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Abstract

Dı́ez’s algorithm for the noisy MAX is very efficient for polytrees, but when the net-
work has loops it has to be combined with local conditioning, a suboptimal propagation
algorithm. Other algorithms, based on several factorizations of the conditional probability
of the noisy MAX, are not as efficient for polytrees, but can be combined with general
propagation algorithms, such as clustering or variable elimination, which are more efficient
for networks with loops. In this paper we propose a new factorization of the noisy MAX
that amounts to Dı́ez’s algorithm in the case of polytrees and at the same time is more
efficient than previous factorizations when combined with either variable elimination or
clustering.

1 INTRODUCTION

A Bayesian network is a probabilistic model which consists of an acyclic directed graph
(ADG), in which each node represents a variable, plus a conditional probability table (CPT),
P (vi|pa(vi)), for each node, Vi, given its parents in the graph, pa(Vi). We follow the convention
of representing variables by uppercase letters and their values by lowercase letters; thus Pa(Vi)
represents a set of nodes, while pa(vi) represents a particular configuration of them. A family
consists of a node and its parents: Fam(Vi) = {Vi}∪ Pa(Vi). The joint probability for the
set of all variables is the product of the CPT’s:

P (v1, . . . , vn) =
∏

i

P (vi|pa(vi)) . (1)

Any other marginal or conditional probability can be obtained from it. In particular, it
is possible to obtain the a posteriori probability of any variable given a certain evidence:
P (vi|e). However, the straightforward method that computes the conditional probabilities
by previously expanding the joint probability has a computational complexity that grows
exponentially with the number of nodes. For this reason, there has been a lot of research
on algorithms that can compute P (vi|e) more efficiently by taking profit of the conditional
independencies of the joint probability. The two standard exact algorithms for Bayesian
networks are variable elimination and clustering (see Sec. 1.1).

The probabilities that make up a CPT are usually obtained from a database or from
human experts’ judgement. However, since the number of parameters for a family grows
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exponentially with the number of parents, it is usually unreliable if not infeasible to directly
obtain the conditional probability of a family having more than three or four parents. For this
reason, it is beneficial to apply canonical models [6], arising from different causal assumptions,
which only require a few parameters per link.

The use of canonical models not only simplifies the construction of Bayesian networks and
influence diagrams, but can also lead to more efficient computations. Unfortunately, most of
the software packages that deal with the OR/MAX expand it into an explicit CPT, P (y|x),
before doing inference, which is very inefficient. In the case of a polytree, the computational
complexity of the computation for a MAX family having N parents is O(nY · nX

N ), where
nX is the domain size of the parents, assuming all of them have the same number of values.
In the case of a clustering algorithm, the computational cost not only depends on the size of
P (y|x) but also on the size of the other potentials that are assigned to same cluster as P (y|x).

Several authors have proposed different techniques for avoiding this exponential complex-
ity. The most significant proposals are Dı́ez’s [4] algorithm, whose complexity is O(nY · nX ·
N) for a noisy MAX at a polytree, and the multiplicative factorization by Takikawa and
D’Ambrosio [28], whose complexity is O(max(2nY , nY · nX · N)) for a polytree, but has the
advantage that it permits efficient elimination orderings for the variable-elimination algorithm
and efficient triangulations for clustering algorithms [18]. The purpose of our research is to
develop a new algorithm that combines the advantages of both methods: the efficiency of
Dı́ez’s algorithm for the noisy MAX itself and the flexibility of multiplicative factorizations.

The organization of this paper is as follows. In Section 1.1 we briefly review the two
standard exact algorithms for Bayesian networks, namely variable elimination and clustering.
We also review the noisy MAX in Section 1.2. We expose our algorithm in Section 2 by
introducing a new factorization of the MAX CPT and showing how it can be integrated with
variable elimination (Sec. 2.1) and with clustering (Sec. 2.2). Section 3 compares this method
with previous algorithms, Section 4 proposes a refinement of our algorithm, which makes it
essentially identical to Dı́ez’s [4], and Section 5 summarizes the conclusions.

