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Abstract

One of the key factors for the acceptance of expert systems
in real world domains is the capability to explain their reasoning
[BS84, HDY0]. This paper describes the basic properties that
characterise explanation methods and reviews the methods de-

veloped up to date for explanation in Bayesian networks.

1 Introduction

Expert systems originated in the 1970s as computer programs capable to
imitate human experts and even substituting them when necessary. One of
the essential qualities of real experts is their ability to communicate their
knowledge and explain their reasoning. This ability is especially important
in the case of expert systems, not only for tracing the performance during
the construction and evaluation of the system, but also for justifying their
results when the system is deployed in an operating environment. In fact,
an experiment performed at the MYCIN project showed that physicians are

very reluctant to accept the advice of a machine if they do not understand



how it was obtained [T'S84].

In the decades that followed, i.e., the 1980s and 1990s, the main goal
of artificial intelligence shifted from imitating natural intelligence to sup-
porting human beings in a synergistic way. In fact, Clancey [Cla93] points
out that the authors’ note of the Knowledge Acquisition journal said: “The
key issue is not artificial intelligence, but how to extend natural intelligence
through knowledge-based systems.” In this context, explanation in expert
systems becomes even more important, because human-computer collabora-
tion requires mutual understanding: machine models must take into account
human cognitive processes and at the same time must make artificial rea-
soning understandable for human users. It is surprising, however, that the
amount of research devoted to this subject has been relatively small, com-
pared to other areas of artificial intelligence. There are only isolated pieces
of work, seldom used in real-world applications; in fact, the explanation ca-
pability of most of today’s expert systems and packages is even poorer than
that of MYCIN, which is often regarded as the first expert system.

There was another shift in the 80s, due to the need of uncertain reasoning
in virtually all applications of expert systems, especially in medicine. It was
shown that MYCIN’s model of certainty factors was inconsistent and might
lead to wrong results. The model of PROSPECTOR was not any better,
and Dempster-Shafer theory, besides lacking a universally accepted inter-
pretation, was impractical for real-world problems—at least until graphical
methods came on the scene. Only fuzzy-set methods seemed to be useful
for building expert systems in uncertain domains, but due to the lack of a
clear semantics and of a consistent methodology, many researchers consid-
ered those methods as a heterogeneous set of ad-hoc solutions without a firm
theoretical basis. In the same decade, advances in Bayesian Networks (BNs)
[CGH97, Jen96, Pea88] and influence diagrams [HM84, Sha86b] showed the-

oretically and empirically that it was feasible to build probabilistic expert



systems without introducing unrealistic assumptions of independence. The
advantages of these models are that they have a clear interpretation, easily
combine subjective estimated and statistical data, and can be justified on
theoretical grounds. In contrast, the main disadvantage is that their reason-
ing method follows a normative approach, and consequently, the explanation
of inference is more difficult than in the methods that try to imitate human
reasoning. Therefore, the need for explanation methods is even more im-
portant in Bayesian networks than in heuristic expert systems.

The aim of this paper is to analyse what has been done up to date and
what remains to be done in the field of explanation in Bayesian networks.
(In a future work we will review explanation methods for heuristic expert
systems.) Therefore, after introducing very briefly Bayesian networks in
Section 2.1 and explanation in Section 2.2, we study the fundamental prop-
erties of explanation in Section 3. In the light of such properties, we review
the methods of explanation for Bayesian networks proposed in the literature
(Section 4), and conclude by pointing out possible lines for future research

(Section 5).

2 Preliminaries

2.1 Bayesian networks

A Bayesian network consists of an acyclic directed graph (ADG),! whose
nodes represent random variables, together with a conditional probability
distribution for each node X; given its parents,? P(z;|pa(z;)). The con-
ditional probability for a node without parents is just its prior probability

P(z;|0) = P(z;). These probabilities can be obtained from statistical data

'A cycle is a closed directed path X; — X; — Xj, — ... = X;. A restriction of

Bayesian networks is that their graphs cannot contain cycles.
2A node X; is a parent of X; if and only if there is a directed link X; — X;. It is usual

to represent a configuration of the parents of X; by pa(z;).



(for instance, from a database), from the literature on the specific domain
or by the judgment of human experts.

The joint probability represented by a Bayesian network is
P(z1, . n) = [ [ Plailpa(e;) (1)
i

This distribution satisfies the d-separation property [Pea88] and its equiv-
alent, the Markov property [Jen96, Nea90], which states that a node is
independent of its non-descendants in the graph given its parents. Roughly
speaking this property implies that a link X — Y in a Bayesian network
represents a probabilistic dependence between X and Y, while the lack of a
link represents a probabilistic independence.

A finding is a piece of information that states with certainty the value
of a random variable; a finding may be, for example, that the patient is a
male; other findings might be that he is 54 years old, that he has a fever,
that he does not usually have headaches, etc. The set of findings is called ev-
idence, e. Probabilistic reasoning consists of computing the posterior prob-
ability of the unobserved variables given the evidence; for instance, P(xz;|e)
or P(z;,xz;,zrle). This process is usually called evidence propagation, and

is based, more or less explicitly, in the application of Bayes theorem.

2.2 Defining explanation

From the origins of philosophy and science, many researchers of both dis-
ciplines have tried to determine the meaning of explanation, connecting it
with comprehension and description. According to The Concise Ozxford Dic-
tionary of Current English, an explanation is: “A statement or circumstance
that explains something | A declaration made with a view to mutual under-
standing or reconciliation | ... .” For the Webster’s New World Dictionary,
some meanings of the term explain are: “to make clear, plain or understand-

able | to give the meaning or interpretation of; expound | to account for;



state reasons for; to give an explanation.”
After these definitions, we can conclude that explaining consists of ex-

posing something in such a way that it is

understandable for the receiver of the explanation, which implies that
he/she improves his/her knowledge about the object of the explana-

tion; and
satisfactory as far as it covers the receiver’s expectations.

In the field of expert systems, there are different concepts of explanation.
For instance, the rule-based expert system MYCIN [BS84], the first artificial
program able to explain its reasoning, could show how it had obtained some
conclusion (i.e., which rules it had applied to deduce a certain proposition) or
why it was requesting additional information from the user (i.e., which rule
it was trying to trigger). For some authors, such as Pearl [Pea88], the best
explanation is the most probable assignment of values to a set of variables—
the process of obtaining this kind of explanation is also called abduction
[CS94, G98, San9l, Shi91]. Other systems try to offer a simple but com-
prehensible report about the domain and the reasoning [CRGT96, CTJ89,
HHNF86, LSF88, RP85, Str87, Swa83, WS89, WT92]. Finally, in the most
sophisticated methods, explanation constitutes an ‘intelligent’ dialogue with
the system user through natural language and by way of interactive methods

[CMM94, Caw91, Caw93, Caw94, CGL 193, Fie01, Moo94].

