Distributed inference in Bayesian networks*

F. J. Diez J. Mira

Dpto. Informatica y Automatica. UNED
Senda del Rey. 28040 Madrid. Spain

<FJavier.Diez@uned.es>

Abstract

Bayesian networks originated as a framework for distributed reasoning. In singly-
connected networks, there exists an elegant inference algorithm that can be imple-
mented in parallel having a processor for every node. It can be extended to take profit
of the OR~—gate, a model of interaction among causes which simplifies knowledge ac-
quisition and evidence propagation. We also discuss two exact and one approximate
methods for dealing with general networks. All these algorithms admit distributed
implementations.

1 Introduction

In the 1970s, expert systems were created as an intent to separate represented knowledge
from reasoning strategies. However, in the next decade it was shown that rule-based
systems were not as modular as initially claimed [7]. It was also shown that there were
inconsistencies in the use of MYCIN’s certainty factors, the most widely applied model
for reasoning in expert systems [10]. The fundamental problem is not specific of MYCIN’s
model, but common to all “modular” systems, in which there are strong implicit assump-
tions about conditional independence that are not valid in general [17, pp. 4-12], [14,
pp. 125ff].

Bayesian networks (BNs), which were initially conceived as a framework for dis-
tributed reasoning [18], offer a solution by resting on a graphical representation in which
all dependencies (and, by default, all independencies) are clearly indicated by the arcs
connecting the nodes. This property is so important that the name of independence net-
works has been suggested as the most adequate denomination for this scheme [14]. There
is a solid graph theory [19, 20] that constitutes the axiomatic framework of BNs.

The purpose of this paper is to present BNs from the viewpoint of distributed compu-
tation. Our objective is not to make an exhaustive review of the field, but rather to show
how knowledge representation and reasoning (evidence propagation) can be performed in
a distributed fashion having a processor for every node.

In order to structure the presentation, we will performe our study at the three levels
defined by David Marr [13, section 2.1]: theory, algorithm and implementation. In
the case of BNs, the theory of probabilistic inference is given by the definitions and the
axioms of independence introduced in section 2. Some algorithms derived from the theory

* Cybernetics and Systems, 25 (1994) 36-61.

are presented in sections 3 to 5. All those algorithms admit parallel implementations,
which are the object of this paper. Here, we restrict ourselves to evidence propagation. In
[5], we follow the same tree-level approach to study distributed learning and explanation
in Bayesian expert systems.

2 Theory of Bayesian networks

This section introduces quite informally the fundamentals of BNs. For a proper presen-
tation, see [14, 17].

In a first approximation, a Bayes network can be defined as a directed acyclic graph
where nodes represent variables and links represent causal relations. “Acyclic” means
that, if there is a loop, its arrows do not form a closed path. The meaning of “causal
relations” will be given by the independence axioms presented below. Except in clique
trees, the terms “node” and “variable” can be used as synonyms. We represent a node or
variable by a capital letter, X, and its values in lower case, z. Singly-connected networks
are called polytrees.

A node X is a parent of Y is there is a link from X to Y'; conversely, Y is a child of
X. The set of parents of X is represented as pa(X). The family of X is formed by X
and its parents. Node U is an ancestor of Y if U is a parent of Y or there is a node X
such that U is an ancestor of X and X is a parent of Y'; conversely, Y is a descendant of
U. In the context of causal networks, parent is synonym of cause, and child of effect.

A subset of nodes, W = {Wy, ..., Wn}, separates variables X and Y if the instanti-
ation of the variables in the subset makes X and Y conditionally independent:

Va,Vy,Vw, P(ylw) # 0 = P(z|y,w) = P(z|w).

Observe that this definition is symmetric for X and Y. It can be immediately extended
from single variables to subsets of them.

Definition 1 (Bayesian network) Given a directed acyclic graph and a joint probabil-
ity distribution for the variables it represents, they are said to constitute a Bayes network
if the set of parents of X, pa(X), separates it from every node that is not one of its
descendants.

