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Naive-Bayes method
for probabilistic diagnosis

¢ n diagnoses, m possible findings

¢ 1st hypothesis: diagnoses are mutually exclusive
(i.e., the patient has at most one disease)

¢ 2nd hypothesis: findings are conditionally independent

P(fv ’fm |di) = P(flldi)' P(fm|di)
¢ Bayes’ theorem (naive method)

Pilf,, ..., ;) = a-P(fd)-...- P(fld;)-P(d))

Successful applications of the naive-Bayes

+ Lodwick GS, Haun CL, Smith WE, et al. , “Computer diagnosis of primary bone tumors: A
preliminary report,” Radiology 80 (1963) 273-275.

- Overall JE, Williams CM, “Conditional probability program for diagnosis or thyroid function,”
JAMA 183 (1963) 307-313.

- Toronto AF, Veasy LG, Warner HR, “Evaluation of a computer program for diagnosis of
congenital heart disease,” Progress in Cardiovascular Diseases 5 (1963) 362-377.

- Warner HR, Toronto AF, Veasy LG, “Experience with Bayes’ theorem for computer diagnosis of
congenital heart disease,” Annals New York Acad. Sciences 115 (1964) 558-567.

- de Dombal FT, Leaper JR Staniland JR, et al., “Computer-aided diagnosis of acute abdominal
pain,” BMJ 2 (1972) 9—13.

- Gorry GA, Kassirer JP, Essig A, Schwartz WB, “Decision analysis as the basis for computer-
aided management of acute renal failure,” Amer. J Med 55 (1973) 473-484.

- Gorry GA, Silverman H, Pauker SG, “Capturing clinical expertise: A computer program that
considers clinical responses to digitalis,” Amer. J. Med 64 (1978) 452-460.

Some approximations were necessary for the sequential selection of tests
[Gorry and Barnet, 1968].




Limitations of the naive-Bayes method

¢ In general the diagnoses are not mutually exclusive:
how to diagnose multiple disorders.

¢ In general findings are not conditionally independent.

Bacterial infection

Bayesian networks




Advantages of BNs w.r.t. naive-Bayes

# BNs can diagnose several diseases simultaneously

4 BNs do not assume conditional independence

¢ BNs are usually causal models
> closer to doctors’ reasoning: explanation of reasoning
> probabilities are in general easier to obtain

¢ Three types of reasoning:
> abductive
> deductive
> inter-causal

¢ Canonical models simplify the construction of the model.

Examples of BNs

¢ Medical Bayesian networks we have built

» DIAVAL: echocardiography (valvulopathies)
F. J. Diez’ thesis, 1994

> Prostanet: urology (prostate cancer)
Carmen Lacave’s thesis, 2003

» Nasonet: nasopharyngeal cancer spread
Severino Galan’s thesis, 2003

» HEPAR lI: liver diseases
Agnieszka Onisko’s thesis, 2003

» Catarnet: Cataract surgery
Nuria Alonso’s thesis, 2009




Prostanet (for prostate diseases)
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Catarnet (cataract surgery)
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OpenMarkov. Main features

# Strengths

» Written in Java: portability (Windows, linux, MacOS...)
» Open source

» Software engineering tools: JUnit, maven, mercurial (bitbucket),
nexus, bugtracker, etc.

» Easily extensible: users can adapt it to their needs

» Many types of models, potentials, etc.

» Very active: new features are continuously added

» Support for users and developers: wiki, lists, mail...

» Well-documented format for encoding networks: ProbModelXML.

& Weaknesses

» Written in Java: relatively slow (in some cases)

» No on-line help, documentation still poor

» Still a prototype; needs debugging

» Support is limited, due to scarcity of human resources.

OpenMa

rkov

Espafiol

OpenMarkov

OpenMarkov is a software tool for probabilistic graphical models (PGMs) developed by the Research Centre for
Intelligent Decision-Support Systems of the UNED in Madrid, Spain.

It has been designed for:

« editing and evaluating several types of several types of PGMs, such as Bayesian networks, influence diagrams,

factored Markov models, etc.;

o learning Bayesian networks from data interactively;

* cost-effectiveness analysis.

You can read the tutorial to have a glimpse of its capabilities.

Visit the users’ page to download OpenMarkov and obtain additional information.

CISIAD. Research Center on Intelligent Decision-Support Systems. UNED. Madrid, Spain.