3 Properties of explanation

In this section we define ten properties of explanation, which constitute
the framework for the analysis of the methods studied in Section 4. Some
of these properties are taken from [Wic89], and we have classified them in

three categories (see Table 1):



content: what to explain;
communication: how the system interacts with the user;

adaptation: to whom the explanation is addressed.

Please note that these categories correspond to the definition of explana-
tion given in Section 2.2: exposing something (content) in such a way that
it is understandable (communication) for the receiver of the explanation,
which implies that he/she improves his/her knowledge about the object of
the explanation, and it is satisfactory as far as it covers the receiver’s expec-

tations (adaptation). We briefly describe them in the following subsections.

3.1 Content

One of the most important aspects of explanation is related to what is going
to be explained, i.e., what an explanation must include to be understandable
to the user. This question has a difficult answer because it depends on several
issues such us the focus of explanation, the purpose, the level of detail and

causality, which we are going to analyse.

3.1.1 Focus of explanation

In the case of Bayesian networks (and indeed for any expert system), there
are three basic issues that can (and must) be explained: the knowledge
base, the reasoning process performed by the system to obtain (or not) a
conclusion and the evidence propagated, if any. For this reason, we can
classify explanation methods in three groups, differing according with the

focus taken on explanation:

Explanation of evidence: It consists of determining which values of the

unobserved variables justify the available evidence. This process is



Focus evidence / model / reasoning
Content Purpose description / comprehension

Level micro / macro

Causality causal / non-causal

User-system interaction menu / predefined questions
Communication / natural language dialogue

Display of explanations text / graphics / multimedia

Expressions of probability | numeric / linguistic / both

User’s knowledge about no model / scale

the domain / dynamic model

Adaptation User’s knowledge about no model / scale

the reasoning method

Level of detail

/ dynamic model

fixed / threshold / auto

Table 1: Properties of explanation methods.




usually called abduction, and it is based on the (usually implicit) as-
sumption that there is a causal model—see Section 3.1.4. In this con-
text, an explanation is a configuration of the unobserved variables,
and the goal of the inference process is to obtain the most probable
explanation (MPE) or the k£ most probable explanations. In general,
the variables that take the value “present” or “positive” in the MPE
are considered to be the causes that explain the evidence. The purpose
of this kind of explanation is basically to offer a diagnosis for a set of
observed anomalies. For instance, in medical expert systems, an ex-
planation consists of determining the disease or diseases that explain

the evidence: symptoms, signs, test results, etc.

Explanation of the model: This kind of explanation is sometimes called
static [HD90] and consists of displaying (verbally, graphically or in
frames) the information contained in the knowledge base. One of its
objectives is to assist human experts in the construction of expert sys-
tems; for instance, Elvira’s explanation facility has been used to debug
HEPAR-II, a medical Bayesian network [LODO1]. The other objective
of explaining the model is to offer a novice user some knowledge about

the domain for instructional purposes.

Explanation of reasoning: This is sometimes known as dynamic explana-

tion [HD90] and may provide three kinds of justifications:.

The results obtained by the system and the reasoning process
that produced them. During the evaluation of the expert sys-
tem, some of the test cases are properly solved by the system and
some of them are not. In the cases properly solved, the evalu-
ators (knowledge engineers and human experts) can check that
all the steps in the way to a solution were correct (an incorrect

argument might lead to a correct solution by accident). In the



case that the expert system makes a mistake, the explanation of
the reasoning process is an invaluable tool for isolating and cor-
recting the wrong pieces of information in the knowledge base.
During the deployment of an expert system, the explanation ca-
pability is very useful for convincing the user of the correctness of
the results; in particular, physicians are very reluctant to accept
the advice of a machine if they can not understand how it was
obtained [T'S84]. In the case of tutoring systems, the explanation

capability is essential for improving the student’s skills.

The results not obtained by the system, despite the user’s ex-
pectations. It may also be of interest, especially for educational
systems, to explain why the system did not produce a certain
conclusion expected by the user; in particular, which findings op-
pose such a conclusion and which findings would be necessary to

support it.

Hypothetical reasoning, i.e., what results the system would have
returned if one or more given variables had taken on different

values from those observed.

3.1.2 Purpose

There are two different goals an explanation capability might try to accom-

plish, which leads to two types of explanation:

Description: this kind of explanation consists in showing the underlying
knowledge base (in the case of model explanation), or providing further
details on the conclusions or displaying intermediate results (in the

case of reasoning explanation).

Comprehension: in this case, the explanation tries to make the user to

understand the implications of the model or the conclusions of the



system and/or the relation between them. For instance, how each
finding affects the conclusion, individually or in conjunction with other

findings.

3.1.3 Levels of explanation

Sember and Zukerman [SZ90] proposed another classification of explanation
methods for Bayesian networks, thought it might also be applied to other

types of expert system:

Micro level: a micro-level explanation consists of a detailed justification
of the variations produced in a particular node as a consequence of the
variations in its neighbours. In the case of a rule-base expert system,
the micro level would consist of analysing the variables contained in a

certain rule, or the rules containing a certain variable.

Macro level: this level of explanation analyses the main lines of reasoning
(the paths in the Bayesian network) that lead from the evidence to a
certain conclusion. A macro-level explanation for a traditional expert

system would consist of one or several chains of rules.

3.1.4 Causality

From a mathematical point of view, a BN is just a model for representing
probabilistic dependencies and independencies; in this case, a link, consid-
ered by itself, has no meaning. However, when a BN is built as a model of a
real world system, a link A — B is causal when A is a cause of B, i.e., when
there is a mechanism by which the value taken on by A influences the value
of B. A BN is said to be causal when all of its links are causal. The reasons
for using causal models in artificial intelligence, especially in probabilistic

expert systems, are the following:

10



Human beings tend to interpret events in terms of cause-effects relations
[KST82, PH88]. Therefore, causal models are easier to construct
and modify [Hen89, PH88], and also more easily understood by users
[Dru93, Sue92|.

The identification of invariant?® causal relationships in a domain allows the
prediction of effects of both spontaneous causes (usually corresponding
to random variables) and actions (sometimes called manipulations or

interventions) [Pea99].

Causality and probability are closely related, because causality normally
implies a pattern of probabilistic inter-dependencies, which provides
clues about causality. In fact, a necessary condition for establishing

the presence of causality is statistical correlation [Dru93].

In the same line, the axiomatic properties of Bayesian networks (d-separation
and the Markov property) correspond to probabilistic dependencies

and independencies that appear in causal domains [D99)].

There exist canonical probabilistic models (noisy OR, noisy MAX, noisy
AND, etc.) based on the interpretation of the parents of a node as
causes or conditions for that node and on the assumption of inde-
pendence of causal interactions, although they might be used as mere
probabilistic models. These models reduce the number of parameters
of the network, simplify the acquisition of knowledge and some of them

lead to a more efficient computation [DDO00].

Causal Bayesian networks support certain qualitative reasoning patterns,
which can be identified in order to explain the results of inference

[Dru93, Dru96, HD90]. Some of these patterns are specific of certain

3“Invariant” means that when one mechanism is subjected to changes, the others re-

main intact.
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canonical models; for instance, explaining away is a phenomenon typ-

ical of the noisy OR.