1.1 STANDARD ALGORITHMS FOR BAYESIAN NETWORKS

The joint probability of a Bayesian network can be computed as the product of all the con-
ditional probabilities of the network. Any other marginal or conditional probability can be
obtained from it. Unfortunately, the complexity of this brute-force method grows exponen-
tially with the size of the network. One of the ways of avoiding this problem is to sum out
some variables before multiplying all the potentials (each probability table is a potential and
the result of multiplying two potentials is a new potential [15]). For instance, given the net-
work in Figure 1, the a posteriori probability of A given the evidence {H = hk}, P (a|hk), can
be computed as follows:

P (a, hk) =
∑

b

∑

d

∑

f

∑
g

P (a, b, d, f, g, hk)

=
∑

b

∑

d

∑

f

∑
g

P (a) · P (b|a) · P (d|a) · P (f) · P (g|b, d, f) · P (hk|g) (2)

= P (a) ·
∑

b

P (b|a) ·
∑

d

P (d|a) ·
∑

f

P (f) ·
∑

g

P (g|b, d, f) · P (hk|g) (3)

P (a|hk) =
P (a, hk)
P (hk)

=
P (a, hk)∑
a P (a, hk)

. (4)

Please note that Equation 3 implies a more efficient computation than Eq. 2. This process of
“ordering” the potentials and the sums is the fundamental of variable elimination algorithms
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(see for instance [1, 3]). Naturally, in networks with loops, the main difficulty of this algo-
rithm consists is finding the optimal elimination order, which is of crucial importance for the
efficiency of the computation of probability [17].
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Figure 1: An example Bayesian network. We assume that there is a noisy MAX at Fam(G).

The fundamental of clustering algorithms is essentially the same. One of the basic steps
of this method is the construction of a join tree having the following properties:

Definition 1 A join tree associated with a Bayesian network is an undirected tree such that

• each node in the join tree represents a cluster, i.e., a subset of variables of the Bayesian
network;

• for each family in the Bayes net, there is at least one cluster containing all the variables
of that family;

• if a variable appears in two clusters Ci and Cj then it must also appear in all the clusters
that are in the path between Ci and Cj in the tree; this is called the join tree property.

The standard way of building the join tree consists in moralizing the graph of the Bayesian
network (by “marrying” the parents of each node) and triangulating it; each clique in the
triangulated moral graph becomes a cluster in the join tree, which is called in this case a clique
tree or a junction tree. After assigning each CPT to one cluster and introducing the evidence,
the computation of the posterior probability takes place by an exchange of messages between
neighboring clusters [14, 15, 26]. In essence, each join tree performs the same operations as
variable elimination with a specific elimination ordering. The join tree is a structure that
helps in storing and combining the potentials and caching the intermediate results. For this
reason, variable elimination is more efficient for answering single queries, while clustering is
more efficient for computing the posterior probability of each variable [31].

1.2 THE NOISY MAX

The most widely used canonical model is the noisy OR, introduced by Good [10] and fur-
ther studied by Pearl [22]. Henrion [12] generalized the model to non-binary variables. Dı́ez
formalized Henrion’s model, coined the term “MAX gate” and developed an evidence propa-
gation algorithm whose complexity is linear in the number of parents [4]. In this paper, we
concentrate on the noisy MAX model, since the noisy OR is a particular case of the former
and the study of the noisy AND/MIN is very similar.1

1There is another generalization of the noisy OR, proposed by Srinivas [27, 6], which is very different from
the noisy MAX and, to the best or our knowledge, can not be factored like the noisy MAX.
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The noisy MAX consists of a child node, Y , taking on nY possible values that can be
labeled from 0 to nY − 1, and N parents, Pa(Y ) = {X1, . . . , XN}, which usually represent
the causes of Y . Each Xi has a certain zero value, so that Xi = 0 represents the absence of
Xi. Two basic axioms define the noisy MAX [4]:

1. When all the causes are absent, the effect is absent:

P (Y = 0|Xi = 0 [∀i]) = 1 . (5)

2. The degree reached by Y is the maximum of the degrees produced by the X’s if they
were acting independently:

P (Y ≤ y|x) =
∏

i

P (Y ≤ y|Xi = xi, Xj = 0 [∀j, j 6=i]) . (6)

where x represents a certain configuration of the parents of Y , x = (x1, . . . , xN ).