Canonical models

General model Noisy OR

¢ Probability table: ¢ Efficiency of each link:

P(y | Xl, °co 9 Xn) Ci
& Factors that ¢ Causes that
influence the prob. of X may produce X

Pneumonia

Technical Report. CISIAD-06-01 Version 0.9 (April 28, 2007)

Canonical Probabilistic Models
for Knowledge Engineering

Francisco J. Diez FIDIEZGDIA.UNED.ES
Dept. Inteligencia Artificial, UNED
Juan del Rosal, 16, 28040 Madrid, Spain

Marek J. Druzdzel MAREK@SIS. PITT. EDU
Decision Systems Laboratary, Sehool of Information Sciences and Intelligent Systems Program
University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

The hardest task in knowledge engineering for probabilistic graphical models, such
a5 Bayesian networks and influence diagrams, is obtaining their numerical parameters
Madels based on acyclic directed graphs and composed of discrete variables, currently most
commen in practice, require for every variable a mmber of parameters that is exponential
in the nmumber of its parents in the graph, which makes elicitation from experts or learning
from databases a daunting task. In this paper, we roview the so callod canonical models
whose main advantage is that they require much fewer parameters. We propose a general
framesork for them, based on three categories: deterministic models, ICT models, and
simple canonical models. 1C1 models rely on the concept of independence of causal influence
and can be subdivided into noisy and leaky. We then analyze the most commen families
of canonical models (the OR/MAX, the AND/MIN, and the noisy XOR), generalizing
them and offering eriteria for applying them in praetice. We also bricfly review tomporal
canonical models

Contents
1 Intreduction 3
11 Overview of the paper 1
2 Preliminaries 5
2.1 Netation . . . . . 5
2.2 Systems, models, variables, and probability distributions 6
23 Bayesian networks and influence diagrams 7
24 Causality and network stracture .. .. .. ... 8
3 General framework 10
31 Deterministic models . .. .. ... ... 10
32 ICT models . . e 12
3.21 Noisy ICTmodels . .. .. .. ....... 12
3.22 Leaky IClmodels. . . ... ... ... B

3.2.3  Probabilistie ICI models .




How to build a Bayesian network

¢ From a database

Data algorithm Bayesian
base network

» There are many algorithms, several new algorithms every year
» Similar to statistical methods (logistic regression, neural nets...)

¢ With a human expert’s help

Causal modeling Causal probabilities Bayesian
knowledge graph network

¢ Hybrid methods:

» experts — structure; database — probabilities
» experts — initial model; new cases — refine the probabilities

Learning BNs with OpenMarkov

¢ Two possibilities of learning
» automatic, interactive

¢ Two main algorithms:

» Search-and-score
 search
— depart from a network with no links
— add/removel/invert a link in each iteration
* score
— use a metric (there are several metric available)
» PC
+ departs from a fully-connected undirected graph
» remove a links when the two variables are independent
— more precisely,when the correlation is not statistically significant (o)
» remove a link when the two variables are conditionally indep.
« orient the remaining links to obtain a directed graph




Advantages of interactive learning

& The system proposes, the user decides
> Very useful for tuition
> Useful for combining data with expert knowledge
> Useful for debugging new algorithms (workbench)
> See www.openmarkov.org/docs/tutorial.

Influence diagrams
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# Disease X
> Prevalence:

¢ Therapy D
> Utility:

& TestY
> Sensitivity:
» Specificity:
» Cost:

¢ Decisions:

» Is it worth doing the test?

A medical problem

P(+x) =014
ux,d)| +x X
+d 9

-d 10

P(+y]+x) = 0'91
P(-y]-x) = 097

utest(X: d) = unot—test(xl d) -02

» In what cases should we apply the therapy?
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An ID for this example

Cost of test

Result of test

Health state

Arthronet (total knee arthroplasty)
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Mediastinet (lung cancer)
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Equivalent to a decision tree containing ~10* branches.

Advantages of influence diagrams (1/3)

# IDs are more compact than decision trees
> An ID having n binary nodes ~ a DT having 2" branches

# IDs transform automatically into decision trees

> ... but the reverse is not true (no general algorithm)
> If you build a decision tree, you only have a decision tree.
> If you build an ID, you have both.

& IDs are much easier to build than decision trees

> IDs use direct probabilities (prevalence, sensitivity, specificity...)
and costs (mortality, morbidity, economic cost...)

> ID can use canonical models (noisy OR, noisy AND, etc.)

> Each parameter appears only once in the ID
+ in many cases it is not necessary to have parametric variables

> IDs can use super-value nodes: explicit combination of utilities

13



Advantages of influence diagrams (2/3)
¢ No external pre-calculation of probabilities is required

# Having all the information, no debugging is usually needed
>On the contrary, “all trees have bugs” (Primer on MDA)

# IDs are much easier to modify than decision trees
> Refine the model with new decisions and chance variables
> Structural sensitivity analysis
> Can adapt to different regional settings
> Can adapt to patient’s medical characteristics and preferences

+ Explicit representation of causality
> a link indicates causal influence
> the absence of a link means “no causal influence” (hypothesis)

Advantages of influence diagrams (3/3)

¢ Two possibilities of evaluation:

1. expansion of an equivalent decision tree
-exponential complexity (time and space)
-equivalent to the brute-force method for Bayesian networks
-many problems can not be solved by this method

2. operations on the ID (recursive reduction of the ID)
- direct manipulation of the graph and/or potentials of the ID
-similar to the best algoritms for Bayesian networks
- canonical models and SV nodes can lead to more efficient evaluations

¢ More possibilities of explanation of reasoning
> computation of posterior probabilities on the ID (as if it were a BN)
> value of information (EVPI and other measures) can be computed easily
> other methods from Bayesian networks and qualitative prob. networks.
> These methods can be used for debugging/refining IDs.