Finally, the concept of explanation is very closely-tied to the notion of cau-
sation; in fact, one of the modalities of scientific explanation consists

of finding the causes of the observed facts.

In summary, some of the explanation methods for Bayesian networks
are specifically designed for causal networks, or even for specific canonical
models, while other methods are general, in the sense that they do not

assume a causal interpretation of the network.

3.2 Communication

A crucial aspect of explanation is the way in which it is offered to the user.
This depends, basically, on the methods of interaction between the user and
the system and the manner in which it is presented. Of particular interest
in the case of Bayesian networks is also the way in which probabilities are

expressed.

3.2.1 User-system interaction

In some systems, users can request explanations by selecting some variables
or options from a certain menu. In other systems, users can pose questions;
for instance, in MYCIN the available questions were “how [did the system
arrived at a conclusion]|” and "why [is the system asking for this piece of
information].” Finally, other systems try to offer a natural language dia-
logue by analysing and building a model of the conversation, in order to
“understand” the context of each question and answer.

On the other hand, some systems only allow the user to ask for an

explanation after the program has presented its conclusions, while other

12



systems allow the user to interrupt the process of inference and request an

explanation.

3.2.2 Display of explanations

We can distinguish how explanations are presented to the user, in the fol-

lowing ways:
Verbally, by using text and numbers.

Graphically, in two forms:

by using bar diagrams, pie charts, plots or any other graphical tools
that represent the relation between values or variables, the evo-
lution of the probabilities associated to the variables during the

evidence propagation, etc.

by using the Bayesian network’s own graph of , so that changes in the
probability distributions are indicated by adding text, numbers

or signs, or by colouring the nodes and/or the links.

Multimedia, integrating the above ways, text, numbers and graphs, in
a hypertext and multimedia environment that combines interactive

explanations with images, video and sound.

3.2.3 Expression of probability

Expressions of probability may be numerical or quantitative, such as 0.98
or 72.6%, and linguistic or qualitative, such as “seldom”, “very likely” or
“almost sure”. Similarly, when comparing two probabilities it is possible
to have quantitative expressions, such as “the odds between A and B are
10737, or qualitative expressions, such as “B is much more probable than

A.” There is a significant amount of research on the assignment of linguistic

13



expressions of probability to numeric values and vice versa—see [Dru89,

Dru93] for a review, and also Section 4.3.1 in this paper.

3.3 Adaptation

Explanation always means explaining something to somebody. Therefore,
one of the key features of an effective explanation is the ability to address
each user’s specific needs and expectations, which essentially depends on
the knowledge he/she has. There are three issues to be considered indepen-

dently.

3.3.1 User’s knowledge about the domain

Some explanation methods do not take into account the variability of domain
knowledge for different users. Therefore, explanations are generated for a
hypothetical user having a certain knowledge: some explanation methods
are intended for beginners, while others assume the user is an expert.

Other methods rely on a static user model, i.e., they do not consider
that the user’s knowledge increases as he/she interacts with the system. In
many cases, the user model often reduces to using a scale with two or three
categories: “novice, advanced, expert.” In theory, an expert system could
have the capability of classifying users automatically, but in practice, the
user generally has to classify him/her in this scale at the beginning of his/her
interaction with the system.

Finally, other explanation methods possess a dynamic model for each
user, which explicitly represents his/her knowledge and changes as he/she
proves to have learned new concepts or relations during his/her operation
with the expert system. This model allows the explanation module to gen-
erate the explanation adapted to the knowledge that the user has at each

moment.

14



3.3.2 User’s knowledge about the reasoning method

Analogously, it would be possible for an explanation method to take into
account the user’s knowledge about the reasoning method employed by the
expert system. In the case of a Bayesian network, the explanation generated
for a user that is familiar with the concepts of prevalence, prior/posterior
odds and likelihood ratios should be very different from the explanation
generated for a user who has never heard about them. As in the case of
knowledge about the domain, the possibilities rank from not considering
the variations in user’s knowledge about the reasoning method to having
a dynamic model that explicitly represents the user’s knowledge at each

moment.

3.3.3 Level of detail

The level of detail of an explanation is closely related to the user’s knowl-
edge about the domain and about the reasoning method, but can also be
established independently. For instance, it is possible for an expert system
that does take into account the user’s knowledge to assign an importance
factor to each item (each rule or each variable, for instance) and an impor-
tance threshold, so that the explanation module only displays those items
above the threshold. By lowering the threshold, the user can increase the
level of detail, and vice versa. This way it is possible to offer different levels
of detail without having a user model. Obviously, instead of having a fixed
importance factor for each item, it would be desirable to dynamically adjust
the importance factors as a function of the user’s domain knowledge, the
available evidence and the interaction with the system. Similarly, the as-
pects of explanation related to the reasoning method should also be offered

at different levels of detail.
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4 Explanation methods for Bayesian networks

In this section we review the techniques developed for generating explanation
in Bayesian networks, in the light of the ten properties discussed above. We
divide the methods into three groups, according to the focus of explanation
(see Section 3.1.1): explanation of evidence, explanation of the model, and

explanation of reasoning.

4.1 Explanation of evidence: abduction

We first analyse the methods of abduction, which focus on explaining the
evidence. As mentioned in Section 3.1.1, in this context an explanation
w is an assignment of values to all the variables in a certain subset W
of the variables of the network. Since the values of observed variables are
known with certainty, only unobserved variables are the object of scrutiny
in abductive methods. The goal of abduction is to find the most probable
explanation (MPE), i.e., the configuration w with the maximum a posteriori
probability P(w|e), where e is the available evidence. Some methods are
able to find the k£ most probable explanations. When W includes all the
unobserved variables, the process is known as total abduction; otherwise, it
is called partial abduction.

In principle, the goal of the methods we review in this section is just
to find the MPEs, without trying to justify why they are more probable
than the others, i.e., the purpose of these methods is description, not
comprehension. The distinction between micro and macro level makes no
sense in this case, because there is no analysis of the reasoning process. The
interpretation of a configuration (an assignment of values) as an explanation
implicitly assumes that there is a causal model, so that the variables that
take on the value “present” in the MPE are those that explain the observed
anomalies. However, since these methods are purely mathematical, they can

be applied to any network, independently of whether it is causal or not.
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With respect to user-system communication, research on abduction in
BNs usually limits itself to finding the MPEs, without paying attention to
the interaction with and adaptation to the user. For this reason, most of
the criteria for analyzing explanation methods (Section 3) do not apply to
abduction. At most we can mention that the probability of each explanation
is given numerically; no attempt has been done to express qualitatively the
probabilities.

We expose in chronological order the most relevant works on abduction.

Please note that all these methods only work for discrete variables.

