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Abstract

The usual methods of applying Bayesian networks to the modeling of temporal

processes, such as Dean and Kanazawa’s dynamic Bayesian networks (DBNs), consist

in discretizing time and creating an instance of each random variable for each point in

time. We present a new approach called network of probabilistic events in discrete time

(NPEDT), for temporal reasoning with uncertainty in domains involving probabilistic

events. Under this approach, time is discretized and each value of a variable represents

the instant at which a certain event may occur. This is the main difference with respect to

DBNs, in which the value of a variable Vi represents the state of a real-world property at

time ti. Therefore, our method is more appropriate for temporal fault diagnosis, because

only one variable is necessary for representing the occurrence of a fault and, as a

consequence, the networks involved are much simpler than those obtained by using

DBNs. In contrast, DBNs are more appropriate for monitoring tasks, since they ex-

plicitly represent the state of the system at each moment. We also introduce in this paper

several types of temporal noisy gates, which facilitate the acquisition and representation

of uncertain temporal knowledge. They constitute a generalization of traditional ca-

nonical models of multicausal interactions, such as the noisy OR-gate, which have been

usually applied to static domains. We illustrate the approach with the example domain

of modeling the evolution of traffic jams produced on the outskirts of a city, after the

occurrence of an event that obliges traffic to stop indefinitely.
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1. Introduction

1.1. Bayesian networks

Bayesian networks (BNs) [7,20] are a probability-based method for repre-
senting and reasoning with uncertain knowledge. Each node in a BN is associ-
ated with a random variable. In our work all the variables are discrete. Links
define probabilistic dependence relations between variables. Formally, a BN is
an acyclic directed graph along with a probability distribution for its variables,
which satisfies the Markov condition: the probability of any variable V, once
determined the values of its parents, is independent of the non-descendants ofV.
The joint probability over the random variables in the network can be expressed as

P ðx1; . . . ; xnÞ ¼
Y
i

P ðxijpaðxiÞÞ; ð1Þ

where paðxiÞ stands for a configuration of the set of parents of variable Xi. That
is to say, the joint probability factorizes in accordance with the network
structure, as a consequence of the independence relations codified in it. This
result is the basis of the algorithms developed for computing posterior prob-
abilities in BNs.

The first step in designing a BN is the definition of its graph. Then, the
conditional probability of each node, given the values of its parents, must be
assessed. For every root node, only its a priori probability is needed. Inference
consists in both fixing the values of the observed variables and calculating the
probability of the unobserved ones.

1.2. BNs and time

BNs have been usually applied without considering an explicit representa-
tion of time. However, important efforts have also been made to model tem-
poral processes by means of BNs. These efforts can be classified into three
groups: instant-based formalisms, interval-based formalisms, and formalisms
based on a representation of time as a continuous variable.

1.2.1. Instant-based formalisms
A way to apply BNs to dynamic domains consists in both discretizing time

and creating an instance of each random variable for each point in time. Under
the formalism of dynamic Bayesian networks (DBNs) [11,12,18,19], initially a
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static causal model is built. Then, a copy of this model is generated for each
instant belonging to a certain temporal range of interest. Finally, links between
nodes in adjacent static networks are established. In this way, a DBN obeys the
Markov property: the future is conditionally independent of the past given the
present. Moreover, the network can perform diagnosis and prediction by
means of a standard propagation of evidence. However, if there are long ob-
servation sequences, inference becomes impractical in complex DBNs [6].

Among research activities applying DBNs, as defined above, are a model for
making judgements concerning persistence of propositions by Dean and
Kanazawa [12], a model for sensor validation by Nicholson and Brady [19], a
method for reasoning with DBNs by Kjærulff [18], a system for forecasting
sleep apnea by Dagum and Galper [10], a qualitative model-based advisory
system for therapy planning in gestational diabetes by Hernando et al. [16], etc.

1.2.2. Interval-based formalisms
Arroyo-Figueroa and Sucar [3,4] propose a model called temporal nodes

Bayesian networks (TNBNs). A TNBN is an extension of a standard BN, in
which each temporal node represents an event or a state change of a variable.
There is at most one state change for each variable in the temporal range of
interest. The value taken on by the variable represents the interval in which the
change has occurred. Time is discretized in a finite number of intervals, al-
lowing a different number and duration of intervals for each node (multiple
granularity). Each interval for a child node represents possible delays between
the occurrence of one of its parent events and the corresponding child state
change. Therefore, relative times are used within each temporal node. There is
an asymmetry in the way evidence is introduced in the network: the occurrence
of an event associated to a node without parents constitutes direct evidence,
whereas in the case of a node with parents, several scenarios are possible. When
an initial event is detected, its time of occurrence fixes temporally the network.
A TNBN permits reasoning about the probability of occurrence of certain
events, for diagnosis or prediction, using standard probability propagation
techniques developed for BNs. However, this model lacks a formalization of
canonical models for temporal processes. Furthermore, each value defined for
an effect node, which is associated to a determined time interval, means that the
effect has been caused during that interval by only one of its parent events.
However, this is not the general case in some domains where evidence about
the occurrence of an event can be explained by several of its causes.