14
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oward and Matheson’s (1984/2005) “Influence
Diagrams” has had a profound impact on devel-
opments in artificial intelligence. Some of these influ-
ences have been quite direct; others are more indi-

rect, but in many ways, more substantial. The paper
tn feen ol deen R T,
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vision (Binford and Levitt 2003), dialog management,

user interface design, multiagent systems, and game

theory (Koller and Milch 2003), to name but a few.
Another reasonably direct impact of “Influence Dia-
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Ithough influence diagrams have used medical examples almost from their inception, that graphical repre-

sentation of decision problems has disseminated surprisingly slowly in the medical literature and among
clinicians performing decision analyses. Clinicians appear to prefer decision trees as their primary modeling
metaphor. This perspective examines the use of influence diagrams in medicine and offers explanations and
suggestions for accelerating their dissemination.

Key words: decision analysis; influence diagrams; clinical decision making; medicine
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Introduction modeling paradigm slowly spread from Stanford,
Two decades after Howard’s landmark paper  both with courses offered at meetings of the Soci-

(Howard and Matheson 1984/2005) that introduced
the concept of the influence diagram and three
decades since Miller’s initial report (Miller et al.
1976), Decision Analysis reproduced that paper in

ANNE amd cnlicitnd o cnk af aneseeaebasine. Thin caone

ety for Medical Decision Making (Society for Medical
Decision Making 2005) and with the development of
software that could conveniently capture and evalu-
ate such models.
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IDs in the literature on MDM (1/3)

& Books that mention decision trees but do not mention IDs
Weinstein, Fineberg. Clinical Decision Making. 1980.
Sloan (ed.). Valuing Health Care. 1995.
Gold et al. Cost-Effectiveness in Health and Medicine. 1996.
Sackett et al. Evidence-Based Medicine. 1997 (and three other books on EBM).
Petiti. Meta-Analysis, Decision Analysis and CEA. 2" ed., 2000.
Drummond, McGuire (eds.). Economic Eval. in Health Care Programs. 2001.
Levin and McEwan. Cost-Effectiveness Analysis. 2" ed., 2001.
Parmigiani. Modelling in Medical Decision Making. 2002.
Haddix et al. Prevention Effectiveness. 2" ed., 2003.
Fox-Rushby and Cairns. Economic Evaluation. 2005.
Briggs et al. Decision Modelling for Health Economic Evaluation, 2006.
Arnold. Pharmacoeconomics: From Theory to Practice. 2009.
Kassirer et al. Learning Clinical Reasoning. 2" ed., 2010.

Mushlin and Greene. Decision Making in Medicine. 3" ed., 2010.
(cont'd)

IDs in the literature on MDM (2/3)

& Books that mention decision trees but do not mention IDs (cont.)

Gray et al. Applied Methods of CEA in Health Care, 2011. Alfaro-LeFevre.
Critical Thinking, Clinical Reasoning, and Clinical Judgment.
5% ed., 2013.

Morris et al. Economic Analysis in Healthcare. 2" ed., 2012.
Rascati. Essentials of Pharmacoeconomics. 2" ed., 2013.

Sox et al. Medical Decision Making. Latest ed., 2013.

Hunink et al. Decision Making in Health and Medicine. 2" ed., 2014.

Drummond et al. Methods for the Economic Evaluation of Health Care
Programmes. 4t ed. 2015.

Edlin et al. Cost Effectiveness Modelling for HTA... 2015.

4 One book that mentioned IDs

+ Muenning. Designing and Conducting Cost-Effectiveness Analyses in
Medicine and Health Care. 2002.
“An influence diagram (also known as a tornado diagram) ...” [p. 242]

The mistake is (partially) corrected in the second edition of the book, 2007.

16
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IDs in the literature on MDM (3/3)

Three books that describe IDs

Chapman and Sonnenberg (eds.). Decision Making in Health Care. 2000
(5 pages out of 421, in a chapter authored by Mark Roberts).

Schwartz and Bergus. Medical Decision Making. A Physician's Guide. 2008.

Kattan. Encyclopedia of Medical Decision Making. 2009
(4 pages out of 1200+)

Summary of the informal survey of books on MDM and EBM
> 26 books published after 1984
> All of them explain DTs but only 3 describe IDs, very briefly.
Some books on medical informatics mention IDs:

- Shortliffe and Cimino. Biomedical Informatics. 4t ed., 2013 (2.5 pages out of 991).
- Kalet. Principles of Biomedical Informatics. 2" ed., 2013 (3 pages out of 708).

Why are IDs so little known in health sciences after 30+ years?