4.1.1 Pearl’s 7-)\ propagation

The first work on explanation in Bayesian networks [Pea88, Chapterb] was
a method of total abduction based on the property that, for each value x
of a given variable X in W, there is a best explanation for the rest of the
variables, W \ X. This property is similar to the principle of optimality
in dynamic programming. Therefore, the value of X in the MPE can be
obtained by finding the best explanation for W \ X and then choosing the
best value of X. Since the computations are local for each node, the process
can be designed as an exchange of 7-A messages among nodes. The algorithm
has linear complexity for the case of polytrees and exponential complexity
for networks with loops. However, the search for the MPE may also be very
complicated for polytrees, since even variables that are not interesting for
the hypothesis must be taken into account. A shortcoming of this method
is that it can only find the two MPEs (k=2) [Nea90]. As a consequence,
this method is only adequate when the two MPEs are much more probable

than the rest of the explanations.
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4.1.2 Linear restrictions system

Santos [San91] proposed a method of total abduction that transforms a
Bayesian network into an equivalent linear restriction system. A restric-
tion system L(W) is a tuple (I',I,1) where I is a set of variables, I is a
finite set of inequalities defined over the variables of I', and % is a function
from I'x {true, false} to R. The restrictions guarantee that each variable
takes only one value and that the probability of a configuration of a set of
variables is calculated by the corresponding set of conditioned probabilities.
The construction of the restriction system is performed in linear time with
respect to the number of variables of the Bayesian network. The search of
all solutions involves solving a sequence of restriction systems in which each
system is derived from the previous one. One of the disadvantages of this
method is that, like Pearl’s, it assigns values to all variables, including those

that are not interesting for the hypothesis.

4.1.3 Irrelevance in partial abduction

Shimony [Shi91] and Suermondt [Sue92] (see Section 4.4.1) addressed the
problem of obtaining explanations consisting of only relevant variables. In
the case of partial abduction, Shimony proposed three definitions of irrele-

vance:

statistical independence: a variable X should not be part of the explanation
w if it does not affect the probability of the evidence: P(e|w,z) =

P(e|w); it is said that X is irrelevant;

0-independence: it is less restrictive than the former and it indicates that
a fact X is irrelevant if given facts (W) are independent of it with a

tolerance of §: |P(e|lw,z)— P(elw)| <4, and

quasi-independence, which means that a parent node is relevant only if its

contribution to the probability of the node it explains is greater that

18



its own prior probability.

The algorithm for finding relevant explanations relies on the fact that
the ancestors of a node V' that have not been observed must remain without
assigning them any value if they do not affect the probability of V' (because
as we have mentioned they can not explain V). Furthermore, if a node V'
is not an ancestor of node IV, then V can not explain N because it is not a
possible cause of V. Please note again the assumption of a causal network

in this method.

4.1.4 Graphs of weighted Boolean functions

Charniak and Shimony [CS94] proved that the problem of abduction in BNs
is equivalent to finding the minimum cost assignment for the variables of a
certain weighted Boolean function acyclic directed graph (WBFADG) that
results from a transformation of the Bayesian network together with evi-
dence e. The WBFADG is solved by a best-first algorithm that, applied
successively, produces the enumeration of the assignments in increasing or-
der of cost, i.e., the explanations in decreasing order of probability. Two
disadvantages of this method are its computational and conceptual com-

plexities.

4.1.5 Approximate partial abduction

Finally, Gamez [G98] has made a detailed study about abduction, both total

and partial. Among his most relevant contributions are:

he has studied how to adapt clustering algorithms (clique tree propagation)

for partial abduction;

he has developed new approximate algorithms that can be used in those
cases in which exact algorithms are inefficient. Those algorithms are

based on genetic algorithms and stochastic annealing [ACGM99],
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he has proposed some criteria to simplify explanations [dCMG99]. Those

are:

normality. The simplification is based on showing the user only those
values that are not the usual value of the variable. For example, in

medicine, the usual value for the variable Meningitis is absent.

probabilistic independence, by analyzing the graph that represents
the Bayesian network. He has developed an algorithm for detect-

ing some kinds of independencies.

relevance. This implies that the omitted information is “almost” ir-
relevant (in the sense of statistical independence) for the observed

facts.

he has proved that the criteria based on relevance and independence pro-
duce better results in those cases in which is not easy to decide which

is the usual value of a variable.

4.2 Explanation of the model

In Section 3.1.1 we mentioned the advantages that the explanation of the
model, also known as static explanation, presents in the phase of building
the Bayesian network and also with educational purposes. We classify the

methods according to the way they present their explanations.

4.2.1 Graphical display of the network

The most direct and intuitive way of showing the information embodied
in a Bayesian network is to display the corresponding graph: each node
is represented by an oval containing the name (or a short description) of
the associated variable, and links are drawn as arrows. Some of the ear-
lier tools that permitted the graphical edition and visualization of Bayesian

networks are Analytica, IDEAL [SB90], DAVID [Sha86a], HUGIN [AOJJ90]
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and PATHFINDER [Hec91]. However, when the size of the network grows
large, it becomes more and more difficult to read the graph. For this reason,
other packages, such as Analytica and GeNle [Dru99], offer the possibility
of defining submodels. When contracted, a submodel is represented by a
special type of node; when expanded, it displays all the nodes and the links
it contains.*

In any case, this kind of explanation is only a description of the model,
and it is not intended to improve comprehension. The interaction with
the user is done by means of menus, which give access to the properties
of nodes, links and conditional probability tables. The parameters of the
model appear in numerical form. In the tools we have examined, there

is no possibility of adaptation to the user, except for minor formatting

options.

4.2.2 Verbal description of the network

Druzdzel [Dru93, HD90] proposed a method for translating the qualitative
and quantitative information of a Bayesian network into linguistic expres-
sions. There are patterns for indicating the prior probability of a node, such
as “Cold is very unlikely (p=0.08)" and for comparing probabilities:
“Cold is slightly less likely than [having a] cat (0.08/0.10).”.
In this method, causal relations play an important role. In partic-
ular, there are explanation patterns for describing the leaky noisy OR, a
model that assumes the independence of causal interactions: “Cold very
commonly (p=0.9) causes sneezing. Allergy very commonly (p=0.9)
causes sneezing. Cold does not affect the tendency of allergy to
cause sneezing, and vice versa. There are also other unlikely (p=0.1)

i

causes of sneezing.” Relations of conditional dependence or indepen-

“The URL’s for HUGIN, Analytica, GeNIe and other Bayesian network tools can be

found at http://www.ia.uned.es/"fjdiez/bayes/#software.
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dence can be expressed by sentences like this: “Given sneezing, cold
and allergy are independent.”

The purpose of this explanation model lies between description and
comprehension. Explanations are offered at the micro level. User-system
interaction is not described in the references. The presentation of explana-
tion is in the form of text containing linguistic and numeric expressions
of probability.

Other systems, like B2 (see Section 4.4.1) and Elvira (see Section 4.2.4)

are also capable of offering verbal explanations of the model.