Santos and Young [21] develop a technique called probabilistic temporal
network (PTN) that permits the representation of time constrained causality.
BNs provide the probabilistic basis of this model, and management of time is
based on Allen’s interval system [1] and his 13 relations. PTNs model processes
and the interaction between them. The state of a process is represented by a
value at a given time interval. A process can be defined over any number of
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such intervals. The nodes of the PTN are called temporal aggregates. A tem-
poral aggregate consists of a set of states that its associated process can take
on, and a set of temporal intervals. Each interval has an associated random
variable giving the state of the process over that interval. Different random
variables belonging to the same temporal aggregate may be assigned the same
value. The edges are the causal temporal relations between aggregates. Edges in
the network consist of a disjunctive set of interval relations (¼ , >, <, etc.) and
a schema (OR, XOR, or PASSTHROUGH) to map the random variables of
the intervals to a single value. This allows the exact definition of those intervals
during which the state of one process affects another. The main task is to find
the most probable state of the world given some evidence. The most probable
explanation is the complete assignment with the greatest joint probability,
which is computed by applying the chain rule.

1.2.3. Formalisms based on a representation of time as a continuous variable
Berzuini [5] associates a probability density with each temporal random

variable to represent continuous time. When these random variables stand for
instantaneous events, they are called dates. Attached to each arc, there are
conditional distributions specified as conditional intensities, which express how
the intensity of the caused event varies as a function of the time elapsed from
the occurrence of the causing event. The intensity of an event at time t indicates
its propensity to occur just after t, given that it did not occur previously. In the
presence of several causes, these causes contribute separate regression functions
that combine additively to produce the conditional intensity for the effect.
After a suitable discretization of continuous variables involved, exact tech-
niques can be applied for inference. Approximate stochastic techniques may
perform without requiring discretization.

Kanazawa [17] presents a formalism called continuous time net, which is
based on the network of dates proposed by Berzuini. Continuous time nets
define a model that uses continuous time and introduces a representation for
fluents and events. A fluent acts like a dynamic fact that holds over certain time
intervals. Conditional influences are represented with simple parametric
functions. It is possible to use a wide class of parametric distributions to model
event and fact densities.

Table 1 shows a classification of the different BNs for temporal reasoning
presented above, according to two parameters: temporal primitive used and
permitted number of occurrences for each event.

The rest of this paper is organized as follows. Section 2 deals with canonical
models of multicausal interactions. Section 3 details the characteristics of a
network of probabilistic events in discrete time. Section 4 illustrates the appli-
cation of the new approach to the management of irreversible processes and
compares the result with that obtained by applying DBNs. Section 5 describes
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an example of application of the approach to a real-world domain. Finally,
some concluding remarks are made.

2. Canonical models

In the general case, it is necessary to assign each node in a BN a set of
conditional probabilities that grows exponentially with the number of its
parents. This complicates the acquisition of the parameters, their storage, and
the propagation of evidence. For these reasons, causal interaction models –
called canonical models [20] – were developed in order to simplify both BN
construction and probability computation. The most famous example is the
noisy OR-gate, which requires just one independent parameter per parent.

2.1. Noisy OR-gate

In the noisy OR model [20], each cause Xi (a binary random variable) acts
independently of the other causes to produce the effect Y (also a binary random
variable). For each Xi, an inhibitory mechanism could prevent this action from
taking place, i.e., each present cause may fail to produce the effect with a
certain probability. A noisy OR-gate can be decomposed as shown in Fig. 1.
Each auxiliary variable Zi represents the fact that Y has been produced by Xi.
Therefore, Y ¼ þy when Zi ¼ þzi for at least one i.

The parameters that define the model are:

ci � Pðþzij þ xiÞ: ð2Þ

Put another way, 1� ci ¼ P ð:zij þ xiÞ is the probability that inhibitor Ii pre-
vents Xi from causing Y. (In a more detailed model, Ii might be represented as a
second parent of Zi.) If Xi is absent, it cannot produce Y; therefore,

P ðþzij:xiÞ ¼ 0: ð3Þ

Table 1

Classification of temporal BNs

Instants Intervals Continuous time

Irreversible processes TNBN (Arroyo,

Sucar)

Network of dates

(Berzuini)

Continuous time

net (Kanazawa)

General processes DBN (Dean,

Kanazawa)

PTN (Santos,

Young)
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For a certain configuration of Xi’s:

P ðþyj�xxÞ ¼ 1�
Y
i2TX

ð1� ciÞ; ð4Þ

where TX is the subset of causes of Y that are present.
In the noisy AND model [20], each parent Xi (a binary random variable) is

interpreted as a condition for the effect Y (also a binary random variable). We
will only consider the noisy AND without substitutors [14].