Limitations of IDs

. The “reasoning” of an ID is not easy to understand
. The evaluation returns large policy tables

. Algorithms could only evaluate unicriterion IDs

> They cannot perform cost-effectiveness analysis

. Temporal reasoning was not possible with IDs

> Dynamic IDs are computationally unfeasible.

. IDs can only model symmetric problems

> IDs require a total ordering of the decisions

> IDs cannot represent incompatibilities between values
- Non-standard versions of IDs partially solve this problem,
but none of the alternatives is completely satisfactory.

17



Solutions we have proposed

. Explanation in influence diagrams

» showing the posterior probabilities and expected values
> introduction of evidence
» hypothetical reasoning (what if) by means of imposed policies

. Synthesizing the optimal intervention
> in the form of a compact tree

. Cost-effectiveness analysis with IDs

. Markov influence diagrams
> including cost-effectiveness analysis

. Decision analysis networks

» an alternative to IDs for asymmetric decision problems.

Decision analysis networks

18



Influence diagram Decision analysis network

Result of test Result of test

Health state Cost of test

¢ The ID contains two information arcs:
» because the symptom is always observed (spontaneously)
» because the result of the test is known just after doing the test

¢ The variable “Result of test” does not make sense when the test is not

performed
The RN-test problem
[ bisease |
T T
- 7 /,/ \‘ N T ——
— 1 N\ ™ [DeciTostd | — o Tostresuta )
T / \ < \ JestRosurd J
~| Dee: Test1 | m b le ~a § {costoftests )
(ﬁﬁn‘ﬂ mﬁ. @ Test Result 3
£ cas(o:(ma 3 Cost of test 1 /m*'m\ Costof test3
\\

\KM>
¢ Computationally complex: n! possible orderings of the tests.
¢ We have developed an any-space algorithm for this problem

¢ and a fast algorithm (9 minutes for the 7-test problem).

& We are developing more efficient algorithms.
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Mediastinet (DAN version)

p N B T —
\ “ e
oesin <

) NN ,’q{“—‘%\/‘ o

\ ‘*\ / 3?31 3‘#;.;7 Nii "f"‘”’ \

\ \ ‘ \\\ \ -4‘
{Cnsl'l\'\ﬁﬂl \i Tona | \;Q%;} L?‘\- _F—__ ‘ ’ l Msusv

{ TENA Morbidity ) { Cost:PET
\
4
\
\

‘q MED )
il ) \ (costimeD
e N
T~/ it L (oommvs ~
- A_A— i
\ /{‘ ~ P - Eue "'“"'"“Y MED mmiﬂuy b
\ \
t

. W—
illily 4 MED Survival )
\ ~ e
\ / T N Tr-anmm / /
\ pd T ><.\/T T T \ S/ /
\ / "///":,,./ /,-”% / Inmediate Survival )/ s
{_Cost:CT scan ‘\ e — ~ R %v—-—'\ ~ /
== { costTroament ) (SunivorsAlE:. | o/ s
- - /
Total Economic Cost ‘\\ m
.4 Towrans
RO

Decisions are partially ordered.

DANSs vs. IDs

¢ DANSs can replace IDs as the standard decision analysis tool
(in Al, MDM, operations research...) because:

> For every ID there is an equivalent symmetric DAN
> Virtually all real-world problems are asymmetric
> There many problems that cannot be modeled with IDs

Even if a problem can be modeled with an ID, a DAN is
usually better because it does not need dummy states
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Cost-effectiveness analysis
with influence diagrams

Example: Cost-effectiveness of a test

& Disease

prevalence = 0.14

& Test sensitivity = 0.90, specificity = 0.93,
cost = 150 €

¢ Therapy 1 cost = 20,000 €
¢ Therapy 2 cost = 70,000 €

¢ Effectiveness (QALYS)

No therapy | Therapy 1 | Therapy 2
Disease present 1.2 4.0 6.5
Disease absent 10 9.9 9.3

¢ Is the test cost-effective?

¢ What is the most cost-effective therapy?

21



A decision tree for cost-effectiveness analysis
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1 Introduction

Cost-effectiveness analysis (CEA) is increasingly used to
inform health policies. Decision trees are the standard
method for decision analysis in non-temporal domains. A
decision node that is not the root of the tree is said to be
embedded.

All books on medical decision analysis discuss both
CEA and decision trees [1-11], but few explain how to
conduct a CEA with decision trees [1, 2, 10, 11], and only

build a decision tree with one decision node at the root,
which represents all the strategies to be evaluated, as
proposed by Kuntz and Weinstein; the other is to apply the
algorithm presented in Arias and Diez [13].

