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Abstract

Bayesian networks originated as a framework for distributed reasoning� In singly�
connected networks� there exists an elegant inference algorithm that can be imple�
mented in parallel having a processor for every node� It can be extended to take pro�t
of the OR�gate� a model of interaction among causes which simpli�es knowledge ac�
quisition and evidence propagation� We also discuss two exact and one approximate
methods for dealing with general networks� All these algorithms admit distributed
implementations�

� Introduction

In the �	
�s� expert systems were created as an intent to separate represented knowledge
from reasoning strategies� However� in the next decade it was shown that rule�based
systems were not as modular as initially claimed 
�� It was also shown that there were
inconsistencies in the use of MYCIN�s certainty factors� the most widely applied model
for reasoning in expert systems ���� The fundamental problem is not speci�c of MYCIN�s
model� but common to all �modular� systems� in which there are strong implicit assump�
tions about conditional independence that are not valid in general �
� pp� ������ ���
pp� ������

Bayesian networks �BNs�� which were initially conceived as a framework for dis�
tributed reasoning ���� o�er a solution by resting on a graphical representation in which
all dependencies �and� by default� all independencies� are clearly indicated by the arcs
connecting the nodes� This property is so important that the name of independence net�
works has been suggested as the most adequate denomination for this scheme ���� There
is a solid graph theory �	� ��� that constitutes the axiomatic framework of BNs�

The purpose of this paper is to present BNs from the viewpoint of distributed compu�
tation� Our objective is not to make an exhaustive review of the �eld� but rather to show
how knowledge representation and reasoning �evidence propagation� can be performed in
a distributed fashion having a processor for every node�

In order to structure the presentation� we will performe our study at the three levels
de�ned by David Marr ��� section ����� theory� algorithm and implementation� In
the case of BNs� the theory of probabilistic inference is given by the de�nitions and the
axioms of independence introduced in section �� Some algorithms derived from the theory

�Cybernetics and Systems� �� ������ ��	��
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are presented in sections � to �� All those algorithms admit parallel implementations�
which are the object of this paper� Here� we restrict ourselves to evidence propagation� In
��� we follow the same tree�level approach to study distributed learning and explanation
in Bayesian expert systems�

� Theory of Bayesian networks

This section introduces quite informally the fundamentals of BNs� For a proper presen�
tation� see ��� �
��

In a �rst approximation� a Bayes network can be de�ned as a directed acyclic graph
where nodes represent variables and links represent causal relations� �Acyclic� means
that� if there is a loop� its arrows do not form a closed path� The meaning of �causal
relations� will be given by the independence axioms presented below� Except in clique
trees� the terms �node� and �variable� can be used as synonyms� We represent a node or
variable by a capital letter� X � and its values in lower case� x� Singly�connected networks
are called polytrees �

A node X is a parent of Y is there is a link from X to Y � conversely� Y is a child of
X � The set of parents of X is represented as pa�X�� The family of X is formed by X
and its parents� Node U is an ancestor of Y if U is a parent of Y or there is a node X
such that U is an ancestor of X and X is a parent of Y � conversely� Y is a descendant of
U � In the context of causal networks� parent is synonym of cause� and child of e�ect�

A subset of nodes� W � fW�� � � � �WNg� separates variables X and Y if the instanti�
ation of the variables in the subset makes X and Y conditionally independent�

�x� �y� �w� P �yjw� �� � �� P �xjy� w� � P �xjw��

Observe that this de�nition is symmetric for X and Y � It can be immediately extended
from single variables to subsets of them�

De�nition � �Bayesian network� Given a directed acyclic graph and a joint probabil�
ity distribution for the variables it represents� they are said to constitute a Bayes network
if the set of parents of X� pa�X�� separates it from every node that is not one of its
descendants�

This de�ning property is called d�separation �directional separation� because of its
asymmetry� which becomes apparent in the following properties derived from it and il�
lustrated in �g� ��

�� If A is a top node� pa�A� � �� Since trivially P �xj�� � P �x�� the separation property
turns into P �eja� � P �e� for every node E which is not one of the descendants of A�
in other words� E is a priori independent of A� As a consequence� any two nodes
D and E having no common ancestor are a priori independent�

�� If A is an ancestor of D� H is a descendant of D and there is no other path from A

to H � both of them are separated by D�

P �hjd� a� � P �hjd�� ���



�

��
��
A ��

��
B ��

��
C

��
��
D ��

��
E ��

��
F

��
��
G ��

��
H ��

��
I

�
�
�R

�
�
��

�
�
��

�
�
�R

�
�
��

�
�
�R

�
�
��

�
�
�R

Figure �� A small polytree�

�� If G and H are both children of D and they have no other common ancestor� the
latter separates G and H � so that they are conditionally independent�

P �gjd� h� � P �gjd�� ���

�� Two nodes which are independent �a priori or conditionally� remain to be so when
no common descendant is instantiated� For example� A is independent of F even
after the instantiation of D�

P �ajf� d� � P �ajd� � ���

and in the same way
P �ejf� c� h� � P �ejc� h� � ���

In general� the �a priori or conditional� independence of two nodes� A and E� is
broken when some of its common descendants� H � is instantiated�

It is possible to show that the distribution mentioned in the de�nition of Bayesian
networks can be given by assigning a conditional probability P �xjpa�x�� for every node
with parents� and an a priori probability for every node without parents ���� The above
independence properties could have been de�ned alternatively in terms of blocked and
activated paths ����

What is the semantics of Bayesian networks� The answer lies in the correspondence
between these statistical independence properties and our common�sense knowledge about
the interaction of causes and e�ects� For instance� eqs� ��� and ��� can be interpreted
as saying that the probability that a cause D produces an e�ect G depends only on the
value taken by the cause �for instance� absent� mild� moderate or severe�� not on how it
was produced nor on whether it has produced other e�ects ��� This is the justi�cation
of why Bayesian networks� mathematically de�ned� are used to represent causal models�
For this reason� parent is a synonym of immediate cause and children is a synonym of
immediate e�ect�

� Evidence propagation in polytrees

��� Algorithm

Our objective is to �nd the evidential probability P ��x�� de�ned as the probability of
proposition �The value of variable X is x� given the observed evidence e�

P ��x� � P �X�xje� ���
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In the case of a singly�connected network� an arbitrary node X divides this evidence
into that coming from its causes� e�X � and that coming from its e�ects� e

�
X � Accordingly�

we can de�ne
��x� � P �x� e�X� ���

and
��x� � P �e�X j x� �
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Figure �� Parents and children of X �

If the causes of X are U�� � � � � Un� and its e�ects Y�� � � � � Ym �see �g� ��� we introduce

�X�ui� � P �ui� e
�

UiX
� ���

and
�Yj�x� � P �e�XYj

j x� �	�

where e�XY �e
�
XY represents the evidence above�below link X�Y � The axioms of inde�

pendence for BNs allow us to easily compute these expressions� First� we have

P ��x� � � P �x� e�X � e
�
X�

� � P �x� e�X� P �e
�
X j x�

� � ��x� ��x� ����

where � � P �e���� is a normalization constant�

The causes of X have no common ancestor �we are in a singly�connected network��
so they are independent when there is no evidence below X �

P �u�� � � � � un� e
�

X� � P �u�� � � � � unj e
�

U�X
� � � � � e�UnX� �

nY
i��

�X�ui� �

Therefore�

��x� �
X

u�� ��� �un

P �xj u�� � � � � un�
nY
i��

�X�ui� � ����

Conditional independence on X leads to

��x� � P �e�XY�
� � � � � e�XYm

j x�

�
mY
j��

P �e�XYj
j x� �

mY
j��

�Yj �x� ����



�

Similarly� node X separates Yj from other e�ects and from causes of X � Therefore�
after de�nition ����

�Yj �x� � P �x� e�XYj
� � P �x� e�X � e

�
XYk

k �� j�

� ��x�
Y
k ��j

�Yk�x� ����

In order to calculate �Yj �x�� de�ned in eq� �	�� let us denote by V the set of causes of
Yj di�erent from X � as shown in �g� �� We then have