2.2. Noisy MAX-gate

The noisy MAX-gate [13–15] is a generalization for graded variables of the
noisy OR-gate. A graded variable E can be either absent or present with gE
degrees of intensity. Usually E ¼ 0 means ‘‘E is absent’’ and succeeding inte-
gers indicate higher degrees of intensity. This type of causal interaction can be
constructed by introducing n auxiliary variables Zi with the same domain as Y
(see Fig. 1). The parameters of the model are the conditional probabilities:

cxiy � P ðZi ¼ yjXi ¼ xiÞ: ð5Þ

The value taken on by Y is the maximum of the zi’s. Therefore, the conditional
probability table (CPT) for Y is given by:

P ðyj�xxÞ ¼
X

�zz j max�zz¼y

Y
i

cxizi : ð6Þ

Fig. 2 illustrates Eq. (6) for a family with two causes, A and B, and one effect, C.
The noisy MIN-gate [13,14] is a generalization for graded variables of the

noisy AND. In the noisy MIN model, the value taken on by Y is the minimum
of the zi’s.

2.3. Leaky noisy gates

In real-world applications, it is often unfeasible to enumerate all the possible
causes of an effect. In such a case, the non-explicit causes can be implicitly

Fig. 1. Noisy OR-gate for n causes.
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represented in the OR/MAX-gate by a vector of parameters c
y , which is
the probability that Y ¼ y when the causes explicit in the model are known
to be absent. If Y is a binary random variable, it suffices to have one para-
meter c
þy .

In conjunctive interaction, the non-explicit conditions can be represented
by a leaky vector of parameters h
y , giving rise to the leaky noisy AND/MIN-
gates.

3. Description of the new approach

In a network of probabilistic events in discrete time (NPEDT), each variable
represents an event. We consider that each event can happen at most once.
Reversible processes are represented by multiple events, one event for each
change of state; for instance, the process of turning a light on and off twice
consists of four events. Time is discretized by adopting the appropriate tem-
poral unit for each case (seconds, minutes, etc.); therefore, the temporal
granularity depends on the particular problem. The value taken on by the
variable indicates the time at which the event occurs.

Formally speaking, a temporal random variable V in the network can take
on a set of values v½i� with i 2 fa; . . . ; b; neverg, where a and b are instants
defining the limits of the temporal range of interest for V. For example, if V
represents ‘‘being taken to hospital,’’ V ¼ v½a� means that the patient has been
taken to hospital at instant a. If the patient is not taken to hospital, then
V ¼ v½never�. The links in the network represent temporal causal mechanisms
between neighboring nodes. Therefore, each CPT represents the most probable
delays between parent events and the corresponding child event. For the case
of general dynamic interaction in a family of nodes, giving the CPT involves
assessing the probability of occurrence of the child node over time, given any
temporal configuration of the parent events. In a family of n parents X1; . . . ;Xn

and one child Y, the CPT is given by

Fig. 2. Noisy MAX-gate for two causes and one effect.
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P ðy½tY �jx1½t1�; . . . ; xn½tn�Þ ð7Þ
with

tY 2 f0; . . . ; nY ; neverg; ti 2 f0; . . . ; ni; neverg:
The joint probability is given by the product of all the CPTs in the network.
Any marginal or conditional probability can be derived from the joint prob-
ability. For example, if B has happened at t1 and C at t2, the a posteriori
probability for A is

P ða½t�jb½t1�; c½t2�Þ ¼
P ða½t�; b½t1�; c½t2�Þ
P ðb½t1�; c½t2�Þ

: ð8Þ

This expression can be used for diagnosis or prediction.
In many domains, the dynamic causal relations have the property of time

invariance:

P ðy½tY þ Dt�jx1½t1 þ Dt�; . . . ; xn½tn þ Dt�Þ ¼ Pðy½tY �jx1½t1�; . . . ; xn½tn�Þ: ð9Þ
If all the CPTs are time-invariant, the network will be time-invariant.

3.1. Temporal nodes without parents

Let A be an event node that may occur at one of instants 0; 1; 2; . . .. The
probability distribution P ða½t�Þ might be given explicitly. An alternative way of
determining this distribution is by defining P ðay½t�Þ as the probability of A being
true at t given that it was false at 0; 1; . . . ; and t � 1, i.e., the probability that A
happens at time t if it has not happened before t. These values can be obtained
from a database or estimated by a human expert. As an illustrative example, A
could represent the ‘‘death caused by an epidemic disease’’, and P ðay½t�Þ would
be the percentage of population dying weekly as a consequence of the disease.
(Time could be discretized in weeks.) The probability for temporal node A can
be computed by multiplying Pðay½t�Þ by the probability that A has not hap-
pened before t:

P ða½t�Þ ¼ P ðay½t�Þ � 1

 
�
Xt�1

t0¼0

P ða½t0�Þ
!

8t > 0: ð10Þ

In the area of survival analysis (cf. [9,22]), P ðay½t�Þ is called hazard function and
the second factor in Eq. (10) is the survivor function for event A. Eq. (10) is
useful when Pðay½t�Þ is a constant and does not depend on t. If P ðay½t�Þ ¼ k, Eq.
(10) leads to:

P ða½t�Þ ¼ ð1� kÞ � P ða½t � 1�Þ 8t > 0: ð11Þ
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Proof

P ða½t�Þ ¼ k � 1

 
�

Xt�2

t0¼0

Pða½t0�Þ
" #

� P ða½t � 1�Þ
!