As a case study, we consider the common problem of
finding the incremental cost-effectiveness ratio (ICER) of a
test:

Example I For a disease with a prevalence of (.14, there

are two possible therapies, the effectiveness of which
denende nn whether or not the disease ic nrecent_as shown
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Cost-effectiveness Analysis
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Summary

Background: Cost-effectiveness ~analysis
(CEA) is used increasingly in medicine to de-
termine whether the health benefit of an in-
tervention is worth the economic cost. De-
cision trees, the standard decision modeli

Results: The evaluation of an ID returns a set
of intervals for the willingness to pay — sep-
arated by cost-effectiveness thresholds —
and, for each interval, the cost, the effective-
ness, and the optimal intervention. The algo-
rithm that evaluates the ID directly is in gen-
eral much more efficient than the brute-force
method, which is in turn more efficient than
the expansion of an equivalent decision tree,

technique for non-temporal domains, can
only perform CEA for very small problems.
Objective: To develop a method for CEA in
problems involving several dozen variables.
Methods: We explain how to build influence
diagrams (IDs) that explicitly represent cost
and effectiveness. We propose an algorithm
for evaluating cost-effectiveness IDs directly,

GRS A S S e G S

Using O, an op e software
tool that implements this algorithm, we have
been able to perform CEAs on several IDs
whose equivalent decision trees contain mil-
lions of branches.

Conclusion: IDs can perform CEA on large
problems that cannot be analyzed with deci-
sion trees.

units divided by cost units; for example, in
dollars per death avoided or euros per
quality-adjusted life year (QALY) [4]. As
the willingness to pay is different for each
decision maker, CEA must consider all its
possible values. The result of the analysis is
usually a set of intervals for A, each one
having an optimal intervention.

When the consequences of the interven-
tions are not deterministic, it is necessary
to model the probability of each outcome.
Decision trees are the tool used most fre-
quently for this task, especially in medicine
[5]. Their main drawback is that their size
grows exponentially with the number of
variables®. In the medical literature, trees
usually have 3 or 4 variables and between
6 and 10 leaf nodes. A tree of 5 variables
typically contains around 20 leaf nodes,

Temporal PGMs
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Markov chain

QD+ XD XD ED

4 One variable that evolves over time

¢ Transition probabilities: P(X;,4|X;)

Hidden Markov model (HMM)

GED—— DX ED——>(ED

Gmd O Ged OB

¢ Observed variable: 'Y

¢ Non-observed (hidden) variable: X

& Probability of each observation: P(y;lx;)
# Transition probability: P(x;,4[X;)
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Markov decision process (MDP)

¢ Observed variable: X

¢ Decision: D

# Transition probability: P(X;,[x;)
¢ Reward: U(x;, d;)

Partially observable MDP (POMDP)

4 Hidden variable: X ¢ Observation prob.: P(y;[x;)
¢ Observed variable : Y ¢ Transition prob.: P(X;,,[X;)
¢ Decision: D ¢ Reward: U(x;, d;)

25



Factored extensions of Markov models

Flat model

Factored model

Markov chain

Hidden Markov model

Dynamic Bayesian network
[Dean and Kanazawa, 1989]

Markov decision process
(MDP)

Factored MDP
[Boutilier et al., 1995, 2000]

Partially-observable MDP
(POMDP)

Factored POMDP
[Boutilier and Poole, 1996]

Dynamic Bayesian network (DBN)

& Markov chain or hidden Markov model:

—one variable, X

—one conditional probability: P(X;,,|X;)

¢ Dynamic Bayesian network:
—several variables, {X, Y, Z...}
— factored probability: P(yi|x;), P(zilX;, Yi), P(XisalXi, Vi)---
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MDPs in Medicine: Opportunities and Challenges

F. ). Diez M. A. Palacios M. Arias
Dept. Artificial Intelligence. UNED
Madrid, Spain

Abstract

In the last three decades hundreds of Markov mod-
els have been built for medical applications, but
most of them fall under the paradigm of what we
call simple Markov models (SMMs). Markov de-
cision processes (MDPs) are much more powerful
as a decision analysis tool, but they are ignored
in medical decision analysis books and the num-
ber of medical applications based on them is still
very small. In this paper we compare both types
of models and discuss the challenges that MDPs
ust overcome before they can be widely accepted
in medicine. We present a software tool, Open-
Markov, that addresses those challenges and has
been used to build a Markov model for analyzing
the cost-effectiveness of the HPV vaccine.

1 Introduction

Markov models were introduced in the beginning of the 20-
th century by the Russian mathematician Andrei Andreye-
vich Markov [1906]. In the three decades passed since the
pioneering work of Beck and Pauker [1983], hundreds of

the emergence of partially observable Markov decision pro-
cesses (POMDPs) [Astrom, 19651, in which the state of the
system is not directly observ:
correlates ilistically with it. POMDPs

but currently most of the research about them is ca
in artificial intelligence (AT). again as a tool for planning, es-
pecially in robotics [Ghallab ef al., 2004]. The main con-
tribution of Al to this field comes from the area of proba-
hilistic graphical models: Bayesian networks [Pearl, 1988]
led to the development of dynan n networks [Dean
and Kanazawa, 19891, which generalize Markov chains and
hidden Markov models [Murphy, 2002]. The idea of using
several variables to represent the state of the system, instead
of only one, led to factored MDPs [Bou ., 1995;
2000] and factored POMDPs [Boutilier and Poole, 1996],
which can model efficiently many problems that were un-
manageable with flat (i.e., non-factored) representations; cor-
respondingly, there are new algorithms that can solve prob-
lems several orders of magnitude bigger than in the recent
past [Hoey er al., 1999; Poupart, 2005; Spaan and Vlassis,
2005].