4.2.3 Menu-driven navigation

Diez [D94], in his expert system DIAVAL, developed a method for explaining
both the model and the reasoning. His method distinguishes several types
of links and nodes corresponding to the different types of causal influence:
in the noisy OR gate, the parents of a node are considered as causes in the
strict sense, while in the general model parents are regarded as factors that
influence the child variable.

User-system interaction is based on a system of windows and menus,

which offer different options:

For each node, the user can view: definition, prevalence (prior probability),
posterior probability, list of causes or factors, conditional probability

table (for nodes with parents), list of effects (children) and definition.

For each parameter, which is a node with an associated measure (generally
from echocardiography), the user can see: measured value, intervals,
pathophysiological meaning, and formula (for those parameters calcu-

lated from others).

For the links that make part of a noisy OR the options are: cause, effect,

sensitivity and specificity (only for binary variables), efficiency (the

22



probability that the cause produces the effect) and a text that explains

the associated causal mechanism.

By visiting the parents (causes) and children (effects) of nodes, the user
can navigate across the network. Explanation fits into the micro level,
because explanation focuses on one node or link at each moment. Explana-
tions are displayed as text inside different windows, and probability is only

expressed numerically.

4.2.4 Static explanation in Elvira

Elvira®

is an environment for the edition and evaluation of Bayesian net-
works and influence diagrams, developed as a research project among sev-
eral Spanish universities. Following Druzdzel’s proposal [Dru93] (see above),
Elvira offers verbal explanations at the micro level. The main difference
with his method is that in Elvira the nodes are classified into several cat-
egories, such as symptom or disease. This information is used to generate
model explanations. An example of an explanation could be: "The disease
X has the following symptoms: s1, s2, ...”. Itisalso capable of of-
fering graphical explanations, such us nodes expansion, as well as verbal
information about specific nodes or links. In a similar way to DIAVAL [D94],
it also allows to navigate across the network. The interaction with the user
is made by way of windows and menus.

Another useful option consists of automatically colouring the links of the
network, in order to offer qualitative insight about the conditional proba-
bility tables [LODO1]. More specifically, given two ordinal discrete variables
A and C such that there is a link A — C, this link is said to be positive
if higher values of A lead to higher values of C' for any configuration of
B, where B represents the set of the other parents of C. The definition of

negative link and null link are analogous. When the influence is neither

Information about Elvira can be found at http://uww.ia.uned.es/~elvira.
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positive nor negative nor null, then it is said to be unknown [Wel90a].
Typical orderings of values of a variable are +a > —a, present > absent,
severe > moderate > mild > absent, positive > negative, etc. If A and C
are binary variables, the above definition implies that link A — C'is positive
if and only if P(+c| + a,b) > P(+c|—a,b) for each value b of B. If variable
A represents a cause or a risk factor for C, or C is a test that detects A,
then influence A — C is in general positive. In causal networks, most of the

links are positive.

4.2.5 Assisted construction of medical Bayesian networks

We conclude this section on static explanation by mentioning the system
MEDICUS, developed by Folckers et al. [FMST96, SCFT96] as a tool for the
construction of explanation models in which the knowledge is complex and
uncertain, as in medicine. The main contribution is that it is a shell in which
the user can develop a Bayesian network for representing a certain domain,
independently of his/her level of knowledge about probability. This is
done by means of micro-level explanations generated by a linguistic editor
of the model, together with a graphic editor of the Bayesian network. The
explanations are expressed both quantitatively and qualitatively and are

presented verbally and graphically.

4.3 Explanation of reasoning at the micro level

In this section we describe the methods used to explain the reasoning at the
micro level in Bayesian networks. They are characterised by the fact that at
each moment they focus only on one variable, usually called focal hypothesis,

for generating the explanations.
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4.3.1 Verbal description of variations in probability

Experimental research showed that human beings understand linguistic ex-
pressions of probability better than numerical data. For this reason, El-
saesser [EH89] proposed a method for generating linguistic explanations by
means of a template based on Polya’s shaded inductive patterns, which are
a set of heuristic rules for describing changes in probabilities.

For example, one of those rules, compatible with Bayes formula is: “If
A — B and B is true, then the existence of A is more credible.” The
template is filled with natural language terms that represent probabilistic
data and their variations. The set of expressions denoting probability vary
between those that reflect high probabilities, like almost certain (for values
between 0.99 and 0.91) or highly probable —for the interval [0.90, 0.82)—
to those that designate small values, like improbable (for the range 0.18
to 0.09) or highly improbable (for the range 0.08 to 0.01). There are also
expressions for defining changes from probability p; to probability po; for
instance, when py/p; > 5, the expression is “a great deal more likely”; when

7 etc.

2.5 < pa/p1 <5, the expression is “much more likely,
Later, an experiment by Elsaesser and Henrion [Els90] proved that the
linguistic expressions assigned by people to different pairs (p1,p2) depends
on the difference p; — p; more than on the ratio pe/p; or the odds ratio
(p1/(L = p1))/(p2/(1 = p2)).
Clearly, the translation of numerical probabilities into linguistic expres-
sions makes no assumption on causality. In this method, intended for

users that are not familiar with probability theory, there is no explicit user

model.

4.3.2 Graphical display of probabilities

There are several software tools for processing Bayesian networks that offer

the possibility of showing graphically the variations in probability of certain
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variables, such as HUGIN, Netica or Elvira. The basic idea common to all of
them is to show the variations of probability by plotting a bar proportional
to the probability of each state of a node, together with its numerical value.
The purpose of this kind of explanation facility is the description of the
reasoning process and it is useful both for causal and non-causal Bayesian

networks. Probabilities are expressed quantitatively and qualitatively.

However, Elvira differs from other tools in that it is able to simultane-
ously store and display several evidence cases [LAD00, LODO01]. The user
is allowed to navigate across the set of evidence cases, saving them in files,
generating new cases, expanding or contracting the selected nodes, modi-
fying the inference options, etc. This facility permits the user to observe
the variations in the probability of each variable due to the sequential intro-

“what-if” analysis by introducing

duction of new findings, and to perform
different hypothetical findings, even for the same variable. Moreover, when
evaluating the impact of evidence, the user can know if the probability of
a certain node has increased or decreased with respect to the previous case
or to another fixed case, selected by him/her, because nodes are coloured
depending on the changes on its probabilities.

The main objective of Elvira’s graphical explanation facility is the com-
prehension of the reasoning process and it is useful both for causal and
non-causal Bayesian networks. The interaction with the user is performed
by windows and menus. Probabilities are expressed quantitatively and
qualitatively, by means of coloured bars. There is a rudimentary adap-

tation capability consisting in controlling the expansion and importance

thresholds.
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4.3.3 Explanation of local updates in polytrees

In a polytree (a network without loops), the posterior probability for variable

B can be obtained by [Pea88]
Bel(b) = aA(b)w(b) (2)

where A(b) is the support form the effects (the children) of B and 7 (b) is
the causal support. Sember and Zukerman [SZ90] developed en explana-
tion method for justifying the value of Bel(b) in terms of 7(b) and A(b).
The user’s expectations are featured by the changes produced in 7(b), since
it represents causal information. If 7 (b) increases, decreases or does not
change, then the reader expects Bel(b) to increase, to decrease or remain
unchanged, respectively. When the expectation is met, their method gener-
ates the following explanation: “The belief in B has augmented due to an
increase in its causal support.” In those cases when the user’s expectation
is not met, the explanation consists of identifying which values of 7(b) and
A(b) caused the deviation.