¼ P ða½t � 1�Þ � k � P ða½t � 1�Þ ¼ ð1� kÞ � P ða½t � 1�Þ: �

From Eq. (11),

P ða½t�Þ ¼ ð1� kÞt � k: ð12Þ
Therefore, P ða½t�Þ is a probability distribution with exponential decay. Since

ð1� kÞt ¼ 1� kt � 1

2
k2t2 þ � � � ; ð13Þ

when kt � 1 for the temporal range of interest, ð1� kÞt � 1; therefore,
P ða½t�Þ � k. We then have time invariance for node A.

3.2. Node with one parent

Let us consider the network in Fig. 3. The temporal ranges of interest for
events A and B are f0; . . . ; tAg and f0; . . . ; tBg, respectively.

P ðb½j�ja½i�Þ is the probability that B happens at j when A has happened at i.
The CPT for link A ! B can be as general as possible, permitting any delay
between A and B, with probabilities varying over time for each particular delay
(see Table 2). When j < i, P ðb½j�ja½i�Þ ¼ 0 because the effect cannot precede the
cause. When i ¼ never, Pðb½j�ja½i�Þ ¼ 0 as well.

Fig. 3. Temporal network with one parent and one child.

Table 2

A general CPT for tA ¼ 2 and tB ¼ 3

B A

a½0� a½1� a½2� a½never�

b½0� 0.5 0 0 0

b½1� 0.1 0.3 0 0

b½2� 0.1 0.05 0.2 0

b½3� 0.1 0.02 0.2 0

b½never� 0.2 0.63 0.6 1
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If we had a time-invariant causal relation for arc A ! B, then

P ðb½jþ Dt�ja½iþ Dt�Þ ¼ P ðb½j�ja½i�Þ ð14Þ
with

j; jþ Dt 2 f0; . . . ; tBg and i; iþ Dt 2 f0; . . . ; tAg:
Under this assumption, we only need to specify a probability for each delay.
Two special cases of time invariance are worth being taken into account:
• Delays limited in time: In this case, there is a finite number of possible delays

between the occurrences of the parent event and the child event. For exam-
ple, once we know that A has taken place, the probability of B at that instant
could be 0.5, and 0.1 one instant later:

P ðb½j�ja½i�Þ ¼
0:5 if j ¼ i;
0:1 if j ¼ iþ 1;
0 otherwise:

8<
: ð15Þ

The conditional probabilities for arc A ! B appear in Table 3. This table shows
that the possible delays between cause and effect are 0 and 1, with associated
probabilities 0.5 and 0.1, respectively. These probabilities can be estimated by a
human expert or obtained from a database by taking into account the delay
between A and B.
• Exponential decay: In the same way that the prior probabilities of a root

node A can be given directly or through the parameters P ðay½t�Þ, we can also
give P ðb½t�ja½i�Þ directly, as we have done so far, or by defining the para-
meters P ðby½t� j a½i�Þ. P ðby½t�ja½i�Þ represents the probability that B happens at
instant t given that it has not happened before t, and that A has taken place
at i. Since A is the only cause of B,

P ðb½t�ja½i�Þ ¼
Pðby½t�ja½i�Þ � 1�

Pt�1
t0¼i Pðb½t0�ja½i�Þ

� �
t > i;

Pðby½t�ja½i�Þ t ¼ i;
0 t < i:

8><
>: ð16Þ

Table 3

Time-invariant CPT with two delays for tA ¼ 2 and tB ¼ 3

B A

a½0� a½1� a½2� a½never�

b½0� 0.5 0 0 0

b½1� 0.1 0.5 0 0

b½2� 0 0.1 0.5 0

b½3� 0 0 0.1 0

b½never� 0.4 0.4 0.4 1
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Eq. (16) is mathematically equivalent to Eq. (10). If 8tP i P ðby½t�ja½i�Þ ¼ k,
then we have exponential decay for the probability distribution of B, given A at
instant i:

P ðb½t�ja½i�Þ ¼ k � ð1� kÞt�i tP i;
0 t < i:

�
ð17Þ

3.3. Canonical models and time

If we consider a family of nodes with n parents and divide our tempo-
ral range of interest into i instants, in the general case iðiþ 1Þn independent
conditional probabilities have to be assessed to complete the CPT associated
to the child node. If we assume time invariance, this number changes into
iðiþ 1Þn � ði� 1Þnþ1

independent parameters. In real-world applications, it is
difficult to find a human expert or a database that allows us to create such
tables, due to the exponential growth of the set of required parameters with the
number of parents. For this reason, a formalization for temporal domains of
traditional canonical models turns out to be convenient. In these models, the
set of required independent conditional probabilities for a family of nodes
is linear with the number of parents.