The parameters for link Xi → Y are the probabilities that the effect assumes a certain
value y when Xi takes on the value xi and all the other causes of Y are absent:

cxi
y = P (Y = y|Xi = xi, Xj = 0 [∀j, j 6=i]) . (7)

If Xi has nXi values, the number of parameters required for the link Xi → Y is (nXi − 1)×
(nY − 1)—because of Equation 5. Since all the variables involved in a noisy OR are binary,
this model only requires one parameter per link. Alternatively, it is possible to define new
parameters:2

Cxi
y = P (Y ≤ y|Xi = xi, Xj = 0 [∀j, j 6=i]) =

y∑

y′=0

cxi
y′ , (8)

so that Equation 6 can be rewritten as

P (Y ≤ y|x1, . . . , xn) =
∏

i

Cxi
y . (9)

The CPT is obtained by taking into account that

P (y|x) =
{

P (Y ≤ 0|x) if y = 0
P (Y ≤ y|x)− P (Y ≤ y − 1|x) if y > 0

. (10)

2 A NEW ALGORITHM FOR THE NOISY MAX

The departure point for our algorithm is the realization that Equation 10 can be represented
as a product of matrices. For instance, when nY = 3,




P (Y = 0|x)
P (Y = 1|x)
P (Y = 2|x)


 =




1 0 0
−1 1 0

0 −1 1


 ·




P (Y ≤ 0|x)
P (Y ≤ 1|x)
P (Y ≤ 2|x)


 .

In general,
P (y|x) =

∑

y′
∆Y (y, y′) · P (Y ≤ y′|x) , (11)

2Since the c parameters are more easily elicited from a database or from a human expert than the C’s, a
Bayesian network tool should display the former in its user interface, but internally it may use the latter for
the sake of efficiency in the propagation of evidence. In any case, it is easy to convert from the ones to the
others.
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where ∆Y is an nY × nY matrix given by

∆Y (y, y′) =





1 if y′ = y
−1 if y′ = y − 1

0 otherwise
. (12)

Because of Equation 9,
P (y|x) =

∑

y′
∆Y (y, y′) ·

∏

i

Cxi
y′ . (13)

This factorization of P (y|x) is the keystone of our algorithm. We will now see how to integrate
it with the standard algorithms.

2.1 INTEGRATION WITH VARIABLE ELIMINATION

In the factorization of the joint probability, each CPT P (y|x) corresponding to a MAX family
can be replaced with its equivalent given by Equation 13, and variable elimination can proceed
in the usual way, as if Y ′ were an ordinary variable.3 It might happen that the procedure
that determines the elimination order decides to sum out Y ′ before than Y and its parents,
which would be equivalent to expanding the whole CPT for this family. In this case, the
algorithm we propose would only mean a saving of storage space at the cost of an increase
in computational time. However, in general the elimination of variable Y ′ can be deferred
until other variables have been eliminated, thus leading to a saving of both time and space,
as shown in the following example.