This defining property is called d-separation (directional separation) because of its
asymmetry, which becomes apparent in the following properties derived from it and il-
lustrated in fig. 1:

1. If Ais a top node, pa(A) = (0. Since trivially P(z|0) = P(x), the separation property
turns into P(ela) = P(e) for every node F which is not one of the descendants of A;
in other words, F is a priori independent of A. As a consequence, any two nodes
D and F having no common ancestor are a priori independent.

2. If A is an ancestor of D, H is a descendant of D and there is no other path from A
to H, both of them are separated by D:

P(hld,a) = P(h|d). (1)

Figure 1: A small polytree.

3. If G and H are both children of D and they have no other common ancestor, the
latter separates GG and H, so that they are conditionally independent:

P(gld,h) = P(g|d). (2)

4. Two nodes which are independent (a priori or conditionally) remain to be so when
no common descendant is instantiated. For example, A is independent of F' even
after the instantiation of D:

Plalf,d) = P(ald), (3)

and in the same way

Ple|f,c,h) = P(e|e,h). (4)

In general, the (a priori or conditional) independence of two nodes, A and F, is
broken when some of its common descendants, H, is instantiated.

It is possible to show that the distribution mentioned in the definition of Bayesian
networks can be given by assigning a conditional probability P(z|pa(z)) for every node
with parents, and an a priori probability for every node without parents [14]. The above
independence properties could have been defined alternatively in terms of blocked and
activated paths [15].

What is the semantics of Bayesian networks? The answer lies in the correspondence
between these statistical independence properties and our common-sense knowledge about
the interaction of causes and effects. For instance, eqs. (1) and (2) can be interpreted
as saying that the probability that a cause D produces an effect G depends only on the
value taken by the cause (for instance, absent, mild, moderate or severe), not on how it
was produced nor on whether it has produced other effects [6]. This is the justification
of why Bayesian networks, mathematically defined, are used to represent causal models.
For this reason, parent is a synonym of immediate cause and children is a synonym of
immediate effect.

3 Evidence propagation in polytrees

3.1 Algorithm

Our objective is to find the evidential probability P*(z), defined as the probability of
proposition “The value of variable X is z” given the observed evidence e:

P (z)= P(X =zle) (5)

In the case of a singly-connected network, an arbitrary node X divides this evidence
into that coming from its causes, e}, and that coming from its effects, ey. Accordingly,
we can define

m(z) = P(x,e%) (6)

and
Mz) = Plex|) (7)

Figure 2: Parents and children of X.

If the causes of X are Uy, ..., U,, and its effects Y1, ..., Y}, (see fig. 2), we introduce
wx(u;) = Plui,efs y) (8)

and
M, (@) = Plexy,| @) (9)

where e}, /ey, represents the evidence above/below link X —Y. The axioms of inde-
pendence for BNs allow us to easily compute these expressions. First, we have

P*(x) = a P(z,e}, ey)
= a P(o,e}) Plex|2)
= an(z)Mz) (10)
where o = [P(e)]_1 is a normalization constant.

The causes of X have no common ancestor (we are in a singly-connected network),
so they are independent when there is no evidence below X:

i3
P(uy, ... u,,el) = Plug, ... ,un|e‘|[}1X7 ,e"l}nX) = H?TX(UZ').
=1

Therefore,

T(x) = Z P(w|u1,...,un)ﬁﬂx(ui). (11)

ULy eee yUn

Conditional independence on X leads to
Az) = P(e)_(y17 ,e)_(Ym| z)

= 1 Plesy |0 = T (o) (12)

i=1

similarly, node X separates Y; from other effects and from causes of X. Therefore,
after definition (8),

Ty, (z) = P(w,e}yj) = P(w,e},e)_(yk k#37)

m(2) [T Avi(2) (13)

k#i

In order to calculate Ay, (z), defined in eq. (9), let us denote by V' the set of causes of
Y; different from X, as shown in fig. 3. We then have

/\yj(w) = ZP(e{/J,e‘i‘}Yj,yj,ﬂ z)

Yy,

= > Pley| yj) Ply| v.x) Plefy | v) P(v)

Yy,

= [P(e%“]j) > Pyl v,z) P(v,efy,)]

®) @\

Figure 3: Parents of Y;.