The purpose of this method is comprehension and it assumes a causal
Bayesian network. Explanations are presented as text and variations in the
probability are expressed linguistically (“has augmented/has decreased”).
Sember and Zukerman do not describe the user-system interaction nor any
possibility of adaptation. The explanations require the user to be familiar
with the reasoning method.

This method is direct and intuitive in the case of binary variables, but
becomes more complicated for multivalued variables. The main limitation
of this method is that it only works for polytrees, and therefore can seldom

be applied to real-world problems, whose models almost always have loops.
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4.3.4 Analysis of local variations of probability in DIAVAL

As we said in Section 4.2.3, the expert system DIAVAL [D94] had a method
for explaining the reasoning, which allows the user to select each diagnosis
and open a menu with different options, including the possibility of visiting
the parents and children of the nodes, as described in Section 4.2.3. This
way the user can investigate which neighbours of a node have increased or
decreased their probability. Additionally, if a node Y is the child of a noisy
OR/MAX gate, the probability that each parent X; has produced Y can be
computed as P(+xz;|e) X ¢;, where ¢; is a parameter of the OR gate that
represents the probability that X;, when being present, produces Y.

The purpose of this explanation method for causal Bayesian networks
is mainly to describe the results of inference and includes specific expla-
nation patterns for the noisy OR/MAX gates. User-system interaction is
implemented by a system of windows and menus. Probabilities are expressed

numerically. There is no user model and no adaptation.

4.3.5 Analysis of the impact of evidence on a variable

PATHFINDER One of the first systems that included some kind of ex-

planation was PATHFINDER [Hec91]. The method basically consists in

discriminating between two diseases or two groups of diseases, by showing

how each value v; of a certain variable V' affects its probability distribution.

To do this, the system draws a graphic bar proportional to the likelihood

ratio for each value v; of the selected variable in favor of one disease D;

relative to the other Dy given the evidence e. The measure unit used is the
evidence weight proposed by Good [Goo77]
P(v;i|Dy,e

s (Foipes) ®

The purpose of PATHFINDER explanations is the description of rea-

soning and can be applied to both causal and non-causal networks. The
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presentation of the explanation is graphical and the interaction with the
user is led by way of menus, windows and dialogue boxes. Probabilities are
expressed by numbers and there is no adaptation and the user must have

some knowledge of probability theory.

INSITE Another method was Suermondt’s INSITE [Sue92, SC93], whose
main objective is to identify the findings that influence the posterior proba-
bility of a certain hypothesis, as well as the paths through which the evidence
flows, which we will describe in section 4.4.1. The influence of evidence e
on a certain variable D is measured by a cost-function. Suermondt [Sue92]
analyses different cost functions and concludes that the most suitable func-

tion is cross-entropy,

p(d;)

where d; represents the possible values of D. The influence of individual

H(P(Dle); P(D) = 3 [p<di|e> Ig (p(di'e))] , ()

i

findings or subsets of findings is determined by a sensitivity analysis which
computes the cost of omission of such findings.

The purpose of INSITE is the comprehension of reasoning. and can
be applied to both causal and non-causal networks. Interaction with the
user is led by way of menus, windows, dialogue boxes, buttons and by se-
lecting nodes or arcs in the network display. Explanations are presented as
a combination of graphics and text. In the latter case, the probabilities

are expressed both by numbers and by linguistic expressions.

4.4 Explanation of reasoning at the macro level

The methods analysed above are characterised by generating macro level
explanations, which typically implies that they attempt to explain the main

paths in the Bayesian network through which the evidence flows.
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4.4.1 Quantitative analysis of reasoning chains

NESTOR NESTOR, developed by Greg Cooper [Coo84], is one of the
first Bayesian networks. It included a facility for explanation which offered
two possibilities: to compare how two diagnostic hypothesis account for the
evidence, and to critique a hypothesis with respect to all other possible diag-
noses. In both cases, it could generate a verbal explanation for describing
qualitatively the chains among the evidence and a given hypothesis, which
basically consisted of translating into English the causal links of each chain.
On the other hand, in the case of the “compare” command, the user could
visualize, how each finding affected the relative probability of two hypothesis
selected by the user. In the case of the “critique” command, the user could
visualize the relative probability of the hypothesis with respect to all other
hypothesis. The explanation method was defined only for causal networks.
Explanations were displayed both graphically and verbally. Probabilities
were expressed numerically. The interaction with the user was lead by
way of commands (predefined questions). It had no adaptation capability

and no user model.

Graphical display of the weight of evidence In the same line, Madi-
gan et al. [MMA97] propose a graphical method that consists in showing
how the evidence is propagated through a causal Bayesian network. The im-
pact of the evidence on a binary node H is measured, as in PATHFINDER,
by computing Good’s evidence weight

(5)

W(H : e) = log <M>

P(e|=h)
and it is displayed on the network’s own graph by varying the colour and
thickness of nodes and links, by drawing different kind of links, etc.
The method also provides macro explanations for two types of questions.

The first one is: “What is the relative importance of each finding f about
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the variable of interest H?” This is answered by visualizing W(H : f) in a
graphical evidence balance sheet, in which all findings are shown together
with their importance for the hypothesis. Please note that the importance
of each finding depends on the order in which the user sets their values.

The second type of question is: “Why does a concrete node have so much
influence on a given variable?” The answer consists of showing the relevant
paths, in a way similar to Suermondt’s chains of reasoning.

The purpose of this method is the comprehension of the reasoning
process. Although Madigan et al. speak of causal Bayesian networks,
their method also works in non-causal networks. User-system interaction
is menu-driven and probabilities are qualitatively codified by means of
colours and thicknesses. No adaptation capability has been developed for

this method.

INSITE Suermondt’s method (see Section 4.3.5) also looks for relevant
chains of reasoning, i.e., paths from e to D that are computationally related
to D given evidence e. He analyses the strength® of each of them and
whether it conflicts or not with the inference result. The chains are presented
graphically to the user by shading the conflicting ones and highlighting the
consistent ones. Chains can also be described verbally. Moreover, INSITE
defines a method for detecting conflicts among different variables.

As we said, the purpose of INSITE is the comprehension of reason-
ing and the method can be applied to both causal and non-causal networks.
Explanations are presented as combinations of graphics and text, express-
ing probabilities by means of numbers and linguistic expressions. The
method has no user model but the level of detail can be adapted to the
needs of a given user.

One interesting aspect of INSITE is its independence of the algorithm

®The strength of a chain is viewed as the importance of the chain in obtaining the

inference result.
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of evidence propagation. In contrast, its main shortcoming is the computa-
tional complexity, that grows exponentially with the number of nodes and

arcs.