Let us assume that, given the network in Figure 1, we are interested in the posterior
probability of A given the evidence {H = hk}. The computation can proceed as follows:

P (a, hk) =
∑

b

∑

d

∑

f

∑
g

∑

g′
P (a) · P (b|a) · P (d|a)

· P (f) ·∆G(g, g′) · Cb
g′ · Cd

g′ · Cf
g′ · P (hk|g)

=P (a) ·
∑

g′

[(∑

b

P (b|a) · Cb
g′

)
·
(∑

d

P (d|a) · Cd
g′

)

·

∑

f

P (f) · Cf
g′


 ·

(∑
g

∆G(g, g′) · P (hk|g)

)
 . (14)

It is easy to verify that this equation is much more efficient than Equation 3 as a con-
sequence of the factorization given by Equation 13. In Section 3 we discuss other network
structures for which this new algorithm leads to significant savings of both time and space.

2.2 INTEGRATION WITH CLUSTERING ALGORITHMS

We have seen that the integration of our method with variable elimination is immediate. We
will now explain how to integrate it with clustering algorithms. The process is as follows:

Algorithm 2 Construction of the join tree:

1. Build an auxiliary (undirected) graph as follows:

(a) Create a graph with the same set of nodes as the Bayes net, but without any link.
3Y ′ is not a true random variable because its values are not exclusive. Please note that PY ′(ymax) = P (Y ≤

ymax|x) = 1 and therefore
P

y′ PY ′(y
′) =

P
y P (Y ≤ y|x) ≥ 1.
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(b) For each node V :

i. If V is the child of a noisy MAX family, add a new node V ′ with dom(V ′) =
dom(V ) to the auxiliary graph, add a link V ′–V , and then a link Ui–V ′ for
each link Ui → V in the Bayes net (i.e., for each parent Ui of V ).

ii. Otherwise, add a link Ui–V for each link Ui → V in the network, and marry
these parents with one another.

2. Triangulate the auxiliary graph.

3. Arrange the cliques of the triangulated graph in a join tree.

4. Assign the potentials to the cliques.

For example, the auxiliary graph for the network in Figure 1 is given in Figure 2.
There are two possible ways to triangulate this graph: the addition of an edge B–D and

the addition of an edge A–G′. The latter is more efficient if nB × nD > nA × nG —since
nG′ = nG— and leads to the junction tree displayed in Figure 3.
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Figure 2: Auxiliary graph for the Bayesian network in Figure 1.
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Figure 3: A junction tree for the graph in Figure 2. It shows the potentials assigned to each
clique.

We would like to make the following comments about this algorithm:

• Step 1 in the algorithm guarantees that it is always possible to assign the potentials of
the network to the join tree. For a explicit CPT P (y|x), there is at least one clique
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containing all the nodes of that family (step 1(b)ii of the algorithm). If the interaction
for a node Y is given by a noisy MAX, there is at least one clique containing both Y
and Y ′ (step 1(b)i), and this clique can be assigned the potential ∆Y (y, y′). For the
same reason, it is also possible to assign each Cxi

y to a clique containing both Xi and
Y ′. In the case of a leaky MAX [4, 6], the potential C∗

y can be assigned to any clique
containing Y.

• The auxiliary graph is not necessarily a moral graph, because the parents involved in a
noisy MAX do not need to be married. This “immorality” may be surprising for those
who are familiar with clustering algorithms, but we argued in Section 1.1 that the main
role of the join tree is to serve as a structure for storing and combining the potentials.
Therefore, if the CPT for a family can be decomposed into a set of potentials, it is not
necessary to have a cluster including all the nodes of that family—it suffices that, for
each potential, there is a cluster containing all its variables. This property replaces the
second condition in Definition 1 (join tree associated with a Bayesian network).

• Steps 2 and 3 of the algorithm are the same as in other clustering algorithms. There are
several possibilities for triangulating the graph: heuristic search, simulated annealing,
genetic algorithms, etc., and several types of join trees: junction trees, binary join trees,
etc.

• The propagation of evidence consists of the exchange of messages between the nodes of
the join tree. Shenoy-Shafer propagation [26] and lazy propagation [19, 20] are compati-
ble with the factorization we propose (cf. Eq. 13)). However, the algorithms that divide
the messages exchanged between nodes, such as Lauritzen-Spiegelhalter propagation
[15], HUGIN propagation [14] or cautious propagation [13], are incompatible with our
factorization, because these algorithms rely on the fact that, in the case of non-negative
potentials, a certain value of a message is 0 only when all the corresponding values in
the potential of the cluster that sends the message are 0; however this property does
not hold for potentials including both positive and negative values.