The causes of Y; are a priori independent. Hence,

p
P(v,e‘i‘}yj) = P(vy, ... ,vp|e‘|‘}1yj, ,e?}pyj) = H Ty, (k)
k=1

and, in consequence,

Ay, (@)= |My) Y. Plyle, v .uwp) TT 7y (o) (14)
k=1

Yy U1y eeeyUp

The ten numbered equations in this section display five definitions and the corre-
sponding formulas to compute them. According to these formulas, the only data needed
by a general node X are the probability of every value X for every instantiation of its
causes, P(z|u1, ..., u,). Instead, for a top node having no causes explicit in the model,
the a priori probability P(z) must be provided. A leaf node Z must be assigned a vector
A(z): if there is no observed evidence for this node, its initial value is a constant vector;
otherwise, the observed value is assigned a 1 and the other values of the variable are as-
signed 0’s. This assignment of 7’s and A’s for top and leaf nodes respectively guarantees
a termination condition for the recursive formulas given above.

The most important property derived from the axioms of independence is that, in
polytrees, every link decomposes the network into two parts, whose only interaction
comes through that link, and the messages between them are orthogonal, i.e. my(2)
can be computed independently of Ay () and vice versa. In fig. 4, which shows the
computations performed at node X, this property becomes apparent as the absence of
loops in the information flow.

wx(uy) wx(uz)

Ax(ul)

AX(UZ)

Eq.

7(x): Eq. (11)

Eq.

P(x)

Eq.

Eq.

Ty, (%) Ty, (%)

Ty, (%)

/\yl (l‘) /\Y2(l‘)

/\ya(l‘)

Figure 4: Computations performed at node X.

3.2 Distributed implementation

The algorithm presented above requires that every node stores some information, both
static and dynamic. The static information, such as the structure of the network and
the conditional probabilities, is independent of the observed evidence. The dynamic
information is obtained in the process of evidence propagation.

Firstly, a node must know its causes and its effects, in order to implement the network
structure. This could be provided by two lists containing pointers to the corresponding
nodes in the network. Nevertheless, there is some information associated to links rather
than to nodes (for example, the 7y (z) and Ay(z) messages), so it is more suitable to
implement every link as an object capable of storing information, in order to avoid un-
necessary recomputation. Nodes should contain pointers to links and vice versa. These
pointers implement the topology of the network. It is then necessary to include the static
numerical information, the conditional and a priori probabilities, as explained in the
preceding section.

We will study now how dynamic information should be computed. From the formulas
of evidence propagation, we can see that node X can send a message to its neighbor W
only when X has received the messages from all of its other neighbors. A node X with n
causes and m effects that has received ¢ messages must be in one of three possible states:

1. ¢ <n+ m— 2. It means that X is still waiting for at least two messages. So it
cannot yet send any message.

2. g = n+ m—1. Then, X has received a message from everyone of its neighbors,
except from one—say W. In this case, X can already compute and send the message
to W, but no other message yet.

3. ¢ = n+ m. In this case, X is able to compute and send all the messages it hasn’t
sent before.

At the beginning, g = 0 for every node, since no message has been transmitted yet;
therefore, all end nodes are in state 2 because they have just one neighbor. The rest are
in state 1. It is possible to show that there is always some node able to send a message,
until the process is complete. The proof is easy but a little awkward, so we’d better
consider as an example the polytree in fig. 1. Before evidence propagation starts, all end
nodes (A, B, F', GG and I) are in state 2. The rest are in state 1. When those end nodes
send their respective messages, C' and D change into state 2, and the same happens to
F and H in the next step. After messages my(e) and Ag(e) are transmitted, these latter
nodes are in state 3. Then they send messages to their neighbors, and in two more steps
the process is concluded.

The discussion above is relevant to show that it is not necessary to have a mechanism
for global control. The model can be implemented as an asynchronous network in which
the number of messages received by a node determines which messages it can compute
and send.