BANTER Based on Suermondt’s method INSITE, Haddaway, Jacobson
and Kahn [HJK94a, HJK94b, HJIK97] have developed BANTER, a tool for
decision-support and training. The tool is aimed at medicine, although it
works on any network consisting of hypotheses, observations and diagnostic
tests. Given evidence, BANTER can offer the probability of a hypothesis or
select the most informative test for confirming or discarding a hypothetical
diagnosis. When used as an educational tool, BANTER randomly generates
scenarios and asks the user to make a diagnosis or select a test.

BANTER can also generate verbal explanations (by using a modification
of Suermondt’s method) by identifying the most influential pieces of evidence
and by selecting the strongest ” and shortest paths between the evidence and
the hypothesis.

Both methods share the purpose of comprehension of the reasoning
process. They differ in that BANTER is designed for causal Bayesian
networks and only generates verbal explanations, while INSITE can also
display graphic explanations. In BANTER, the expressions of probability
are only quantitative. None of them offers any adaptation to the user. As
BANTER is especially conceived for novice or inexperienced users, it does
not require any knowledge of Bayesian networks, but only some familiarity

with the application domain and an elementary understanding of probability.

B2 However, there are some problems when BANTER is used as an edu-
cational tool: it is not capable of making hypothetical reasoning (see Sec-

tion 3.1.1) and it sometimes offers irrelevant information for the conclusion,

"The strength of a path C' given evidence e is defined as Strength(C) = min |(P(n) —
P(nle)|,V node n € C
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which can be misleading for the user. On the other hand, verbal explana-
tions are difficult to understand. In order to solve these deficiencies, McRoy
et al [MHA97a, MHA97b, MLPHH96] have developed B2 as an extension of
BANTER. It generates both graphical and verbal explanations in natural
language, in a more consistent way than BANTER does. It generates expla-
nation of the reasoning. This is done by the representation of a discourse
model by way of a propositional semantic network. This allows the system
to generate only relevant information, since it is capable of doing some rea-
soning about the content and the structure of its interaction with the user.
Therefore, the objective is comprehension of the reasoning. It also of-
fers the capacity for doing hypothetical reasoning. As in BANTER, the
probabilities are expressed quantitatively and there is no user adapta-
tion. User-system interaction is performed by windows and questions are

expressed in natural language.

Probability of evidence Dittmer and Jensen [DJ97] focus on analysis
tools for generating macro explanations in Bayesian networks, but instead
of analysing the paths in the network, they compute the probability of ev-
idence in order to detect conflicts among data, and perform a sensitivity
analysis to determine how changes in the evidence affect the conclusion.
They have applied them to the BOBLO Bayesian network for determining
if the pedigree assigned to the cattle is correct. The main objective of this
method is description and it is useful both for causal and non-causal mod-
els. We have found no reference in relation to user-system interaction or the

possibility of adaptation.

4.4.2 Qualitative explanations

Druzdzel and Henrion [Dru93, Dru96, DH93b, DH93a, HD90] also proposed

another explanation method similar to the previous one but it is based on
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the qualitative analysis of the reasoning chains. It consists of transforming
a causal Bayesian network into a qualitative probabilistic network (QPN)
[Wel90a, Wel90b], in which the relation between two adjacent nodes is de-
noted as positive (+), negative (—), null (0) or unknown (?); there are also re-
lations that involve more than two nodes, such as additive [Wel90a, Wel90b]
or multiplicative synergies [DH93b, DH93a]. The main advantage of QPN’s
is that they simplify the construction of models, because they do not require
the elicitation of numerical parameters; as a consequence, their main disad-
vantage is the lack of precision in the results, especially because very often
the combination of “positive” and “negative” influences leads to “unknown”
influences. The motivation for this explanation method is that people usu-
ally reason and explain their reasoning in terms of qualitative relations.

The qualitative propagation algorithm proposed by Druzdzel and Hen-
rion [DH93b]| consists in exchanging messages among neighbour nodes. Evi-
dence nodes are marked with + or —. Unobserved nodes are initially marked
with 0. The sign of the message (+, —, 0 or 7) from X; to X is determined
by the product of the sign of X; and the sign of the link.

The objective of explanation is to determine the qualitative impact that
each finding f has produced on a certain variable of interest V' and to find
out the active paths from F to V. There are three kinds of elementary
explanations corresponding to the three kinds of elementary qualitative in-

ferences:

predictive inference goes from causes to effects, i.e., in the direction of
the links; the explanation for this kind of inference relative to a link

A — B is of the type “A may cause B.”

diagnostic inference goes from effects to causes, i.e., in the opposite di-

rection of the arcs; the explanation may be “B is evidence for A.”

intercausal inference which analyses the qualitative impact of the evi-
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dence for a variable A over another variable B when both have an
influence on a third variable C, about which there is independent evi-
dence (for example, C' has been observed); the explanation generated
in this case is of the kind: “A and B may each cause C; as A explains

C, there is evidence against B.”

If there are several findings and several target variables, the process will
be repeated several times. Similarly, if there are several active paths from
finding f to target variable V, explanation is sequenced, since both human
reasoning and natural language are essentially sequential.

The purpose of this method is the comprehension of the reasoning
process. It assumes that the network is causal. Explanations are displayed
as text, which includes linguistic expressions of probability. As in the case
of scenarios, the authors do not describe the user-system interaction nor
any possibility of adaptation. In principle, these qualitative explanations
do not require that the user to be familiar with probabilistic reasoning,
although knowledge on the propagation method may help to understand

the explanations.

Trade-offs resolution It is also worthwhile to mention the work done
by Renooij and Van der Gaag et al. [RvdG99, RvdGPGO00] in order to im-
prove the ambiguous results that can be obtained when doing inference in
a qualitative network. They have designed a formalism for trade-off resolu-
tion without making use of probabilistic information [RvdG99]. It is called
enhanced qualitative networks and it is based on distinguishing between
strong and weak influences, in contrast with qualitative networks which do
not make this distinction. The way they do this is associating a relative
strength with influences. The algorithm for sign-propagation in this kind
of networks is a generalization of the one for qualitative networks although

its main difference is that strong influences dominate over conflicting weak
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influences.

Together with Parsons and Green [RvdGPGO00], they have also designed
other algorithm for calculating informative results for the node of interest,
in order to solve its ambiguous sign after doing inference. It is based on
focusing on the subnetwork formed by the chains between the observed node
and the node of interest. Then, an informative result is constructed for the
pivot node 8, because its sign determines the sign of the node of interest.
The ambiguity at the pivot node is solved in terms of the relative strengths

of the influences between them as well as the signs of the node’s resolvers.

4.4.3 Scenario-based explanation

According to Druzdzel and Henrion [Dru93, DH90, HD90], a scenario is an
assignment of values to variables that are relevant to a certain conclusion,
ordered in such a way that they form a coherent story—a causal story, if
possible—compatible with the evidence. An example of a scenario could
be: Age 5, Fever high, Exanthema present. The use of scenarios is
funded on psychological studies [KST82, PH88] showing that humans tend
to interpret and explain processes by weighing up the most credible stories
that include the hypothesis being demonstrated.