This is not a drawback of our algorithm since, contrary to the common belief, Shenoy-
Shafer propagation with binary join trees is more efficient than the HUGIN algorithm
in general [16, 25], and so is lazy propagation [19, 20]. Also, variable elimination is
generally more efficient than HUGIN propagation in many practical situations [31].

3 RELATED WORK

As mentioned above, the complexity of computing the probability for a family having a child
Y that takes on nY values, and N parents {X1, . . . , Xn} that take on nX values each, is
O(nY · nX

N ). The first algorithm that took advantage of canonical models to simplify the
computation of probability in Bayesian networks was Pearl’s method for the noisy OR [22,
sec. 4.3.2], whose complexity was O(N). Dı́ez [4] proposed a similar algorithm for the noisy
MAX, whose complexity was O(nY ·nX ·N); however, for networks with loops this algorithm
needs to be integrated with local conditioning [5], a method that in general is not as efficient
as clustering methods based on near-optimal triangulations.

Parent divorcing [21] and sequential decomposition [11] are two algorithms that transform
the original network by introducing N−2 auxiliary nodes, so that Y and each of the auxiliary
nodes has exactly two parents;4 the complexity of the computation in the transformed network
is O(nY · nX

3 ·N) for a noisy MAX in a polytree. The main shortcoming of these methods
4It is not difficult to prove that the number of auxiliary nodes is always N−2 for this kind of transformations:

if there were no auxiliary nodes, Y could have only two parents. The addition of each auxiliary node allows Y
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is the difficulty of choosing an efficient structure of auxiliary nodes when the noisy MAX
family makes part of a network with loops—see the analysis in [18]. Other representations
of the noisy MAX conditional probability, such as the additive factorization [2] and the
heterogeneous factorization [30, 32, 33], usually increase the efficiency of variable elimination
algorithms, but they are still inefficient for some large networks.

In 1999 Takikawa and D’Ambrosio [28] proposed a multiplicative factorization for the noisy
MAX. Its integration with SPI [24] —which is in essence a variable elimination algorithm—
leads to a complexity of O(max(2nY , nY · nX · N)) for the polytree. Given that in practical
situations nY is usually small and nX may be large, this algorithm is in general more effi-
cient than previous methods. This multiplicative factorization can also be integrated with
clustering algorithms by introducing nY − 1 nodes representing binary variables [18]—see
below.

The algorithm we propose in this paper is also based on a multiplicative factorization,
given by Equation 13, which summarizes Equations 9 and 10.5 The main difference is that
for each MAX family Fam(Y ), the factorization used by Takikawa, D’Ambrosio and Madsen
introduces nY − 1 auxiliary variables {Y ′

0 , . . . , Y
′
n

Y
−2}, all of which are parents of Y and

children of Pa(Y ), and for this reason, the complexity of their algorithm grows exponentially
with nY . In contrast, our algorithm only introduces one auxiliary node Y ′, which leads to
a complexity O(nY

2). This difference becomes especially significant when nY is large, for
instance when a noisy MIN/MAX is used to represent a temporal noisy OR/AND; in this
model, the temporal variables have as many values as time intervals considered [8, 9].