If the computation at every node is bounded (by limiting the number of parents and
values) and the algorithm is implemented sequentially, the time complexity is proportional
to the number of nodes. In this case, it is more eflicient to perform evidence propagation
in two phases: evidence collection toward a pivot node and evidence distribution from
this node, as was suggested in [12] for trees of cliques.

On the other hand, if there is a processor for every node, the time complexity of the
algorithm is proportional to the maximum length in the network. The version presented
here, based on three different states for a node, is slightly different from Pearl’s [17] in
that it avoids computing and sending premature meaningless messages. This distinction
is not important if we can afford a hardware processor for every node. But if the con-
ceptual processors (the nodes) are implemented by a smaller set of hardware processors,
the computational squandering of computing useless messages may turn out to be very
expensive. In this latter case, when nodes are queuning for access to a limited number of
hardware processors, we encounter the typical problem of parallel programming, namely,
what message has to be computed first in order to improve performance.

4 The OR-gate

The general approach in BNs involves having a table of conditional probabilities P(z|uq,

., uy,) for each node X, where U; are the parents (the causes) of X. Unfortunately,
there are several shortcomings. First, the number of parameters required for a node grows
exponentially with the number of its causes. Fven if there is a database available, a lot
of cases are required in order to obtain accurate parameters. If the lack of a database
forces us to resort to human experts, it will be difficult for them to estimate so many
conditional probabilities, depending on complex combinations of the different values for
the direct causes of a node. And even when these parameters are obtained, there is still
the burden of storing such big tables. A second drawback is related to computational
complexity. The number of mathematical operations required by each node also grows
exponentially with the number of its parents.

Theory. In the OR—gate [17, pp. 184—188], a parent node of X is not conceived as
a mere factor (age of the patient, for instance) modulating the probability of X given
a certain configuration of the other parents (sex, weight, smoking, etc.). Instead, node
X represents a physical-world entity (for example, a disease) that may be present or
absent, and its parents represent phenomena —in general anomalies— whose presence
can produce X. In other words, a link in the OR—gate represents the intuitive notion of
causation, not only the statistical definition given in [21].

In the generalized noisy OR-gate [9, 4], a variable X is assumed to have gx degrees
of presence. For example, if X ={absent, mild, moderate, severe}, then gx = 3. “X = 0”
means “X is absent” and successive integers indicate higher degrees of presence.

The basic parameter is the effectiveness ¢ defined as the probability that a cause U;
raises an effect X to a degree x when all of its other causes are absent:

¢ = P(X = | Ui = u;, U; = 0 for j # i). (15)
Obviously,

D=1, Yu,. (16)

The first assumption of the OR-gate is that X is absent when all of its causes are
absent:!

P(X =0|U; =0, Vi) = 1. (17)

'In the leaky OR-gate [9], this assumption is relaxed (see below).

The second assumption is as follows:

P(X <zlug, ... u,) = [[P(X < 2|U; = wi, Uj = 0 for j # 1). (18)

The intuitive interpretation is that X < z when every cause has raised X to a degree not
higher than z. In other words, the value taken on by X is the maximum of the values
produced by its causes acting independently.

Algorithm. From these postulates, it is possible to deduce the general formula for
7(2) as a function of the mx(U;)’s and of these parameters (see [4] for a proof):

Q) -Q(z—1) forz#0
(=)= {Q(X =0) forz =0 (19)

where

Q@) = [Qu(») (20)
and

Qui(z)=1- Z [ﬂx(uz') ZX: cgi] : (21)

w; =1

We also have

Ax(ui) = Y Ma) [1(2)]v,=, - (22)

Here, [7(2)]t;=u;, must be computed after eqs. (19) to (21) but with variable U; clamped
to value u;; thus,

Quilvm =1 - S0 e (23)

z'=z+1

In some domains, it is often impossible to detail all the causes of a certain anomaly.
To deal with this difficulty, we can include a dummy parent node standing for all the
causes of X not explicit in the model. In this case, the interaction is called leaky OR—-
gate [9]. In the implementation, instead of adding a dummy node, the leaky OR—-gate
can be implemented by assigning parameters ¢ to node X, as shown in table 1. The
computation of), is as follows:

Qr(z)=1- % b, (24)

r'=zr+1

and this factor must be included in eq. (20) too.