3.3.1. Temporal noisy OR-gate
We are dealing with domains that can be modeled by associating random

variables to events. In the static case, the noisy OR-gate appropriately repro-
duces the kind of interactions in which both the presence of one cause is suf-
ficient to produce the effect and this causal mechanism is independent of the
rest of the causes. For temporal processes, additional questions should be
taken into account, as shown below.

Let us consider a network with n causes X1; . . . ;Xn and one effect Y. The
temporal ranges for these nodes are, respectively, f0; . . . ; tX1

g; . . . ; f0; . . . ; tXng,
and f0; . . . ; tY g. Each parameter ci that appeared in the static case (see Section
2.1), now separates into parameters

cxi½ji �y½k� � P ðZi ¼ y½k�jXi ¼ xi½ji�Þ ð18Þ

with

ji 2 f0; . . . ; tXi ; neverg; k 2 f0; . . . ; tY ; neverg
allowing different delays between cause and effect. The type of relation between
Xi and Zi was described in Section 3.2. We are interested in calculating the
probability of Y at any instant given evidence about its causes, as indicated in
Fig. 4, where n ¼ 2, X1 ¼ x1½i1�, and X2 ¼ x2½i2�. The general reasoning followed
in Fig. 4 establishes that if X1 causes Y to be true at t1, and X2 causes Y to be
true at t2, then Y becomes true at minðt1; t2Þ, since every event can happen only
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once. Therefore, the temporal noisy OR-gate represents the case in which the
effect is present as soon as any of its causes provokes it to be present and can be
represented by a non-temporal noisy MIN.

From Fig. 4, a noisy MAX-gate leads to a temporal noisy OR-gate by
associating increasing intensity degrees to decreasing temporal indices ðnever <
nY < � � � < 1 < 0Þ. Note that value ‘‘never’’ is analogous to value ‘‘absent’’ of a
graded variable. Therefore, a temporal noisy OR-gate can be modeled through
a noisy MAX-gate by ordering temporal values from future to past.

It is interesting to study the case where each relation between Xi and Zi is
characterized by an exponential decay probability for Zi, given Xi at a certain
instant:

P ðzi½t�jxi½ti�Þ ¼ ki � ð1� kiÞt�ti tP ti;
0 t < ti:

�
ð19Þ

Fig. 5, where we suppose that i1 < i2, is the result of transforming Fig. 4 for this
particular case.

Fig. 4. Temporal noisy OR-gate for two causes.

Fig. 5. Temporal noisy OR-gate for two causes and conditional probabilities with exponential

decay.
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From Fig. 5,

P ðy½t�jx1½i1�; x2½i2�Þ ¼
0 06 t < i1;
k1 � ð1� k1Þt�i1 i1 6 t < i2;
kOR � ð1� k1Þt�i1ð1� k2Þt�i2 i2 6 t < 1

8<
: ð20Þ

with

kOR ¼ 1� ð1� k1Þ � ð1� k2Þ:

Proof. For 06 t < i1, Y cannot be produced either by X1 or by X2. Therefore,
P ðy½t�jx1½i1�; x2½i2�Þ ¼ 0.

For i1 6 t < i2, Y can only be caused by X1. This corresponds to the case
presented in Section 3.2. Anyhow, from Fig. 5 we have

P ðy½t�jx1½i1�; x2½i2�Þ ¼ k1ð1� k1Þt�i1
X1
t0¼0

k2ð1� k2Þt
0

¼ k1ð1� k1Þt�i1k2
1

1� ð1� k2Þ
¼ k1ð1� k1Þt�i1 :

For i2 6 t < 1, there are two possible causes for Y : X1 and X2. From Fig. 5,

P ðy½t�jx1½i1�; x2½i2�Þ ¼ k1ð1� k1Þt�i1k2ð1� k2Þt�i2 þ k1ð1� k1Þt�i1

�
X1

t0¼t�i2þ1

k2ð1� k2Þt
0
þ k2ð1� k2Þt�i2

�
X1

t0¼t�i1þ1

k1ð1� k1Þt
0

¼ k1ð1� k1Þt�i1k2ð1� k2Þt�i2

þ k1ð1� k1Þt�i1 1

 
�
Xt�i2

t0¼0

k2ð1� k2Þt
0

!

þ k2ð1� k2Þt�i2 1

 
�
Xt�i1

t0¼0

k1ð1� k1Þt
0

!

¼ k1ð1� k1Þt�i1k2ð1� k2Þt�i2 þ k1ð1� k1Þt�i1ð1� k2Þt�i2þ1

þ k2ð1� k2Þt�i2ð1� k1Þt�i1þ1

¼ kORð1� k1Þt�i1ð1� k2Þt�i2 : �

Note that for i1 > i2, Eq. (20) remains valid provided that we interchange in
it subscripts ‘‘1’’ and ‘‘2’’. When i1 ¼ i2 ¼ i, Pðy½t�jx1½i�; x2½i�Þ ¼ kOR � f1� ½1 �
ð1� k1Þð1� k2Þ�gt�i

, which is like having only one cause with a decay constant
kOR ¼ 1� ð1� k1Þð1� k2Þ.
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3.3.2. Temporal noisy AND-gate
The temporal noisy AND-gate represents the case in which the effect is

present as soon as all its conditions have permitted it to be present. Under this
type of interaction, if X1 permits Y to be true at t1, and X2 at t2, we consider that
Y becomes true at maxðt1; t2Þ. Therefore, the temporal noisy AND-gate can be
represented by a non-temporal noisy MAX.