A second difference is that our algorithm does not require to marry the parents of each fam-
ily. For instance, given an isolated noisy MAX having a child Y and N parents {X1, . . . , XN},
the method by Madsen and D’Ambrosio would produce two cliques: {X1 . . . XNY ′

0 . . . Y ′
nY −2}

and {Y ′
0 . . . Y ′

nY −2Y }. The state size of the first clique grows exponentially with N , but
the application of lazy propagation keeps the complexity proportional to N by conserving
a list of potentials —the factorized conditional probability— rather than expanding the po-
tential of the clique. The complexity O(2nY ) is due to the conditional probability table
P (y|y′0, . . . , y′nY −2) associated with the second clique. In contrast, our algorithm would pro-
duce a chain of N cliques of the form {Xi, Y

′} plus one clique {Y ′, Y }; this clique is responsible
for the O(nY

2) complexity.
Analogously, given the graph in Figure 4 with a noisy MAX at Y , the algorithm by Madsen

and D’Ambrosio would produce three cliques: {UX1 . . . XN}, {X1 . . . XNY ′
0 . . . Y ′

nY −2} and
{Y ′

0 . . . Y ′
nY −2Y }. In contrast, our algorithm can triangulate the auxiliary graph by adding a

link U–Y ′, which leads to a chain of N cliques of the form {UXiY
′} plus one clique {Y ′Y }.

As a third example, given the graph in Figure 5 with two noisy MAX’s at Y and Z, the
algorithm by Madsen and D’Ambrosio would produce four cliques: {X1 . . . XNY ′

0 . . . Y ′
nY −2},

{X1 . . . XNZ ′0 . . . Z ′nZ−2}, {Y ′
0 . . . Y ′

nY −2Y }, and {Z ′0 . . . Z ′nZ−2Z}. Our algorithm can triangu-
late the associated graph by adding a link Y ′–Z ′, thus producing a chain of N cliques of the
form {XiY

′Z ′} plus two cliques {Y ′Y } and {Z ′Z}. This triangulation of the network is also
possible even if the models at Y and Z are different, provided that their conditional probabili-
ties admit multiplicative factorizations; for instance, there may be a noisy OR/MAX at Y and
a noisy AND/MIN at Z—see [29] for the multiplicative factorization of other CPT’s. However
if the CPT for Z, P (z|x) is not factored, there must be a clique containing the whole family

to have one more parent in the noisy MAX to be represented; therefore, N − 2 auxiliary nodes are necessary
to represent a noisy MAX having N parents.

5These two equations, which are a particular case of Equations (39) and (38) in [4], were also used by
Pradham et al. [23] to compute the CPT’s in their medical expert system; as a consequence, the use of noisy
MAX gates simplified the acquisition of knowledge for their network, but had no benefit for the propagation
of evidence. In contrast, the application of the more general equations led to computational savings in Dı́ez’s
algorithm [4] when applied to the DIAVAL expert system [7].
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Figure 4: An example Bayesian network in which the noisy MAX at Y makes part of several
loops.

Fam(Z), and in this case the factorization of P (y|x) is useless, or even counterproductive.

µ´
¶³
X1 · · · µ´

¶³
XN

µ´
¶³
Y µ´

¶³
Z

A
A
AU

Q
Q

Q
Q

QQs

¢
¢

¢®

´
´

´
´

´́+

Figure 5: Another Bayesian network. We assume there is a noisy MAX at Y . In the text we
discuss the cases in which the family of Z is modelled by a noisy MAX, a noisy AND/MIN
and a general CPT.

3.1 Experimental comparisons

We have performed some experiments in order to measure the efficiency of our algorithm on
random networks. In the first experiment, we selected 25 binary variables and drew links
by randomly selecting 25 pairs of nodes. For a pair (Xi, Xj), the link was drawn from Xi

to Xj if i < j, and vice versa; this way we made sure that the network was acyclic. We
assigned a noisy MAX distribution to each family (in fact, it was a noisy OR, since all the
variables were binary) and propagated evidence in a Shafer-Shenoy architecture, first with
expanded CPT’s and then with factorized conditional probabilities. Of course, the join tree
was generally different in both cases. We repeated the experiment for a total of 50 random
networks and then increased the number of links to 30, 35, . . . , 80, randomly generating 50
networks in each case. Figure 6 represents the average time spent as a function of the number
of links.