As a consequence of the constraints given by egs. (16) and (17), only ¢i7 - gx param-
eters are required for link UX. In the case of binary variables, only one parameter is
necessary for each link. For example, in an expert system for cardiology, where we have 8
explicit causes of mytral stenosis, the general case would need a table containing 2% =256
parameters; the leaky OR-gate needs only 9 parameters, namely, one for every cause
plus one more for representing the causes not explicit in the model. Thus, the number
of parameters and the computational complexity are reduced. A few questions such as
“What is the probability that amyloidosis produces mytral stenosis (when no other cause
is present)?” are more easily answered by a physician or from a textbook than a great
amount of questions involving a complex casuistry.

10

At the level of evidence propagation, the main interest of the OR-gate is that the
computation of 7(z) takes a time proportional to the number of causes of X, instead of
the exponential time required by the general case.

Another advantage is that in a noisy OR-gate it is easier to generate a linguistic
explanation of “What is the most probable cause of X?” than in the case of probability
tables.

In a similar way, it is possible to define the noisy AND-gate and its generalization to
multivalued variables, which shares the same properties as the generalized noisy OR-gate.
Obviously, the three types of interaction (probability tables, OR, AND) can be present
in a certain BN for different families.

Distributed implementation. From the point of view of a parallel implementation
(or even of object-oriented programming), the parameters of the AND/OR-gate —unlike
the case of probability tables— are not a feature of node X but rather they are associated
to each particular link UX. Observe in fig. 5 and in table 1 where the ¢%’s are stored.
Node X must just know what type of gate to apply and the actual parameters can be
stored in the corresponding links. Comparing fig. 5 to the corresponding drawing for the
general case (fig. 4), we observe that now links are not passive channels of information,
but active processors which convert message mx () into Q¢/(«) and generate Ax(u), thus
releasing node X from some computations.

General model OR-gate
Stores P(z|u) ck
Node X Receives Tx (us), Ay, (x) Qu.(X), Ay,(x)

Sends Ax (ui), my;(x), P*(x) Alzx), my,(x), P*(x)

Stores '
Link U; X | Receives mx (ui), AMx), QU,,(l‘)
Sends Qu,(z), Ax(u;)

Table 1: General case and the OR-gate

5 Dealing with loops

The expressions derived in the last two sections provide an elegant and efficient method
for computing probability in polytrees. However, it can be deduced from the theory
of BNs that multiply connected nets give rise to an NP—hard problem, because of the
presence of loops [1, 2]. Among the different algorithms proposed, we will present here
two exact methods, clustering and conditioning, and an approximate method, simulation.

wx(uy) Ax (uq) wx (uz) Ax(ug)
LINK Uh X LINK U, X
Eq. (21) Eq. (22) Eq. (21) Eq. (22)
Qu,(x) Qu, ()
NODE X A@)
w(x): Egs. (19-20)
Eq. (10) P*(x)

Eq. (13)

Eq.

Ty, (%)

7'l'y2

(@) 7y (2)

/\yl (l‘) /\Y2(l‘) /\ya(l‘)

Figure 5: Computations performed at the OR-gate.

11

12

5.1 Clustering

Nowadays, the most widely used algorithm for computing probability in BNs is the
clique-tree propagation method, developed by Lauritzen and Spiegelhalter [12] and im-
proved by Jensen et al. [11]. A generalization of the method has recently been proposed
by Shachter et al. [23].

The method is based on a compilation of the network in order to build a tree of
cliques. The first step is to “moralize” the graph by marrying (adding links between)
the parents of each node. If the network is still non-triangulated, some additional links
are required; Lauritzen and Spiegelhalter suggest using maximum-cardinality search [25]
for this process. Cliques are defined as “maximal fully connected sets of nodes” in the
triangulated graph. In general, a variable is included in more than one clique. The tree of
cliques, built in the static phase of the method, is independent of the observed evidence.