A noisy MIN-gate leads to a temporal noisy AND-gate by associating in-
creasing intensity degrees to decreasing temporal indices. Consequently, a
temporal noisy AND-gate can be modeled though a noisy MIN-gate by or-
dering the temporal values from future to past.

In canonical model applications, disjunctive interactions (OR gate) appear
much more often than conjunctive ones. That is because we are mainly inter-
ested in modeling the evolution of failures, anomalies, or malfunctions in a
system, either in the past (diagnosis) or in the future (prediction). In this kind
of domains, disjunctive interaction is directly related to our intuitive notion of
causality. (For an anomaly to appear, only one of its causes is needed.) Con-
versely, in other domains we are interested in the evolution of a system from a
state of malfunction to another of normality. In this case, event nodes repre-
sent processes of recovery that interact conjunctively. For example, after a car
accident resulting in multiple injuries to a person, we could model the process
of recovery as shown in Fig. 6. Each variable Xi represents the event ‘‘the
patient starts to be treated for injury i’’. Variable Y represents ‘‘complete re-
covery’’. All these variables interact through a temporal noisy AND-gate be-
cause each Xi is a condition for Y. Of course, if the Xi’s are not independent, the
model must contain links among them or common ancestors of these nodes.
The temporal range of interest is f0; . . . ;mg, where t ¼ 0 is the time the acci-
dent occurs and t ¼ m is an arbitrary time point. We introduce for each con-
dition Xi, one auxiliary variable Zi representing ‘‘recovery from injury i’’.

The parameters needed to complete the model are the conditional proba-
bilities:

hxi½ji �y½k� � P ðZi ¼ y½k�jXi ¼ xi½ji�Þ ð21Þ
with

ji; k 2 f0; . . . ;mg and i 2 f1; . . . ; ng

Fig. 6. Network for modeling the process of complete recovery from an accident.
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and the prior probabilities:

P ðxi½ji�Þ 8ji 2 f0; . . . ;mg; 8i 2 f1; . . . ; ng: ð22Þ

The conditional probabilities give us an idea of the most probable durations of
successful treatments, and the prior probabilities indicate the times treatments
usually start to be applied after the accident. (Some treatments can be applied
just after the accident occurrence, others can only be applied in a hospital, etc.)
The event ‘‘complete recovery’’ will be true as soon as recovery from the last
injury has taken place.

3.3.3. Temporal leaky noisy gates
Under the hypotheses introduced by D�ııez and Druzdzel for leaky models

[14], the non-explicit causes of a node Y can be grouped together and repre-
sented by a vector of parameters. If the temporal range for Y is f0; . . . ; tY g, we
only need to give the parameters

c
y½i� 8i 2 f0; . . . ; tY g: ð23Þ

Therefore, a temporal leaky noisy OR-gate can be modeled by means of a leaky
noisy MAX-gate. To that end, temporal indices must be ordered from future to
past.

The non-explicit conditions in a conjunctive model can be represented
through a vector of parameters

h
y½i� 8i 2 f0; . . . ; tY g: ð24Þ

A temporal leaky noisy AND-gate can be modeled through a leaky noisy MIN-
gate by ordering temporal indices from future to past.

4. Comparison with DBNs applied to irreversible processes

Consider the network shown in Fig. 7 where prior probabilities for root
nodes and conditional probabilities are given directly.

Fig. 7. Network with one parent and two children.
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In the NPEDT approach, the graph of the network does not change. Other
parts of the network are:
• Nodes: A, B, and C.
• Values for the nodes: A ¼ fa½0�; a½1�; a½2�; a½3�; a½never�g, B ¼ fb½0�; b½1�; b½2�;

b½3�; b½never�g, and C ¼ fc½1�; c½2�; c½3�; c½4�; c½never�g.
• A priori probabilities for root nodes: P ða½0�Þ ¼ 0:1, P ða½1�Þ ¼ 0:3, P ða½2�Þ ¼

0:3, P ða½3�Þ ¼ 0:1, and P ðneverÞ ¼ 0:2.
• The CPTs, constructed as delays, appear in Tables 4 and 5.

In DBNs, the way to deal with temporal information is different in com-
parison with our approach. Kanazawa’s proposal [17] for representing irre-
versible events by means of DBNs consists in associating a binary node to each
possible occurrence of the event at a point in time. Memory nodes (cf. [17,
Section 4.3.1]) prevent each event from taking place at two different points in
time. A memory node is true when its associated event is true or when that
event has already happened in the past (see Fig. 8). Fig. 8 shows the trans-
formation of the network in Fig. 7 into a DBN. This DBN is formed by:
• Nodes: A0, A1, A2, A3, B0, B1, B2, B3, C1, C2, C3, and C4. In addition, for every

event Ni there is one node MðNiÞ that is true provided that N has taken place
at instant i or earlier.