We performed a similar experiment with 10 five-valued variables. The number of links
ranged from 10 to 24. All the families interacted through noisy MAX’s. Again we generated
50 random networks for each number of links. The results are displayed in Figure 7. The
comparison of these two figures confirms that the computational savings increase with the
domain size of the variables.

Additionally, according with a comparison carried out by Dr. Takikawa (private commu-
nication), the most difficult marginal query for CPCS, a medical Bayesian network, required
639,637 multiplications and a total of 0.29 seconds with the factorization by Takikawa and
D’Ambrosio, while it only required 62,796 multiplications and 0.05 with our factorization.
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Figure 6: Average time (in seconds) spent for a set of 50 random networks, each consisting
of 25 binary variables, as a function of the number of links. The propagation is performed
on a Shafer-Shenoy architecture with expanded CPTs (¦) and with factorized noisy-MAX
distributions (◦).

There was also a significant reduction in memory space: the size of the largest intermediate
table, which is analogous to the size of the largest clique, was reduced from 49,152 to 2,304
floating point numbers. It must be noted that previous methods, such as the additive factor-
ization [2] and the heterogeneous factorization [30, 32, 33, 34] ran out of memory when trying
to solve this and other queries for the CPCS network.

In the future, we will implement the lazy propagation algorithm and compare three meth-
ods: (1) our factorization combined with Shafer-Shenoy propagation on binary join trees, (2)
our factorization combined with lazy propagation, and (3) the factorization of Takikawa and
D’Ambrosio combined with lazy propagation, as done in [18]. We expect that the second
method will be the most efficient on average. It would also be possible to compare variable
elimination with clustering algorithms, but in this case the result will depend on the task to
be performed: as mentioned in Section 1.1, variable elimination is more efficient when answer-
ing single queries, while clustering algorithms are more efficient for computing the posterior
probability of each variable [31].

4 A REFINEMENT OF THE ALGORITHM

In the previous section we showed that in the case of a polytree having a noisy MAX at node
Y , the time complexity for the cluster {Y ′Y } is nY

2, and the complexity for each cluster
{XiY } is nX ·nY —assuming that all the Xi’s have the same number of values, nX . Therefore
the time complexity of the above version of our algorithm is O(max(nY

2 , nY ·nX ·N)), which
is lower than that of previous factorizations, but still higher than that of Dı́ez’s [4] algorithm,
O(nY · nX ·N). For this reason, we tried to further reduce the complexity of our algorithm
from quadratic to linear in nY in order to obtain a new version that is optimal for polytrees
and, at the same time, can be combined with variable elimination (with efficient elimination
orderings) and clustering (with efficient triangulations).

We can accomplish this goal by taking profit of the particular form of ∆Y (y, y′), given
by Equation 12. The integration of our triangulation with variable elimination (cf. Sec. 2.1)
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Figure 7: Average time (in seconds) spent for a set of 50 random networks, each consisting of
10 five-valued variables, as a function of the number of links. The propagation is performed
on a Shafer-Shenoy architecture with expanded CPTs (¦) and with factorized noisy-MAX
distributions (◦).

requires to sum out Y and Y ′ for each noisy MAX family Fam(Y ). If Y is to be eliminated
before Y ′, the computation can be performed more efficiently by multiplying together all the
potentials that depend on y (except ∆Y (y, y′)) into a potential Ψ(y,v) —where V represents
a set of other variables— and then eliminating Y by the following equation:

∑
y

∆Y (y, y′) ·Ψ(y,v) =
{

Ψ(y′,v) for y′ = ymax

Ψ(y′,v)−Ψ(y′ + 1,v) for y′ < ymax
. (15)

Analogously, if we decide to eliminate Y ′ before than Y , all the potentials that depend on y′

(except ∆Y (y, y′)) must be multiplied into a potential Ψ′(y′,v′) and the equation to be used
is ∑

y′
∆Y (y, y′) ·Ψ′(y′,v′) =

{
Ψ′(y,v′) for y = 0
Ψ′(y,v′)−Ψ′(y − 1,v′) for y > 0

. (16)

The time-complexity induced by the left-hand sides of these equations is O(nY
2), while

that induced by the right-hand sides is O(nY ). Therefore, the complexity of the algorithm
may be improved if, instead of including matrix ∆Y in the list of potentials, the algorithm
uses special rules for the elimination of Y and Y ′.