Then the tree is initialized by assigning to every clique C; a function of its variables,
called potential function V¥;, obtained from the conditional probability tables and the
available evidence, which constitutes an initial distribution of marginal probabilities.
These quantities are used to update the probabilities when new evidence arrives. The
probability corresponding to a variable can be deduced by marginalizing and normalizing
the probability table of one of the cliques which contain that variable. When findings
are entered, the process of calibration is in fact the propagation of evidence. It is very
similar to evidence propagation in polytrees.

The method proposed by Shachter et al. [23] defines cluster trees as a generalization
of clique trees. In their algorithm, the message transmitted from cluster C; to cluster C;

Mij= Y 9] M (25)

C\C; k€Ki

(fig. 6) is computed as

where C;\C; means the variables of C; not included in C;, and K;_; indicates the neigh-
bor clusters of (; other than C';. Indicating by K; all the clusters adjacent to C;, the
probability of a configuration of the latter is given by
Pi=av; [[M. (26)
keK;
As usual, o is a normalization constant. We can see that ¥; and P; depend on the
variables contained in C;, and message My; depends on the variables belonging to both

C; and C}.

Figure 6: Cluster tree.

Again, a distributed implementation is possible. Fig. 7 shows the computations
performed at a clique C'; connected to Cy, C's and 4. Every node must store the following
information:

€

13

e a list of the variables clustered into the node;

o conditional probability tables (the table corresponding to each family is assigned to
one of the cliques in which it is contained); some cliques may have a table equal to
unity for all its values;

e a potential function V¥;, obtained from the conditional probability tables and the
available evidence associated to this clique e;. This value is assigned when initial-
izing the clique tree and does not change during evidence propagation.

M21 M31 M41
P(z|u) =)
[\l
1 = g
=
v, H

Eq. (25)| |Eq. (25)| |Eq. (25)

My M3 My

Figure 7: Computations performed at cluster Cf.

Besides having e; as an input, node (; receives messages M;; from all its neighbors
C'; and uses them to compute P; and the M;; messages. Observe again in fig. 7 that there
is no loop in the information flow. In this figure, eq. (25) should have an input indicating
C1\C; but this is more a property of the link than of the node and is omitted for the
sake of clarity.

Everything we said about propagation in polytrees can be also applied to cluster trees,
with the following differences:

1. A polytree is a directed graph —a link goes from a cause to one of its effects— while
cluster trees are undirected—there is no distinction between causes and effects. In
fact, fig. 7 is essentially the same as fig. 4. Only the intermediate computation of
7(x) and A(z) makes them look different.

2. In a polytree every node represents a variable; in a cluster tree, every node lumps
together several variables. Therefore, in the latter case, the probability of a variable
must be obtained by marginalization on any of the cliques containing that variable.

3. Messages transmitted in a polytree depend on one variable; in a cluster tree, mes-
sages between two nodes depend on the variables they share. (The intersection of
two adjacent clusters is called their separator.)

14

5.2 Conditioning

Among exact BNs algorithms, conditioning is based on the fact that variables in a
loop have independent probabilities when a variable not at the bottom of the loop is
instantiated (conditional independence). The original method proposed by Pearl [17,
pp. 204-210] was quite inefficient. In addition to requiring initialization [24], the time
complexity of evidence propagation was proportional to the number of instantiated leaf
nodes and, what is much worst, exponential in the number of nodes required to break
the loops.

Peot and Shachter [22] described a method whose complexity was independent of
the number of instantiated leaf nodes. Furthermore, it allowed the decomposition of the
network into blocks, thus reducing the complexity of the computation for many structures.

Recently, a more efficient algorithm to deal with loops, called “local conditioning”
has been proposed in [3]. The main innovation of this technique consists of detecting the
loops each node belongs to—the paper suggest using a depth-first search for this purpose.
As a result, every node is assigned a list of variables on which it must be conditioned.
At the same time, conditioning allows the removal of some edges from the original graph
so that it turns into a singly-connected network (in which every node still represents a
variable).