�Yj�x� �
X
yj �v

P �e�Yj � e
�

V Yj
� yj � vj x�

�
X
yj �v

P �e�Yj j yj� P �yj j v� x�P �e
�

V Yj
j v� P �v�
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Figure �� Parents of Yj �

The causes of Yj are a priori independent� Hence�

P �v� e�V Yj � � P �v�� � � � � vpj e
�

V�Yj
� � � � � e�VpYj � �

pY
k��

�Yj �vk�

and� in consequence�

�Yj �x� �
X
yj

�
���yj� X

v�� ��� �vp

P �yj j x� v�� � � � � vp�
pY

k��

�Yj �vk�

�
� ����

The ten numbered equations in this section display �ve de�nitions and the corre�
sponding formulas to compute them� According to these formulas� the only data needed
by a general node X are the probability of every value X for every instantiation of its
causes� P �xj u�� � � � � un�� Instead� for a top node having no causes explicit in the model�
the a priori probability P �x� must be provided� A leaf node Z must be assigned a vector
��z�� if there is no observed evidence for this node� its initial value is a constant vector�
otherwise� the observed value is assigned a � and the other values of the variable are as�
signed ��s� This assignment of ��s and ��s for top and leaf nodes respectively guarantees
a termination condition for the recursive formulas given above�

The most important property derived from the axioms of independence is that� in
polytrees� every link decomposes the network into two parts� whose only interaction
comes through that link� and the messages between them are orthogonal� i�e� �Y �x�
can be computed independently of �Y �x� and vice versa� In �g� �� which shows the
computations performed at node X � this property becomes apparent as the absence of
loops in the information �ow�
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Figure �� Computations performed at node X �






��� Distributed implementation

The algorithm presented above requires that every node stores some information� both
static and dynamic� The static information� such as the structure of the network and
the conditional probabilities� is independent of the observed evidence� The dynamic
information is obtained in the process of evidence propagation�

Firstly� a node must know its causes and its e�ects� in order to implement the network
structure� This could be provided by two lists containing pointers to the corresponding
nodes in the network� Nevertheless� there is some information associated to links rather
than to nodes �for example� the �Y �x� and �Y �x� messages�� so it is more suitable to
implement every link as an object capable of storing information� in order to avoid un�
necessary recomputation� Nodes should contain pointers to links and vice versa� These
pointers implement the topology of the network� It is then necessary to include the static
numerical information� the conditional and a priori probabilities� as explained in the
preceding section�

We will study now how dynamic information should be computed� From the formulas
of evidence propagation� we can see that node X can send a message to its neighbor W
only when X has received the messages from all of its other neighbors� A node X with n
causes and m e�ects that has received q messages must be in one of three possible states�

�� q 	 n  m 
 �� It means that X is still waiting for at least two messages� So it
cannot yet send any message�

�� q � n  m 
 �� Then� X has received a message from everyone of its neighbors�
except from one!sayW � In this case� X can already compute and send the message
to W � but no other message yet�

�� q � n  m� In this case� X is able to compute and send all the messages it hasn�t
sent before�

At the beginning� q � � for every node� since no message has been transmitted yet�
therefore� all end nodes are in state � because they have just one neighbor� The rest are
in state �� It is possible to show that there is always some node able to send a message�
until the process is complete� The proof is easy but a little awkward� so we�d better
consider as an example the polytree in �g� �� Before evidence propagation starts� all end
nodes �A� B� F � G and I� are in state �� The rest are in state �� When those end nodes
send their respective messages� C and D change into state �� and the same happens to
E and H in the next step� After messages �H�e� and �H�e� are transmitted� these latter
nodes are in state �� Then they send messages to their neighbors� and in two more steps
the process is concluded�

The discussion above is relevant to show that it is not necessary to have a mechanism
for global control� The model can be implemented as an asynchronous network in which
the number of messages received by a node determines which messages it can compute
and send�

If the computation at every node is bounded �by limiting the number of parents and
values� and the algorithm is implemented sequentially� the time complexity is proportional
to the number of nodes� In this case� it is more e"cient to perform evidence propagation
in two phases� evidence collection toward a pivot node and evidence distribution from
this node� as was suggested in ��� for trees of cliques�



�

On the other hand� if there is a processor for every node� the time complexity of the
algorithm is proportional to the maximum length in the network� The version presented
here� based on three di�erent states for a node� is slightly di�erent from Pearl�s �
� in
that it avoids computing and sending premature meaningless messages� This distinction
is not important if we can a�ord a hardware processor for every node� But if the con�
ceptual processors �the nodes� are implemented by a smaller set of hardware processors�
the computational squandering of computing useless messages may turn out to be very
expensive� In this latter case� when nodes are queuing for access to a limited number of
hardware processors� we encounter the typical problem of parallel programming� namely�
what message has to be computed �rst in order to improve performance�

� The OR	gate

The general approach in BNs involves having a table of conditional probabilities P �xj u��
� � � � un� for each node X � where Ui are the parents �the causes� of X � Unfortunately�
there are several shortcomings� First� the number of parameters required for a node grows
exponentially with the number of its causes� Even if there is a database available� a lot
of cases are required in order to obtain accurate parameters� If the lack of a database
forces us to resort to human experts� it will be di"cult for them to estimate so many
conditional probabilities� depending on complex combinations of the di�erent values for
the direct causes of a node� And even when these parameters are obtained� there is still
the burden of storing such big tables� A second drawback is related to computational
complexity� The number of mathematical operations required by each node also grows
exponentially with the number of its parents�

Theory� In the OR�gate �
� pp� ��������� a parent node of X is not conceived as
a mere factor �age of the patient� for instance� modulating the probability of X given
a certain con�guration of the other parents �sex� weight� smoking� etc��� Instead� node
X represents a physical�world entity �for example� a disease� that may be present or
absent� and its parents represent phenomena !in general anomalies! whose presence
can produce X � In other words� a link in the OR�gate represents the intuitive notion of
causation� not only the statistical de�nition given in ����

In the generalized noisy OR�gate 	� ��� a variable X is assumed to have gX degrees
of presence� For example� if X �fabsent� mild� moderate� severeg� then gX � �� �X � ��
means �X is absent� and successive integers indicate higher degrees of presence�

The basic parameter is the e�ectiveness cuix de�ned as the probability that a cause Ui
raises an e�ect X to a degree x when all of its other causes are absent�

cuix � P �X � xjUi � ui� Uj � � for j �� i�� ����

Obviously� X
x

cuix � �� �ui� ����

The �rst assumption of the OR�gate is that X is absent when all of its causes are
absent��

P �X � �jUi � �� �i� � �� ��
�

�In the leaky OR�gate ��� this assumption is relaxed �see below�




	

The second assumption is as follows�

P �X 	 xju�� � � � � un� �
Y
i

P �X 	 xjUi � ui� Uj � � for j �� i�� ����

The intuitive interpretation is that X 	 x when every cause has raised X to a degree not
higher than x� In other words� the value taken on by X is the maximum of the values
produced by its causes acting independently�

Algorithm� From these postulates� it is possible to deduce the general formula for
��x� as a function of the �X�Ui��s and of these parameters �see �� for a proof��

��x� �

�
Q�x�
Q�x
 �� for x �� �

Q�X � �� for x � �
��	�

where
Q�x� �

Y
i

QUi�x� ����

and

QUi�x� � �


gUiX
ui��

�
��X�ui� gXX

x��x��

cui
x�

�
� � ����

We also have
�X�ui� �

X
x

��x� ��x��Ui�ui � ����

Here� ��x��Ui�ui must be computed after eqs� ��	� to ���� but with variable Ui clamped
to value ui� thus�

QUi�x��Ui�ui � �

gXX

x��x��

cui
x�
� ����

In some domains� it is often impossible to detail all the causes of a certain anomaly�
To deal with this di"culty� we can include a dummy parent node standing for all the
causes of X not explicit in the model� In this case� the interaction is called leaky OR�
gate 	�� In the implementation� instead of adding a dummy node� the leaky OR�gate
can be implemented by assigning parameters cLx to node X � as shown in table �� The
computation of QL is as follows�

QL�x� � �

gXX

x��x��

cLx� � ����

and this factor must be included in eq� ���� too�

As a consequence of the constraints given by eqs� ���� and ��
�� only gU � gX param�
eters are required for link UX � In the case of binary variables� only one parameter is
necessary for each link� For example� in an expert system for cardiology� where we have �
explicit causes of mytral stenosis� the general case would need a table containing ������
parameters� the leaky OR�gate needs only 	 parameters� namely� one for every cause
plus one more for representing the causes not explicit in the model� Thus� the number
of parameters and the computational complexity are reduced� A few questions such as
�What is the probability that amyloidosis produces mytral stenosis �when no other cause
is present��� are more easily answered by a physician or from a textbook than a great
amount of questions involving a complex casuistry�
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At the level of evidence propagation� the main interest of the OR�gate is that the
computation of ��x� takes a time proportional to the number of causes of X � instead of
the exponential time required by the general case�

Another advantage is that in a noisy OR�gate it is easier to generate a linguistic
explanation of �What is the most probable cause of X�� than in the case of probability
tables�

In a similar way� it is possible to de�ne the noisy AND�gate and its generalization to
multivalued variables� which shares the same properties as the generalized noisy OR�gate�
Obviously� the three types of interaction �probability tables� OR� AND� can be present
in a certain BN for di�erent families�

Distributed implementation� From the point of view of a parallel implementation
�or even of object�oriented programming�� the parameters of the AND�OR�gate !unlike
the case of probability tables! are not a feature of node X but rather they are associated
to each particular link UX � Observe in �g� � and in table � where the cux�s are stored�
Node X must just know what type of gate to apply and the actual parameters can be
stored in the corresponding links� Comparing �g� � to the corresponding drawing for the
general case ��g� ��� we observe that now links are not passive channels of information�
but active processors which convert message �X�u� into QU �x� and generate �X�u�� thus
releasing node X from some computations�

General model OR�gate

Stores P �xju
 cLx

Node X Receives �X�ui
� �Yj
�x
 QUi

�X
� �Yj
�x


Sends �X �ui
� �Yj
�x
� P ��x
 ��x
� �Yj

�x
� P ��x


Stores cui
x

Link UiX Receives �X�ui
� ��x
� QUi�
�x


Sends QUi
�x
� �X �ui


Table �� General case and the OR�gate


 Dealing with loops

The expressions derived in the last two sections provide an elegant and e"cient method
for computing probability in polytrees� However� it can be deduced from the theory
of BNs that multiply connected nets give rise to an NP�hard problem� because of the
presence of loops �� ��� Among the di�erent algorithms proposed� we will present here
two exact methods� clustering and conditioning� and an approximate method� simulation�
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Figure �� Computations performed at the OR�gate�
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	�� Clustering

Nowadays� the most widely used algorithm for computing probability in BNs is the
clique�tree propagation method� developed by Lauritzen and Spiegelhalter ��� and im�
proved by Jensen et al� ���� A generalization of the method has recently been proposed
by Shachter et al� ����

The method is based on a compilation of the network in order to build a tree of
cliques� The �rst step is to �moralize� the graph by marrying �adding links between�
the parents of each node� If the network is still non�triangulated� some additional links
are required� Lauritzen and Spiegelhalter suggest using maximum�cardinality search ���
for this process� Cliques are de�ned as �maximal fully connected sets of nodes� in the
triangulated graph� In general� a variable is included in more than one clique� The tree of
cliques� built in the static phase of the method� is independent of the observed evidence�

Then the tree is initialized by assigning to every clique Ci a function of its variables�
called potential function #i� obtained from the conditional probability tables and the
available evidence� which constitutes an initial distribution of marginal probabilities�
These quantities are used to update the probabilities when new evidence arrives� The
probability corresponding to a variable can be deduced by marginalizing and normalizing
the probability table of one of the cliques which contain that variable� When �ndings
are entered� the process of calibration is in fact the propagation of evidence� It is very
similar to evidence propagation in polytrees�

The method proposed by Shachter et al� ��� de�nes cluster trees as a generalization
of clique trees� In their algorithm� the message transmitted from cluster Ci to cluster Cj

��g� �� is computed as
Mij �

X
CinCj

#i

Y
k�Ki�j

Mki ����

where CinCj means the variables of Ci not included in Cj� and Ki�j indicates the neigh�
bor clusters of Ci other than Cj � Indicating by Ki all the clusters adjacent to Ci� the
probability of a con�guration of the latter is given by

Pi � � #i

Y
k�Ki

Mki� ����

As usual� � is a normalization constant� We can see that #i and Pi depend on the
variables contained in Ci� and message Mki depends on the variables belonging to both
Ci and Cj �

��
��
C���

��
C�

��
��
C�

��
��
C�

��

��

	M��

�
M��

Figure �� Cluster tree�

Again� a distributed implementation is possible� Fig� 
 shows the computations
performed at a clique C� connected to C�� C� and C�� Every node must store the following
information�
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� a list of the variables clustered into the node�

� conditional probability tables �the table corresponding to each family is assigned to
one of the cliques in which it is contained�� some cliques may have a table equal to
unity for all its values�

� a potential function #i� obtained from the conditional probability tables and the
available evidence associated to this clique ei� This value is assigned when initial�
izing the clique tree and does not change during evidence propagation�
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Figure 
� Computations performed at cluster C��

Besides having ei as an input� node Ci receives messages Mji from all its neighbors
Cj and uses them to compute Pi and theMij messages� Observe again in �g� 
 that there
is no loop in the information �ow� In this �gure� eq� ���� should have an input indicating
C�nCj but this is more a property of the link than of the node and is omitted for the
sake of clarity�

Everything we said about propagation in polytrees can be also applied to cluster trees�
with the following di�erences�

�� A polytree is a directed graph !a link goes from a cause to one of its e�ects! while
cluster trees are undirected!there is no distinction between causes and e�ects� In
fact� �g� 
 is essentially the same as �g� �� Only the intermediate computation of
��x� and ��x� makes them look di�erent�

�� In a polytree every node represents a variable� in a cluster tree� every node lumps
together several variables� Therefore� in the latter case� the probability of a variable
must be obtained by marginalization on any of the cliques containing that variable�

�� Messages transmitted in a polytree depend on one variable� in a cluster tree� mes�
sages between two nodes depend on the variables they share� �The intersection of
two adjacent clusters is called their separator��
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	�� Conditioning

Among exact BNs algorithms� conditioning is based on the fact that variables in a
loop have independent probabilities when a variable not at the bottom of the loop is
instantiated �conditional independence�� The original method proposed by Pearl �
�
pp� �������� was quite ine"cient� In addition to requiring initialization ���� the time
complexity of evidence propagation was proportional to the number of instantiated leaf
nodes and� what is much worst� exponential in the number of nodes required to break
the loops�

Peot and Shachter ��� described a method whose complexity was independent of
the number of instantiated leaf nodes� Furthermore� it allowed the decomposition of the
network into blocks� thus reducing the complexity of the computation for many structures�

Recently� a more e"cient algorithm to deal with loops� called �local conditioning�
has been proposed in ��� The main innovation of this technique consists of detecting the
loops each node belongs to!the paper suggest using a depth��rst search for this purpose�
As a result� every node is assigned a list of variables on which it must be conditioned�
At the same time� conditioning allows the removal of some edges from the original graph
so that it turns into a singly�connected network �in which every node still represents a
variable��

In general� messages propagated between nodes do not depend now on one variable
�as in the case of the polytree�� but on several of them� When entering a loop� the
dimension of messages is increased by one� and when exiting� it is reduced again� The
list of variables associated to each loop allows the nodes to make local decisions on when
to apply conditioning� so that it is not propagated any longer than necessary� As a
consequence� this algorithm has linear complexity for some structures for which previous
methods were exponential�

According to ���� a conditioning solution for a BN is equivalent to a clustering so�
lution with a certain triangulation� However� local conditioning is the only known exact
algorithm for BNs that allows a parallel implementation with a processor for every
node� In fact� local conditioning propagates evidence in an associated tree obtained by
removing some edges in the original graph� Figs� � and � and table � are still valid� The
only di�erences are that every node must also store a list of loops and that� in general�
messages now depend on more than one variable�

In ��� we show how to integrate local conditioning with learning� in a distributed
fashion� We expect that a distributed capability of explanation could also emerge from
local conditioning�

	�� Simulation

The fact that exact inference in general BNs is NP�hard ��� was often used as an argument
in favor of approximate methods� implicitly assuming that the time complexity of the
proposed stochastic algorithms was polynomial� However� it has been recently shown
that �approximating probabilistic inference in Bayesian belief networks is NP�hard� too
��� Anyway� stochastic simulation is still a useful method for practical applications�

In this case� probabilities are estimated by computing the frequency of a given scenario
in a series of simulation runs� The Bayes network constitutes the probability model
that generates the trials� The advantage of simulation over exact methods is that its
complexity depends just on the number of nodes and edges� and is not a�ected by the
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topology of the network� On the other hand� simulation is very sensitive to numerical
values� which could make the approximation converge too slowly�

The �rst simulation scheme was logic sampling� as presented in ��� The network is
used as a trial generator� Only those trials that agree with observed evidence are taken
into account� The shortcoming of this simple method is that it generates many irrelevant
trials� especially when several leaf nodes are instantiated� leading to a low e"ciency of
the algorithm�

In the simulation algorithm proposed by Pearl ���� evidence variables are clamped
to their observed values� in order to generate only useful trials� Although it has been
improved by other researchers �see references in ���� we will here present this straight
simulation method because of its simplicity and because it lends itself naturally to parallel
implementation�

The basic idea of this algorithm is that every node is assigned a value by a random
process according to the probability distribution induced by the values of its neighbors� In
a sequential implementation� only one node is activated at a given moment� Nevertheless�
in a parallel implementation� the simulation might be wrong if two adjacent nodes were
activated simultaneously� In order to avoid this di"culty� arc reversal was introduced as a
distributed control strategy which guarantees that every processor is activated su"ciently
often without having two adjacent processors activated at the same time�

The �rst step is to initialize the network by assigning an orientation to every link�
with the only condition that the resulting network is acyclic� The causal ordering of
the Bayesian network ful�lls this property� but any other acyclic ordering would also be
valid� Then� simulation starts� Each processor remains idle until all its links are pointing
inward� It is then activated and performs the following steps�

�� Compute the conditional distribution of the variable given the states of its neighbors
�the values assumed by the variables��

�� Get a value for the variable by sampling the computed distribution�

�� Reverse the direction of all its arrows� so that they point outwards� Then� this node
becomes idle again and other nodes are activated�

It can be shown that two neighbor nodes are never activated simultaneously� that every
processor is �red su"ciently often and that the process converges �see references in �����

Observe that all computations as well as the control strategy are local and can be
implemented as distributed asynchronous processes�

� Conclusion

We have presented several inference methods for Bayesian networks� following the scheme
�theory�algorithm�implementation�� In the case of polytrees� the algorithm based on
����messages lends itself naturally to parallel implementation� and the same is true for
stochastic simulation� When the network contains loops� the local conditioning algorithm
cuts them by applying conditioning� while clustering methods deal with them by grouping
the variables� in both cases� the objective is to build a tree so that propagation is similar
to that for singly�connected BNs� All these methods can be implemented in parallel
having a processor for every node �for every cluster� in clustering algorithms�� with local
computations and local control�



��

Discussions in this paper are based on some of the algorithms currently available� Our
purpose was not� however� to study particular methods but rather to show the possibilities
that BNs o�er for distributed computation� In ��� we study how to develop local learning
and local explanation capabilities� in order to turn BNs into Bayesian expert systems�
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