the root,

which represe all the strategies to be evaluated. as
Cost-effectiveness analysis (CEA) is increasingly used to proposed by Kuntz and Weinstein; the other is to apply the
inform health policies. Decision trees are the standard  algorithm presented in Arias and Diez [13].

method for de n analysis in non-temporal domains. A As a case study, we consider the common problem of
decision node that is not the root of the tree is said to be  finding the incremental cost-effectiveness ratio (ICER) of a
embedded. fest:

All books on medical decision analysis discuss both
CEA and decision trees [1-11], but few explain how to
conduct a CEA with decision trees [1, 2, 10, 11], and only

Example 1 For a disease with a prevalence of (114, there
are two possible therapies. the effectiveness of which

denende on whather or not the diceace ic nrecent ac chown

MIT, October 13, 2015




F. J. Diez (UNED)

Original Articles

Methods of Information in Medicine 54 (2015) 353-358.

Cost-effectiveness Analysis
with Influence Diagrams*

M. Arias; F. J. Diez
Department of Astificial Inelligence, UNED, Madrid, Spain

Keywords
Cost-benefit  analysis, cost-effectiveness
analysis, decision trees, influence diagrams

Summary

Background: Cost-effectiveness  analysis
(CEA) is used increasingly in medicine to de-
termine whether the health benefit of an in-
tervention is worth the economic cost. De-
cision trees, the standard decision modeling
technique for non-temporal domains, can
only perform CEA for very small problems.
Objective: To develop a method for CEA in
problems involving several dozen variables.
Methods: We explain how to build influence
diagrams (IDs) that explicitly represent cost
and effectiveness. We propose an algorithm
for evaluating cost-effectiveness IDs directly,

B L e e iy

Results: The evaluation of an ID returns a set
of intervals for the willingness to pay — sep-
arated by cost-effectiveness thresholds —
and, for each interval, the cost, the effective-
ness, and the optimal intervention. The algo-
rithm that evaluates the 1D directly is in gen-
eral much more efficient than the brute-force
method, which s in turn more efficient than
the expansion of an equivalent decision tree,
Using OpenMarkov, an open-source software
tool that implements this algorithm, we have
been able to perform CEAs on several IDs
whose equivalent decision trees contain mil-
lions of branches.

Conclusion: IDs can perform CEA on large
problems that cannot be analyzed with deci-
sion trees,

units divided by cost units; for example, in
dollars per death avoided or euros per
quality-adjusted life year (QALY) [4]. As
the willingness to pay is different for each
decision maker, CEA must consider all its
possible values, The result of the analysis is
usually a set of intervals for A, each one
havingan optimal intervention.

When the consequences of the interven-
tions are not deterministic, it is necessary
o maodel the probability of each outcome,
Decision trees are the tool used most fre-
quently for this task, especially in medicine
[5]. Their main drawback is that their size
grows exponentially with the number of
variables”. In the medical literature, trees
usually have 3 or 4 variables and between
6 and 10 leaf nodes. A tree of 5 variables
typically contains around 20 leaf nodes,

PGMs for temporal reasoning
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Markov chain

QDD ——XED———>ED

4 One variable that evolves over time

¢ Transition probabilities: P(X;,|x;)

Hidden Markov model (HMM)

KD XD (XED——H(XED

Gup QoD Ged O

¢ Observed variable: 'Y

# Non-observed (hidden) variable: X

# Probability of each observation: P(y;|x;)
# Transition probability: P(x;,[X;)
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Markov decision process (MDP)

¢ Observed variable: X

¢ Decision: D

# Transition probability: P(X;.4]X;)
¢ Reward: U(x;, d;)

Partially observable MDP (POMDP)

¢ Hidden variable: X ¢ Observation prob.: P(y;|x;)
¢ Observed variable : Y ¢ Transition prob.: P(X;,[X;)
¢ Decision: D ¢ Reward: U(x;, d;)
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Factored extensions of Markov models

Flat model Factored model

Markov chain Dynamic Bayesian network

[Dean and Kanazawa, 1989]

Hidden Markov model

Markov decision process |Factored MDP
(MDP) [Boutilier et al., 1995, 2000]