In general, messages propagated between nodes do not depend now on one variable
(as in the case of the polytree), but on several of them. When entering a loop, the
dimension of messages is increased by one, and when exiting, it is reduced again. The
list of variables associated to each loop allows the nodes to make local decisions on when
to apply conditioning, so that it is not propagated any longer than necessary. As a
consequence, this algorithm has linear complexity for some structures for which previous
methods were exponential.

According to [23], a conditioning solution for a BN is equivalent to a clustering so-
lution with a certain triangulation. However, local conditioning is the only known exact
algorithm for BNs that allows a parallel implementation with a processor for every
node. In fact, local conditioning propagates evidence in an associated tree obtained by
removing some edges in the original graph. Figs. 4 and 5 and table 1 are still valid. The
only differences are that every node must also store a list of loops and that, in general,
messages now depend on more than one variable.

In [5], we show how to integrate local conditioning with learning, in a distributed
fashion. We expect that a distributed capability of explanation could also emerge from
local conditioning.

5.3 Simulation

The fact that exact inference in general BNs is NP-hard [1], was often used as an argument
in favor of approximate methods, implicitly assuming that the time complexity of the
proposed stochastic algorithms was polynomial. However, it has been recently shown
that “approximating probabilistic inference in Bayesian belief networks is NP-hard” too
[2]. Anyway, stochastic simulation is still a useful method for practical applications.

In this case, probabilities are estimated by computing the frequency of a given scenario
in a series of simulation runs. The Bayes network constitutes the probability model
that generates the trials. The advantage of simulation over exact methods is that its
complexity depends just on the number of nodes and edges, and is not affected by the

15

topology of the network. On the other hand, simulation is very sensitive to numerical
values, which could make the approximation converge too slowly.

The first simulation scheme was logic sampling, as presented in [8]. The network is
used as a trial generator. Only those trials that agree with observed evidence are taken
into account. The shortcoming of this simple method is that it generates many irrelevant
trials, especially when several leaf nodes are instantiated, leading to a low efficiency of
the algorithm.

In the simulation algorithm proposed by Pearl [16], evidence variables are clamped
to their observed values, in order to generate only useful trials. Although it has been
improved by other researchers (see references in [2]), we will here present this straight
simulation method because of its simplicity and because it lends itself naturally to parallel
implementation.

The basic idea of this algorithm is that every node is assigned a value by a random
process according to the probability distribution induced by the values of its neighbors. In
a sequential implementation, only one node is activated at a given moment. Nevertheless,
in a parallel implementation, the simulation might be wrong if two adjacent nodes were
activated simultaneously. In order to avoid this difficulty, arc reversal was introduced as a
distributed control strategy which guarantees that every processor is activated sufficiently
often without having two adjacent processors activated at the same time.

The first step is to initialize the network by assigning an orientation to every link,
with the only condition that the resulting network is acyclic. The causal ordering of
the Bayesian network fulfills this property, but any other acyclic ordering would also be
valid. Then, simulation starts. Fach processor remains idle until all its links are pointing
inward. It is then activated and performs the following steps:

1. Compute the conditional distribution of the variable given the states of its neighbors
(the values assumed by the variables).

2. Get a value for the variable by sampling the computed distribution.

3. Reverse the direction of all its arrows, so that they point outwards. Then, this node
becomes idle again and other nodes are activated.

It can be shown that two neighbor nodes are never activated simultaneously, that every
processor is fired sufficiently often and that the process converges (see references in [16]).

Observe that all computations as well as the control strategy are local and can be
implemented as distributed asynchronous processes.

6 Conclusion

We have presented several inference methods for Bayesian networks, following the scheme
“theory-algorithm-implementation”. In the case of polytrees, the algorithm based on
7/ A-messages lends itself naturally to parallel implementation, and the same is true for
stochastic simulation. When the network contains loops, the local conditioning algorithm
cuts them by applying conditioning, while clustering methods deal with them by grouping
the variables; in both cases, the objective is to build a tree so that propagation is similar
to that for singly-connected BNs. All these methods can be implemented in parallel
having a processor for every node (for every cluster, in clustering algorithms), with local
computations and local control.