In the rest of the paper, we use the acronym MDPs to re-
fer to both fully observable and partially observable models
FEOARMIAD. o d DONATAD, o

Markov influence diagrams
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A MID version of the HIV model

[Chancellor et al., 1997]

Therapy type

Time in treatment [0] )

State [0]

Life years [0]

Drug cost [0]

Direct medical cost [0] Direct medical cost [1]
Community care cost [0] > < Community care cost [1] >

A MID version of the hip replacement model
[Briggs et al., 2004]

Age at entry \

Prosthesis type

Death OC [1]

2 state [1]

Prosthesis cost
Death THR [1]

(aoL o) (costo
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A MID version of the HPV vaccination model
[Callejo et al., 2010]

Dec: e Dec:Test type
Vaccinated i
DN A
{ Cost of vaccine ) Effective vaccine | %’
(Erectveveccne ) V7
~ A
((Ever screened N /7 /
\ N4
(Aqe 1] #55 » Age[1] )
N —i‘*f Screemng 107 Cost ot eytology [0] )] —
é—)\ Cost of HC2 [0] \\
(Deatnoc oy ) \AR QoL 10 \nfect\on 1618 [0] I“‘r— .
— .
\\i_\\ o —4 - \

(" Health state (0] Hnalth state [1]

. *l_hi_
NS N w
/ \
f‘
/ \ \ (ERERT) Symptoms [0] %\ _

/

/ 17—-'—
/ \ \ HSR QoL [0] QoL [0] Healing [0]
Do colposceny & blapw 0] 7

Jj
/ X 4
N ‘ Cost :nlpns:nw [0] /
Histersctomy (0] /
Chemetheraw [D] ( Cost biopsy [0] //
\ /
Conization 101 ) /

i Radiotherapy [n] |
s~y
Cost of histerectomy [0] ‘* Cost of chemo [0] __L‘ \%
{ Cost of radiotherapy [0] ) { Cost of ion 101 m}

Content of one of the Excel cells for this model:

=VLOOKUP($C5;Variables!$A$4:$H$21;8, TRUE)*(((BI5+BJ5)+BK5*u
CIN1+SUM(BL5:BP5)*uCIN2_3+(BQ5+BR5)*uLCC+(BS5+BT5)*uRCC
+(BU5+BV5)*uDCC)+((Bl4+BJ4)+BK4*uCIN1+SUM(BL4:BP4)*uCIN2_
3+(BQ4+BR4)*uLCC+(BS4+BT4)*uRCC+(BU4+BV4)*uDCC)*VLOOKU
P($C4;Variables!$A$4:$H$21;2; TRUE)+(BQ4+BR4)*uLCC*VLOOKUP(
$C4;Variables!$A$4:$H$21;4; TRUE)+(BS4+BT4)*uRCC*VLOOKUP($
C4;Variables!$A$4:$H$21;5; TRUE)+(BU4+BV4)*uDCC*VLOOKUP($C
4;Variables!$A$4:$H$21;2; TRUE))
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A MID version of the CHAP model
[Ryan et al., 2008]

Age [0] } {_Age 1]
\ ( Time in state [0] j—»( Time in state [1] )

Therapy

Age at state entry [0]

»{ state (1] )

,.
C‘

Our model for malignant pleural effusion

Treatment
TTe——
|
} Time in treatment [0] Time in treatment [1]
X Complication [0] Death (cancer) [1]
Infected [0] D (" Infected 1
Patient state [0] Patient state [1]

\ Resolved [0] } Resolved [1]
J\ N
1
< Admission for infection [0] >
\\l
{ isit with physician [0] ) ¢ QoL [0]

Nurse visit [0]

—
—

Death cancer now [1] |

( Pleurx supplies [0]

> Meeting of the Society for Medical Decision Making,
St. Louis, October 19-21, 2015.




Our model for bilateral cochlear implantation

Device price | [ Discount (%) )
NOwice/prics) [(Blscoure eIl
o{ CS: Device (Lender "”’_)"' m

r Coermtn | — e e \
Work hours lost £ o
(i AN Y s g \ @)

/ \
(raveing ) \ s N D\ /
Termwmn) N “‘N
\\ '\ Alive m )]
\ \ AN (Evveronuez)

| ,
\ R~ e 1) ||
.