Partially-observable MDP |Factored POMDP
(POMDP) [Boutilier and Poole, 1996]

Dynamic Bayesian network (DBN)

\ \L \
‘ Gup )
4 Markov chain or hidden Markov model:

—one variable, X
- one conditional probability: P(x;,|x;)

¢ Dynamic Bayesian network:
- several variables, {X, Y, Z...}
—factored probability: P(y;[x;), P(zi|X;, ¥;), P(Xipq[Xi, Vi)- -
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IJCAI Workshop Decision Making in Partially Observable,
Uncertain Worlds: Exploring Insights from Multiple Communities
Barcelona, July 2011

MDPs in Medicine: Opportunities and Challenges

. A, Palacios M. Arias
Intelligence

. UNED

Madrid, Spain

Abstract

In the last three decades hundreds of Markov mod-
els have been built for medical applica
o

.. vs
ber of I“I.lll\.!l applications I‘\m.d on lhun is \uII
very small. In this paper we compare both types
of models and discuss the challenges that MDPs
must overcome before they can be wi accepied
in medicine, We present a software tool, Open-
Marko addresses those challenges and has
been used to build a Markov model for analyzing
the cost-gffectiveness of the HPV vaccine.

1 Introduction

Markov models were introduced in the beginning of the 20-

i ician Andrei Andreye-
. In the three decades passed since the
< and Pauker [1983], hundreds of

the emergence of partially observable Markov decision pro-
cesses (POMDPs) [Astriim, 19651, in which the state of the
system is not directly observable, but | a variable that
correlates probabilistically with it, POMDPs were developed
in the field of automatic control as an extension of MDPs,
but currently most of the research about them is carried out
in artificial intelligence (Al as a ol for planning, es-
pecially in robotics [Gha ef al., 2004]. The main con-
tribution of Al to this field comes from the area of proba-
bilistic graphical models: Ba mmnrlm [Pear, 1988]
led to the devel of dynan: ks [Dean
and Ka a, 1989], which generalize Markov chains and
hidden Markov models [Murphy, 20021, The idea of using
les to represent the state of the system. instead
of enly one, led to factored MDPs [Boutilier ef al., 1995
20000 and factored P WPs [Boutilier and Poole, 1996],
which can model ef ly many problems that were un-

g ey ions; cor-
responding|
lems sev

al d
past [Hoey er al., 1999, Phup i, "i)n’s \|u.m and \"I 15518,
2005].

In the rest of the paper, we use the acronym MDPs w0 re-

Our research on temporal PGMs

¢ New types of models

» Networks of probabilistic events in discrete time (NPEDT)
e A non-Markovian extension of BNs

» Dynamic limited-memory influence diagrams (LIMID)

* A Markovian extension of limited-memory IDs

[Lauritzen & Nilsson, 2001]

» Markov influence diagrams (MID)

* A Markovian extension of influence diagrams

¢ An algorithm for cost-effectiveness analysis with MIDs

» and several MIDs for different medical problems.
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Dynamic limited-memory IDs (DLIMIDs)

¢ Differences from POMDPs
» Several decisions in each time slice.

> Limited memory: the decision maker only knows the observations
from the current and previous time slices

> Memory variables summarize the past.

A DLIMID for a carcinoid tumors

GHS

1 P

TREATHIST
cHEMO
BMDHIST L BMDHIST

> Therapy selection for high-grade carcinoid tumors (van Gerven et al., 2007)
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A MID version of the HIV model

[Chancellor et al., 1997]

Therapy type

State [0]

Life years [0]

!
r
Y

< Community care cost [0] > < Community care cost [1] )

A MID version of the hip replacement model
[Briggs et al., 2004]

Prosthesis type |

Death THR [1]

(oL ) {costo )
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A MID version of the HPV vaccination model
[Callejo et al., 2010]

[oecvacane | [overrestis |
T Vaccinated | ?
i p
— y
i Cost of vaccine } rEmﬂh‘. waccine ) //ﬁ
. ——‘ ;)’/
Ever screened | ., A
A ~ .'_/
iy
(Age o) } h htldd =
D e ——— £
7 \(\T‘“'a:;""--.. - ™ s:mmlng 10] )-( Cost el’cytelm [012 h

¥ - T { cauamczp] b
GoL (9] ) rm:ﬂums_m[a] 1 . .
nfection 18R J |
""'\- ._"-.