As an example, let us apply this method to Equation 14, in which G is eliminated before
G′. In this case, there is only one potential that depends on g, namely P (hk|g), and it does
not depend on any other variable. Therefore Ψ(g,v) = Ψ(g) = P (hk|g), and because of
Equation 15,

∑
g

∆G(g, g′) · P (hk|g) =
{

P (hk|g′) for g′ = nG − 1
P (hk|g′)− P (hk|g′ + 1) for g′ < nG − 1

. (17)

This refinement of the algorithm can be also applied to clustering algorithms, since the
propagation of messages between clusters essentially consists in multiplying potentials and
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eliminating variables. For instance, given the junction tree in Figure 3, the message sent from
clique {G′G} to clique {ADG′} is

M{G′G}→{ADG′}(g′) =
∑

g

∆G(g, g′) ·M{GH}→{G′G}(g) , (18)

but instead of having a potential ∆G, we can eliminate g in a special way, by applying
Equation 15:

M{G′G}→{ADG′}(g′) =
{

M{GH}→{G′G}(g′) for g = gmax

M{GH}→{G′G}(g)−M{GH}→{G′G}(g + 1) for g < gmax
(19)

In the same way, the message from {G′G} to {GH},

M{G′G}→{GH}(g) =
∑

g′
∆G(g, g′) ·M{ADG′}→{G′G}(g′) , (20)

which sums out G′, can be computed by applying Equation 16:

M{G′G}→{GH}(g) =
{

M{ADG′}→{G′G}(g) for g = 0
M{ADG′}→{G′G}(g)−M{ADG′}→{G′G}(g) for g > 0

(21)

5 CONCLUSION

In Section 2 we have proposed a new algorithm for the noisy MAX based on a factorization
of its CPT, given by Equation 13. This factorization can be easily integrated with variable
elimination and clustering algorithms. In this case, instead of building a moral graph, the
construction of the join tree is based on an auxiliary graph in which the parents of a noisy
MAX are not necessarily married. The time complexity for a polytree having a noisy MAX
at node Y is O(max(nY

2 , nY · nX · N)), where nX is the domain size of each parent of Y ,
and N is the number of parents. The time complexity of the most efficient factorization
obtained previously —by Takikawa and D’Ambrosio [28]— was O(max(2nY , nY · nX · N)).
Additionally, we believe that our algorithm is easier to understand, because it is not based
on local expressions [2].

It is also possible to refine our algorithm in order to achieve the same time-complexity as
Dı́ez’s [4] algorithm, namely O(nY · nX ·N), as explained in Section 4. This refined version
performs optimally for polytrees and, at the same time, can be integrated with variable
elimination (with efficient elimination orderings) and with clustering methods (with efficient
triangulations). The negative side of the refined version is that its implementation is more
complex, because it requires a special treatment of some variables. Does this effort pay off?
It depends on the number of noisy MAX gates to be dealt with, and for each MAX family
Fam(Y ), the domain size of Y and the size of the cluster that contains the potential ∆Y (y, y′).

The method proposed in this paper can be applied not only to the OR, AND, MAX and
MIN models, but to any noisy model built as shown in [6], since Vomlel [29] has proved
recently that every deterministic CPT, i.e., a CPT consisting of only 0’s and 1’s, admits a
multiplicative factorization. However, it must be pointed out that the factorization of the
noisy MAX/MIN is virtually always advantageous for the computation of probability, while
in other cases it is more efficient to work with a deteministic CPT than with its factorization.
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