• Values for each node: {true, false}.

Table 4

CPT for arc A ! B

B A

a½0� a½1� a½2� a½3� a½never�

b½0� 0.1 0 0 0 0

b½1� 0 0.1 0 0 0

b½2� 0 0 0.1 0 0

b½3� 0 0 0 0.1 0

b½never� 0.9 0.9 0.9 0.9 1

Table 5

CPT for arc A ! C

C A

a½0� a½1� a½2� a½3� a½never�

c½1� 0.2 0 0 0 0

c½2� 0 0.2 0 0 0

c½3� 0 0 0.2 0 0

c½4� 0 0 0 0.2 0

c½never� 0.8 0.8 0.8 0.8 1
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• A priori probabilities for root nodes: P ðA0 ¼ trueÞ ¼ 0:1, and P ðA0 ¼ falseÞ ¼
0:9.

• CPTs: In Table 6 we show the CPTs for the network in Fig. 8.
Although both types of networks lead to identical posterior probabilities

given some evidence, the network in Fig. 8 is much more complex. In general,
the formalism of DBNs leads to networks with a high structural complexity. In
the case of irreversible processes, this complexity disappears by adopting the

Fig. 8. DBN with memory nodes for the network in Fig. 7.

Table 6

CPTs of the DBN associated to the example
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method presented in this paper. Therefore, if time is discretized in a set of
temporal points, domains involving irreversible processes are better modeled
through an NPEDT. However, when the same process may happen multiple
times, DBNs are a better option.

Finally, an advantage of NPEDTs over DBNs is that the former are not
restricted to Markovian processes. Note that in a DBN, links connect either
nodes within the same static network or between adjacent static networks.

5. An example

We aim to model the evolution of traffic jams produced on the outskirts of a
city, after the occurrence of an event (road accident, natural catastrophe, etc.)
that obliges traffic to stop indefinitely. We are interested in the prior period to
the start of the working day, since there is a higher density of vehicles. In Fig. 9,
nodes C1 and C2 represent two different destination points for commuters,
which are located in the city center. Each node P1, P2, or P3 could be a cross-
roads, a commuter town, etc., i.e., they are not destination points.

Next we illustrate the application of the NPEDT approach to the domain
described above. Each node represents the event ‘‘traffic jam appearance’’ at
that place. Arrows indicate the direction of traffic jam propagation. Traffic
jams propagate in the opposite direction to traffic. Our temporal range of in-
terest is from 8:10 a.m. to 9:00 a.m., which we divide into 10-minute intervals.
Each family of nodes in the network interacts through a temporal noisy OR
model; for example, a traffic jam may appear at P3 if it has appeared before at
either P1 or P2. P3 ¼ p3½8 : 30� means that a traffic jam has initiated at P3 be-
tween 8:21 and 8:30 in the morning. We suppose that the initial event causing
the problems, prevents the traffic from being restored within our temporal
range of interest (from 8:10 a.m. to 9:00 a.m.).

Table 7 shows the prior probabilities for C1 and C2. For instance,
P ðc1½8 : 40�Þ is the probability of occurrence of an event causing an indefinite
traffic jam at C1 between 8:31 and 8:40 in the morning. The probabilities
presented throughout this section are arbitrary ones. Anyway, the city itself is

Fig. 9. Outskirts of the city.
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the best database from which to obtain these parameters. Note that the
probability of traffic jam increases as time evolves. This is because the working
day usually begins at 9:00 a.m. and the probability of an accident depends on
the density of vehicles. The CPTs can be constructed from the parameters in
Tables 8–10.

The parameters in the network show that as we approach either the city
center or 9:00 a.m., the probability of traffic jam propagation between neigh-
boring nodes increases, as well as the probability that this propagation takes
place in a shorter period of time. Note that the distances between P1 and C2,
and P2 and C2, are much longer than for the rest of the arcs. There are non-
explicit causes in the model. (For example, an accident could cause a traffic jam
in a peripheral node, while there is a normal situation in the city center.)

Table 11 shows the posterior probabilities for P2 ¼ p2½9 : 00�. From this
table, c2½8 : 20� and c2½8 : 30� are the most probable explanations for the ob-
served evidence. If we also knew that P1 ¼ p1½8 : 30�, then C2 would not explain
the evidence on P1 and, as a result, there would be an increase in the probability
of c1½8 : 20� and c1½8 : 30� (see Table 12).