- \
L...—p..:?m > \Irﬁm

T D B — N {
@) (// \\ H"‘\_ _.( Major complc 1 [0] }———»{_ Explant 1 (0] jr+/

/ \\ mjor complc2 0] = Explant2 0] ) ’
/o {asLiory h
/ e / Reviion sraery 0 s sumrydmh w01 )
-
.
/ <
“ -

N\

¥
@:dﬁw S

- ~ 1 »{ Internal device age 2 [1] |
AN * N e e device as 2011

L\ (recamraen) — S
i \ (internal device failure 2 [0] )
¥ S 7
CS: Internal device 2 replace [0]

{ CS: Processor 2 replace [0] CF: Processor 2 fix (0]

> Cochlear Implant Symposium, Washington DC, October 15-17, 2015.

Our model for bilateral cochlear implantation

Device price

CS: Device |

| Discount (%) |

e 1)

- NS

— A { 5 Inital tuning @1 -

[ Traeling N _ ; 7
(ChSugen )\ ™ /

\ Internal device age 1[1] \ N -
\ e
| ’ N I
v

| JA_%
ﬂ - Inplntsused 1] )
CF: Mainteinance [0]
w Nqucomnﬂm o Epanti .‘j ;
1

\\ [ Mi‘nrcomp\l:?[ﬂ] }—»{ Explame2py] ) \ }

\ h i
o / [ Revision surgery[0] || Surgery death 0]

/\' C5: Revision surgery [0]

Y —_
CS: Processor 2 replace [0] CF: Processer 2 fix [0]
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Our model for bilateral cochlear implantation
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¥
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Our model for bilateral cochlear implantation
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Our model for bilateral cochlear implantation

Device price
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Our model for bilateral cochlear implantation
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Our model for bilateral cochlear implantation
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Our model for bilateral cochlear implantation
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Our model for bilateral cochlear implantation
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Probabilistic sensitivity analysis

) Cost-Effectiveness Analisys Results X
Analysis :CEPlane. Frontier interventions CEAC EVPI
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Probabilistic sensitivity analysis

[ Analysi | 2 Plane [ Fronter interventians | CEAC] et

Cost-Effectiveness Acceptability Curve

©
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98% probability that
BCl is cost-effective
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Our model for colorectal cancer screening

0C death [0]

State [1]

" Time since last FOB test [1]

( Colenescopy result [0]
C: Treatment [0]

( Time since neg. celonosc, [0] )—b( Time since neg. colonesc. [1] j

Time since colonoscopy [1]

C: Colonoscopy [0]
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A MID with several decisions
Adapted from [Walker et al., 2013]

» 8 is
. stenosis

»{_ Eligible PC1 )

/
f

N

| ec: sPecT

Dec:CA |_

I; T . P P
f / %mwn &
Resul BTT ) Result CMR ) / (Death ca )
/ -7
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- e

> This model evaluates all the possible interventions.
> It can cope with heterogeneity: sex, age, grade.
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ORIGINAL ARTICLE

Cost-effectiveness of cardiovascular magnetic
resonance in the diagnosis of coronary heart
disease: an economic evaluation using data from

the CE-MARC study

Simon Walker," Francois Girardin, > Claire McKenna,' Stephen G Ball,*
Jane Nixon,” Sven Plein,* John P Greenwood,* Mark Sculpher!

ABSTRACT

Objective To evaluate the cost-effectiveness of
diagnostic strategies for coronary heart disease (CHD)
derived from the CE-MARC study,

Design Cost-effectiveness analysis using a decision
analytic model to compare eight strategies for the
diagnosis of CHD.

Setting Secondary care out-patients (Cardiology
Department).

Patients Patients referred to cardiologists for the
further evaluation of symptoms thought to be angina
pectoris

Interventions Eight different strategies were
considered, including different combinations of exercise
treadmill testing (ETT), single-photon emission CT
(SPECT), cardiovascular magnetic resonance (CMR) and
coronary angiography (CA).

Main outcome measures Costs expressed as UK
sterling in 20102011 prices and health outcomes in
quality-adjusted life-years (QALYs). The time horizon was
50 years.

Results Based on the characteristics of patients in the
CE-MARC study, only two strategies appear potentially
cost-effective for diagnosis of CHD, both including CMR.
The choice is between two strategies: one in which CMR
follows a pasitive or inconclusive ETT, followed by CA if
CMR is positive or inconclusive (Strategy 3 in the
model) and the other whare CMR s followed by CA I

INTRODUCTION

Coronary heart disease (CHD) is a leading cause of
death and disability worldwide. In the UK, over 2
million people are living with CHD and, in 2007,
it was estimated to account for over 94 000 deaths,
of which over 31 000 were considered premature.'