Although a scenario may contain all the nodes in the network, it is more
reasonable to include only those nodes that are relevant for a certain task
[DS94, LD97, Lud98, SGPI97]. If there is a certain focal hypothesis H se-
lected by the user, the relevant nodes are those that affect the posterior
probability of H given the observed evidence e. Otherwise, the relevant
nodes are all those whose probabilities depend on e. After selecting the
relevant nodes, the scenarios are generated by some of the methods of par-

tial abduction—see Section 4.1. The explanation consists of showing the

8The pivot node is a node that separates the part of the relevant network that contains

the trade-offs from the part that does not.
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evidence, the most probable scenarios compatible with the hypothesis and
those incompatible with the hypothesis, and a comparison of the probabili-
ties of the most probable scenarios.

The purpose of scenario-based explanation is the comprehension of
the reasoning process, even though the propagation algorithm is not based
on scenarios. The method is mainly designed for causal Bayesian networks.
Explanations are presented as a text that describes each scenario in natural
language. The probabilities of scenarios are given numerically. Druzdzel
and Henrion do not describe the user-system interaction nor any possibility
of adaptation. In principle, these explanations do not require that the
user to be familiar with probabilistic reasoning, although knowledge of the

methods involved will certainly help to understand the explanations.

4.5 Other research

Finally, we describe another methods related to the generation of explana-

tions for Bayesian networks.

4.5.1 Selection of diagnoses

Most of the Bayesian network tools limit the process of inference to display-
ing the posterior probabilities of the values of each variable. This is clearly
insufficient for practical expert systems, especially when the network con-
tains a great number of nodes. For this reason, the explanation capability of
the expert system PATHFINDER [Hec91] (see Section 4.4.1) basically con-
sists in showing only how the evidence affected all the possible diseases. For
this purpose, an ordered list with all the possible diseases and its associated
probabilities is displayed. These probabilities define the order of the list.
The main goal of this method is description. The presentation of the ex-
planation is verbal and the interaction with the user is led by way of menus,

windows and dialogue boxes. Probabilities are expressed by numbers and

37



there is no user adaptation.

Similarly, DIAVAL [D94] also implemented a method for selecting the
most probable and relevant diagnoses. Relevance in DIAVAL is a measure
of the importance from the medical point of view: for instance, a disease
like mitral stenosis is more “relevant” than an intermediate pathophysiolog-
ical variable, like left atrium hypertension; during the construction of the
Bayesian network, each node V' is subjectively assigned two factors: the
positive (negative) relevance factor applies when the most probable value
is +v (—w). The system only displays the diagnoses whose posterior prob-
ability and relevance exceed both the certainty threshold and the relevance
threshold.

The purpose of this method is to describe the results of inference al-
though it offers some rudimentary assistance for the comprehension of
reasoning. The method assumes that the model is causal. The inter-
action among the user and the system is based on windows and menus.
Probabilities are expressed numerically. There is no user model, and the
only adaptation capability is that the user can control the level of de-
tail in the selection of diagnoses by modifying the relevance and certainty

thresholds.

4.5.2 Nice Argument Generator

Among the ongoing projects, the current research of Zukerman, Conachy
and Corb [MKZ98, ZKM98, ZMK98| stands out. Their method focuses on
the use of Bayesian networks to generate arguments expressed in natural lan-
guage. In their latest investigations, they propose the utilization of Bayesian
networks as the basis of the NAG system (Nice Argument Generator), which
serves to analyse and generate ‘good enough’ reasoning to convince the user.
So, given a goal proposition introduced by the user, the context in which

it is made, and a grade of credibility, the system generates the arguments
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to justify it; moreover, it analyses the reasoning provided by the user and
prepares other arguments to refute it when necessary. Both the user model
and the normative model are represented by Bayesian networks. The new
arguments are added to the normative model when they are created. Since
both networks can be too complex, there is a mechanism to focus on the
relevant subnetworks, over which reasoning will be performed. The inter-
section of both network structures defines the reasoning graph. In order to
analyse it, a propagation over both networks is made, using the probabilistic

information associated with each model.

5 Conclusions

Explanation of reasoning is one of the key factors for the success of expert
systems. As we discussed in Section 3.1.1, explanation capability is crucial
for debugging a model, for convincing the user that the results are correct,
and for educational purposes.

There are two main approaches for building expert systems. The heuris-
tic approach tries to mimic the reasoning process of human experts, generally
by using rules and structured objects. In contrast, the normative approach is
based on the probability and decision theory; in practice, it amounts to using
Bayesian networks for diagnostic expert systems and influence diagrams for
decision-support systems. There are both theoretical and empirical studies
indicating that the normative approach leads to more accurate and robust
expert systems, but on the other hand the explanation capability is even
more necessary, because normative reasoning methods are more foreign to
human beings than heuristic methods.

In neither of the approaches are there explanation methods satisfactory
for the end-user. In fact, there are only isolated proposals, partial solu-
tions insufficient to constitute a standard method suitable for all the expert

systems that use similar reasoning techniques.

39



In this paper (Section 3) we have discussed the basic properties of ex-
planation methods and summarized them in Table 1. In the light of them,
we analysed the explanation methods brought up to date for Bayesian net-
works by considering three kinds of explanation: explanation of evidence
(Section 4.1), explanation of the model (Section 4.2), and explanation of
the reasoning (Sections. 4.3 and 4.4). The first kind correspond to the
philosophic concept of explanation as a search for the causes of a certain
phenomenon. The second and third kinds of explanation correspond to the
concept of explanation used in artificial intelligence: the processes that help
the user understand the model and the performance, respectively, of an
expert system.

If we come back to Section 3 and look at Table 1 as a checklist of the
features that an explanation capability should offer, we realize that all the
methods currently available suffer from serious limitations. A significant
part of the research limits itself to theoretical models that have not even been
implemented in prototype applications. And in the methods implemented
so far, the interaction with the user amounts, in the best cases, to displaying
a menu with a few options. No explanation method has even tried to offer
the possibility of a dialogue with the user.

In the same way, no explanation method for Bayesian networks takes into
account the user’s knowledge, not even by using the distinction between
novice and experienced users, or the possibility of fixing a threshold that
controls the level of detail. (In heuristic expert systems, there are several
explanation methods that used either a novice-advanced-experienced scale
or a dynamic model that explicitly represents the user’s knowledge at each
moment.)

The conclusion of this paper is that there is a lot of research to be done in
the area of explanation in Bayesian networks. We trust that this paper may

stimulate some researchers to build on the current methods (by remedying
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the shortcomings of one of them or by combining different methods) or to

explore new approaches aimed at the problems thus far unaddressed. In

our opinion, the most promising lines are the study of causal methods —in

particular, canonical models— and the application of user models, both for

the domain knowledge and the knowledge about the reasoning method.
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