16

Discussions in this paper are based on some of the algorithms currently available. Our
purpose was not, however, to study particular methods but rather to show the possibilities
that BNs offer for distributed computation. In [5], we study how to develop local learning
and local explanation capabilities, in order to turn BNs into Bayesian expert systems.

References

[1] G. F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.

[2] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60:141-153, 1993.

[3] F. J. Diez. Local conditioning in Bayesian networks. Technical Report (R-181), Cog-
nitive Systems Laboratory, University of California, Los Angeles, 1992. Submitted
to Artificial Intelligence.

[4] F. J. Diez. Parameter adjustement in Bayes networks. The generalized noisy OR-
gate. In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence,
pages 99-105, Washington D.C., 1993. Morgan Kaufmann, San Mateo, CA.

[5] F. J. Diez and J. Mira. Distributed reasoning and learning in Bayesian expert
systems. In C. A. Ntuen, editor, Advances in Fault-Diagnosis Problem Solving. CRC
Press, Boca Raton, FL, 1993. To appear.

[6] F. J. Diez Vegas and J. Mira Mira. Causal Bayesian reasoning in medicine. Cyber-
netics and Systems, 23:417-429, 1992.

[7] D. E. Heckerman and E. J. Horvitz. The myth of modularity in rule-based systems for
reasoning with uncertainty. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in
Artificial Intelligence 2, pages 23-34. Elsevier Science Publishers B.V., Amsterdam,
1988.

[8] M. Henrion. Propagation of uncertainty by logic sampling in Bayes’ networks. In
J. . Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence 2, pages
149-164. Elsevier Science Publishers B.V., Amsterdam, 1988.

[9] M. Henrion. Some practical issues in constructing belief networks. In L. N. Kanal,
T. S. Levitt, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 3,
pages 161-173. Elsevier Science Publishers B.V., Amsterdam, 1989.

[10] E. Horvitz and D. Heckerman. The inconsistent use of measures of certainty in Arti-
ficial Intelligence research. In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in
Artificial Intelligence, pages 137-151. Elsevier Science Publishers B.V., Amsterdam,
1986.

[11] F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of Bayesian belief
universes for knowledge-based systems. Networks, 20:637-660, 1990.

[12] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, Series B, 50:157-224, 1988.

[13] D. Marr. Vision. Freeman, New York, 1982.

17

[14] R. E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and Algorithms.
Wiley-Interscience, New York, 1990.

[15] J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelli-
gence, 29:241-288, 1986.

[16] J. Pearl. Evidential reasoning using stochastic simulation of causal models. Artificial
Intelligence, 32:245-257, 1987.

[17] J. Pearl. Probabilistic Reasoning in Fxpert Systems. Morgan Kaufmann, San Mateo,
CA, 1988. Revised second printing, 1991.

[18] J. Pearl. Belief networks revisited. Artificial Intelligence, 59:49-56, 1993.

[19] J. Pearl and A. Paz. GRAPHOIDS: A graph-based logic for reasoning about rele-
vance relations. Technical Report (R-53-1), Cognitive Systems Laboratory, Univer-
sity of California, Los Angeles, 1985.

[20] J. Pearl and T. S. Verma. The logic of representing dependencies by directed graphs.
In Proceedings of the 6th National Conference on Al (AAAI-87), pages 374-379,
Seattle, WA, 1987.

[21] J. Pearl and T. S. Verma. A statistical semantics for causation. Statistics and
Computing, 2:91-95, 1992.

[22] M. A. Peot and R. D. Shachter. Fusion and propagation with multiple observations
in belief networks. Artificial Intelligence, 418:299-318, 1991.

[23] R. D. Shachter, S. T. Andersen, and P. Szolovits. The equivalence of exact methods
for probabilistic inference on belief networks. Submitted to Artificial Intelligence,
October 1991.

[24] H. J. Suermondt and G. F. Cooper. Initialization for the method of conditioning in
Bayesian belief networks. Artificial Intelligence, 50:83-94, 1991.

[25] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal of Computing, 13:566-579, 1984.