A varicty of investigations may be used to diag-
nose CHD and identify patients who require cor-
onary revascularisation; all these tests, however,
have their limitatons. Increasingly, non-invasive
imaging has replaced exercise treadmill testing
(ETT), with single-photon emission CT (SPECT)
being the most commonly used test for myocardial
ischaemia worldwide.” Cardiovascular magnetic
resonance (CMR) imaging is increasingly used
for the diagnosis of CHD as a result of its safery
(no ionising radiation), high spatial resolution
and ability to assess multiple aspects of CHD path-
ology in both the stable and unstable clinical ser-
tings.*

The diagnosis of CHD has no direct health benefie
i itself; instead, any improved accuracy in diagnosis
should result in more appropriate treatment which
can confer health benefits on patients. The optimal
management of patients with CHD continues to be
debated, but options include medical therapy, percu-
taneous coronary intervention (PCl) or coronary
actery bypose eraftine (CARGY Many patients with
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Model structure

To conduct the economic evaluation a decision analytic model
was developed. For the initial diagnosis a decision tree allocates
patients to the appropriate diagnostic group. The prognostic
implications of being in one of these groups are then quantified
using three distinct Markov models. An example of the decision
tree for Strategy 2 (ETT, followed by CA if ETT is positive or
inconclusive) is shown in figure 1.

Positive i
and alive True positive
CHD patient
with PCI
ETT positive or - oy

inconclusive
Proportion of

CHD patients ETT Death
eligible for PCI .
False negative patient

. 1) ‘ requiring PCI Alive ‘ True positive

Prior negative CABG CHD patient

W CABG
likelihood of EMTpositveor cp  CAPositive . ith CAB

disease Proportion inconclusive
of CHD

@) patients ETT 4 Dead
eligible for @ Death “"«"" Dead

CABG
. aT 4 False negative patient
rior e EA
tikelihood of negative ' edUIring CABG
no disease (AA)»ga(Le{ Truenegative
ETT ETTpositive or .y i alive
‘ inconclusive .

€17 Death ‘ Dead
Negative. ‘ True negative patient

Figure 1  Structure of decision tree using Strategy 2 as an example. CA, coronary angiography; CABG, coronary artery bypass grafting;
CHD, coronary heart disease; ETT, exercise treadmill testing; PCI, percutaneous coronary intervention.

Comparison of MIDs with other techniques

¢ MIDs vs. spreadsheets (Excel)
» no need to write any formulas nor VisualBasic macros
» no need to multiply the number of states

¢ MIDs vs. Markov decision trees
» much more compact = possible to build much larger models
» no need to add tracking variables (microsimulation)

¢ MIDs vs. R
» no need to write any code, not even for sensitivity analysis
» but R is much more flexible

¢ MIDs vs. discrete event simulation
» cohort propagation is often much faster

¢ MIDs vs. all the others: may contain several decisions.
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Under evaluation at Medical Decision Making.

Markov influence diagrams: a graphical
tool for cost-effectiveness analysis

Francisco J. Diez, PhD,! Mar Yebra, MEng, Ifiigo Bermejo, PhD.’ Miguel A. Palacios-Alonso,
MEng,* M. Asias, PhD,! M. Luque, PhD,! J. Pérez-Martin, MEng !

1Dept. Astificial Intelligence, UNED, Madrid, Spain.

2 Centre for Biomedical Technology, Technical University of Madrid, Spain.

3 School of Health and Related Research, University of Sheffield, UK.

4 Computer Science Department. National Institute for Astrophysics, Optics and Electronics,
Tonantzintla. Puebla, Mexico.

Abstract

Markov influence diagrams (MIDs) arc a new type of probabilistic graphical model that extends
influence diagrams, in the same way as Markov decision trees extend decision trees. They have
been designed to build state-transition models, mainly in medicine, and perform cost-
effectiveness analysis. Using a causal graph that may contain several variables per cycle, MIDs
can model various features of the patient without multiplying the number of states; in particular,
they can represent the history of the patient without using tunnel states. OpenMarkov. an open-
source tool, allows the decision analyst to build and evaluate MIDs—including cost-
effectiveness analysis and several types of deterministic and probabilistic sensitivity analysis—
with a graphical user interface, without writing any code. This way, MIDs can be used to easily
build and evaluate complex models whose implementation as spreadsheets or decision trees
would be cumbersome or unfeasible in practice. Furthermore, many problems that previously
required discrete event simulation can be solved with MIDs, i.e., within the paradigm of state-
transition models, in which many health economists feel more comfortable.

Conclusions

¢ BNs overcame the limitations of the naive Bayes method.

¢ IDs have several advantages over decision trees,
but also have serious limitations for medical decision making.

¢ DANSs are similar to IDs, but more suitable for asymmetric
decision problems.

# It is possible to do cost-effectiveness analysis with IDs.

< and also with Markov IDs (MIDs) if all decisions are atemporal.

¢ There are other types of Markov PGMs having one or more
decisions per cycle: MDPs, POMDPs, DLIMIDs...
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Future work

¢ New models and algorithms
» CEA with DANs and Markov DANs
» CEA with models having one or several decisions per cycle

» new methods of CEA, sensitivity analysis, explanation of
“reasoning”...

+ Integration of PGMs, cost-effectiveness analysis,
and Bayesian inference

» integration of OpenMarkov with OpenBUGS and/or STAN.

& Dissemination in the fields of MDM and health economics
» seminars, short courses, MOOC...

> tutorials, journal papers, book...

Thank you very much for your attention!
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