Table 7

Prior probabilities for C1 and C2

c1½8 : 20� c1½8 : 30� c1½8 : 40� c1½8 : 50� c1½9 : 00� c1½never�

0.0001 0.0005 0.001 0.0025 0.003 0.9929

c2½8 : 20� c2½8 : 30� c2½8 : 40� c2½8 : 50� c2½9 : 00� c2½never�

0.0002 0.0005 0.0015 0.003 0.0035 0.9913

Table 8

Parameters for P1

P1 c1½8 : 20� c1½8 : 30� c1½8 : 40� c1½8 : 50� c1½9 : 00� Leaky

p1½8 : 20� 0.15 0 0 0 0 0.00005

p1½8 : 30� 0.15 0.15 0 0 0 0.0002

p1½8 : 40� 0.15 0.15 0.2 0 0 0.0005

p1½8 : 50� 0.2 0.2 0.2 0.25 0 0.0011

p1½9 : 00� 0.25 0.3 0.3 0.35 0.5 0.0014

p1½never� 1–0.9 1–0.8 1–0.7 1–0.6 1–0.5 0.99675

c2½8 : 20� c2½8 : 30� c2½8 : 40� c2½8 : 50� c2½9 : 00�

p1½8 : 20� 0 0 0 0 0

p1½8 : 30� 0 0 0 0 0

p1½8 : 40� 0 0 0 0 0

p1½8 : 50� 0.1 0 0 0 0

p1½9 : 00� 0.13 0.14 0 0 0

p1½never� 1–0.23 1–0.14 1 1 1
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Table 11

Posterior probabilities for P2 ¼ p2½9 : 00�

8:20 8:30 8:40 8:50 9:00 never

C1 0.0001 0.0005 0.001 0.0025 0.003 0.9929

C2 0.01879 0.04704 0.0014 0.0028 0.00327 0.92667

P1 0.00006 0.00028 0.00078 0.00391 0.01319 0.98174

P3 0.00002 0.00014 0.00047 0.0016 0.3937 0.60404

Table 9

Parameters for P2

P2 C2 Leaky

c2½8 : 20� c2½8 : 30� c2½8 : 40� c2½8 : 50� c2½9 : 00�

p2½8 : 20� 0 0 0 0 0 0.00004

p2½8 : 30� 0 0 0 0 0 0.0003

p2½8 : 40� 0 0 0 0 0 0.0004

p2½8 : 50� 0.13 0 0 0 0 0.0012

p2½9 : 00� 0.15 0.15 0 0 0 0.0015

p2½never� 1–0.28 1–0.15 1 1 1 0.99656

Table 10

Parameters for P3

P3 p1½8 : 20� p1½8 : 30� p1½8 : 40� p1½8 : 50� p1½9 : 00� Leaky

p3½8 : 20� 0.12 0 0 0 0 0.00002

p3½8 : 30� 0.12 0.14 0 0 0 0.0001

p3½8 : 40� 0.14 0.15 0.15 0 0 0.0003

p3½8 : 50� 0.18 0.19 0.2 0.2 0 0.0006

p3½9 : 00� 0.2 0.22 0.25 0.3 0.4 0.0008

p3½never� 1–0.76 1–0.7 1–0.6 1–0.5 1–0.4 0.99818

p2½8 : 20� p2½8 : 30� p2½8 : 40� p2½8 : 50� p2½9 : 00�

p3½8 : 20� 0.1 0 0 0 0

p3½8 : 30� 0.12 0.12 0 0 0

p3½8 : 40� 0.15 0.15 0.15 0 0

p3½8 : 50� 0.18 0.2 0.2 0.19 0

p3½9 : 00� 0.2 0.24 0.26 0.29 0.39

p3½never� 1–0.75 1–0.71 1–0.61 1–0.48 1–0.39

Table 12

Posterior probabilities for P1 ¼ p1½8 : 30� and P2 ¼ p2½9 : 00�

8:20 8:30 8:40 8:50 9:00 never

C1 0.05177 0.25892 0.00068 0.00172 0.00206 0.68481

C2 0.01879 0.04704 0.0014 0.0028 0.00327 0.92667

P3 0.00002 0.14008 0.15019 0.19023 0.3368 0.18266
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6. Conclusions

The process of computing posterior probabilities in BNs is NP-hard [8]. This
complexity becomes particularly problematic in large models such as those that
arise when modeling temporal processes by dynamic Bayesian networks
(DBNs). We have presented a new method called network of probabilistic
events in discrete time (NPEDT), for handling temporal information through
BNs. Our model is similar to Arroyo-Figueroa and Sucar’s temporal nodes
Bayesian networks (TNBNs) [2–4] in that variables represent events and each
value of a variable represents the time at which an event takes place. A minor
difference is that their model represents time by means of intervals of different
duration while our model assumes discrete time. A limitation of Arroyo-Fig-
ueroa and Sucar’s model is that, when a variable represents an effect of several
possible causes, each interval of this variable is associated with only one of the
causes. We overcome this limitation by introducing temporal noisy gates, which
are a generalization of some canonical models of causal interaction.

When compared to DBNs, our method is more appropriate for fault diag-
nosis in temporal domains, because it uses only one variable to represent the
occurrence of a fault and the networks involved are therefore much simpler
than those obtained by applying DBNs. In contrast, DBNs are more appro-
priate for monitoring tasks, since they explicitly represent the state of the
system at each moment.
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