[ DulhOC[ﬂ]) ;\—
— -

.

Y ,J_.ﬁ
\ \ Symptoms (9] -

AN \ L‘_/ e '}0.1_[01> THe;Inn[ﬂl_j

( Do «i,peseow B blnonf o)

/L= N
( o J| /“ ’ \ { Cost mlpu:npy[o]} )/-
+—‘—*¥f (comereyn) /
{ | s
' ragy(©)) |~ Conteation 91 )
— T s
Cost of o] ) | L /

s NN .\ \Cn:!of:hlmn[n])_" —

?(1 A
{cast ofruiuthcraw 10 { Cost of conization [0] ) . T"*ament (01 )

Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21;8; TRUE)*(((BI5+BJ5)+BK5*u
CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC
+(BU5+BV5)*uDCC)+((Bl4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_
3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU
P($C4;Variables!$A$4:$3H$21;2; TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(
$C4;Variables!$A$4:$H$21;4; TRUE)+(BS4+BT4)*uRCC*VLOOKUP($
C4;Variables!$A$4:$H$21;5; TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C
4;Variables!$A$4:$H$21;2; TRUE))
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A MID version of the CHAP model
[Ryan et al., 2008]

»{_Age[1] |
{ Time in state [0) }—{_ Time in state [1]

Age at state entry [0]

{ state 1] )
[

T

Our model for malignant pleural effusion

L Time in treatment [1] |

fon 01 ( Death (cancen) 1]
AN VA
ved [0] ) ﬂi)

> Meeting of the Society for Medical Decision Making,
St. Louis, October 19-21, 2015.
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Our model for bilateral cochlear implantation

(Devtea prce ) (Discount 1) )

([ Blective non use 2 )
Shcheron w2

s I'. | -

-

wwwuem l—i-I Expnnnm) N

L
(M.»«mm } o Surgery death 0] |

|:’:s Revision surgery [0
- nammomz[‘] )

4
[ Emmuuuieonuﬂ [0|J

(c&pm:nﬂm m) (wm«uu:mm

> Cochlear Implant Symposium, Washington DC, October 15-17, 2015.

Probabilistic sensitivity analysis

) Cost-Effectiveness Analisys Results X

Analysis CEPIane? Frontier interventions CEAC EVPI

Cost-Effectiveness Plane

45,000
40,000
35.000 .

"t “ S
0,000

.
25,000 C s

Cost

20,000

15,000

10,000

5.000

0 —
215 220 25 230 235 240 245 250 255 26,0 26,5 270 275
Effectiveness

® Intervention = Unilateral, @ Intervention = BCI smultaneous;  + Intervention = BCI sequenti;
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Probabilistic sensitivity analysis

[y e o et ERC [ T

Cost-Effectiveness Acceptability Curve

=

Probability of cost effectiveness
T

0,0

\
0,2 ™,
- ™
‘ S~

[intervention = BC1 simultaneous; : (0000.00, 0.98) |
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Conclusions (1/2)

# In the first decades of Al probabilistic methods seemed to be
inappropriate for reasoning and decision making.

¢ BNs overcame the limitations of the naive Bayes method.

¢ IDs have several advantages over decision trees,
but also have serious limitations for medical decision making.

¢ The main contributions of our group are:
» new types of models: DANs, DLIMIDs, Markov IDs...;
» new methods for the explanation of reasoning;
» new algorithms, especially for cost-effectiveness analysis;

» an open-source software package that implements these
contributions (and the interactive learning of BNs); and

» an XML format for encoding probabilistic models.
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Conclusions (2/2)

¢ PGMs play a more and more relevant role in Al:
robotics, planning, natural language, learning...
¢ They are the preferred approach in medicine:
» normative basis: decision theory
» combine expert knowledge with data
¢ What remains to be done:

» dissemination in the fields of MDM and health economics
e seminars, short courses, MOOC...
« tutorials, journal papers, book...

» better software tools:

« sensitivity analysis, cost-effectiveness analysis, explanation...

Thank you very much for your attention!
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