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Abstract
Building probabilistic and decision-theoretic models requires a considerable knowledge engineer-
ing effort in which the most daunting task is obtaining the numerical parameters. Authors of
Bayesian networks usually combine various sources of information, such as textbooks, statisti-
cal reports, databases, and expert judgement. In this paper, we demonstrate the risks of such
a combination, even when this knowledge encompasses such seemingly population-independent
characteristics as sensitivity and specificity of medical symptoms. We show that the criteria “do
not combine knowledge from different sources” or “use only data from the setting in which the
model will be used” are neither necessary nor sufficient to guarantee the correctness of the model.
Instead, we offer graphical criteria for determining when knowledge from different sources can be
safely combined into the general population model. We also offer a method for building subpopula-
tion models. The analysis performed in this paper and the criteria we propose may be useful in such
fields as knowledge engineering, epidemiology, machine learning, and statistical meta-analysis.
Keywords: Probabilistic models, Bayesian networks, numerical probabilities, elicitation, selec-
tion biases, learning, combining knowledge.

1. Introduction

Development of the theory of directed probabilistic graphs, notably Bayesian networks (Pearl, 1988)
and influence diagrams (Howard and Matheson, 1984), has caused a considerable interest in apply-
ing probability theory and decision theory in intelligent systems—see Henrion et al. (1991) for
an accessible overview of decision-theoretic methods in artificial intelligence. Directed graphical
probabilistic models have been successfully applied to a variety of problems, including medical di-
agnosis, prognosis, and therapy planning, epidemiology, machine diagnosis, user interfaces, natural
language interpretation, planning, vision, robotics, data mining, and many others.

One of the most serious hurdles in practical application of probabilistic methods is the effort
that is required of model building and, in particular, of quantifying graphical models with numerical
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probabilities. To make this task doable, typically knowledge engineers rely on a variety of sources
that include expert knowledge, literature, available statistics, and databases of relevant cases. Very
often, the structure of the model is elicited from experts and the numerical probabilities are learned
from databases. Lack of attention to whether the sources are compatible and whether they can be
combined can lead to erroneous behavior of the resulting model. While most knowledge engineers
realize the danger of misapplication of data that describe different population groups, they often fail
to appreciate purely statistical effects that play a role in probabilistic information.

In this paper, we first demonstrate the problem by showing that even such seemingly population-
independent characteristics as sensitivity and specificity of medical symptoms can vary significantly
between hospital patients and the general population. Although this variability has been reported in
the medical literature for decades—see, for instance Ransohoff and Feinstein (1978) and Knottnerus
(1987)—many of today’s epidemiogical studies on the assessment of diagnostic tests fail to mention
it, and, to our knowledge, researchers in the area of artificial intelligence have never considered it
when building probabilistic models. This entails a significant risk because, as we show in this paper,
collecting these statistics in one setting and using them in another can lead to errors in posterior
probabilities as large as several orders of magnitude. We use the framework of directed probabilistic
graphs to systematize our observation, to explain the risks of naive knowledge combination, and to
offer practical guidelines for combining knowledge correctly. The problems that we are referring to
are due to purely statistical effects related to selection phenomena. They may occur when data or
knowledge are collected from different subpopulations and subsequently combined into one model,
or even when the parameters for a causal model are obtained from a the same subpopulation in which
the model is applied. On the contrary, these problems have nothing to do with small databases,
missing data, or unreliable expert judgment.

Our analysis was inspired by our practical experiences in building medical diagnostic systems
in independently conducted projects, in which we typically build a causal graph from expert knowl-
edge and obtain the parameters from data, textbooks and expert estimates. We encountered a puz-
zling phenomenon that led to an initial disagreement between us. We have subsequently analyzed
the problem, gaining insight that escaped each of us despite our fairly solid theoretical preparation
and considerable field experience. We suspect that many knowledge engineers, data miners, and
epidemiologists who apply machine learning algorithms face similar problems, often not realizing
them. Hence, the purpose of the current paper is not only to point out the risks of the unwary use of
data sets, but also to offer criteria for deciding when one or several knowledge sources can be used
in the construction of a probabilistic model. In particular, we are interested in profiting from sub-
population data—for instance, the records of a database or the set of past cases on which a human
expert bases the probability estimates. This is of most practical interest because usually knowledge
engineers and automatic learning systems do not have access to general-population data.

Because of our experience with medical models, we use in this paper clinical diagnostic ex-
amples, but the principles applied and the conclusions of this analysis are general. An isomorphic
problem is, for example, machine diagnosis, where models are built based on a combination of field
experience, device specification, and repair shop data. Yet another is fraud detection, where models
are based on general population characteristics combined with customer transaction data.

The remainder of this paper is structured as follows. Section 2 presents the conceptual frame-
work and, in particular, it offers an introduction to Bayesian networks. Section 3 presents two
motivating examples which show the risks of naive use of data. We analyze these examples in depth
and explain the statistical reasons for why those models are incorrect. In Section 4, which is the
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core of the paper, we offer two graphical criteria for combining knowledge from different sources
and for building subpopulation models. Finally, Section 5 discusses the implications of our analysis
for knowledge engineering, machine learning, epidemiology, and meta-analysis.

In the mathematical analysis, we will use upper case letters, such asV, to denote variables,
and lower-case letters, such asv, to denote their outcomes. When a variableV is binary, we will
use+v and¬v to denote the truth and falsity of the proposition or its positive and negative value
respectively. Correspondingly, pa(X) will denote the direct predecessors (parents) of a node in
a graph that models a variableX, and pa(x) will denote a combination of values of parents of a
variableX. In the same way, anc(X) will denote the set of ancestors ofX. A nodeU is an ancestor
of X if eitherU is a parent ofX or there is a nodeV such thatV is a parent ofX andU is an ancestor
of V.

2. Conceptual Framework

Directed graphical models are a prominent class of probabilistic modeling tools, arguably most
widely applied in practice. Two most popular instances of this class are Bayesian networks (Pearl,
1988) and influence diagrams (Howard and Matheson, 1984). Influence diagrams can be viewed
as Bayesian networks enhanced with an explicit representation of decisions and utilities over the
outcomes of the decision process. While in the sequel we will focus on Bayesian networks, we
would like to point out that our results apply equally well to influence diagrams.

2.1 Fundamentals of Bayesian Networks

Bayesian networks are acyclic directed graphs in which nodes represent random variables and arcs
represent directed probabilistic dependencies among them. A Bayesian network encodes the joint
probability distribution over a finite set of variables{X1, . . . ,Xn} and decomposes it into a series of
conditional probability distributions over each variable given its parents in the graph. More specif-
ically, for each configuration pa(xi) of pa(Xi) (the parents ofXi), there is a conditional probability
distribution Pr(xi |pa(xi)). The conditional probability of a parentless node is just its prior probabil-
ity: Pr(xi | /0) = Pr(xi). The joint probability distribution over{X1, . . . ,Xn} can be obtained by taking
the product of all of these conditional probability distributions:

Pr(x1, . . . ,xn) =
n

∏
i=1

Pr(xi |pa(xi)) . (1)

It can be proven that this product is a probability distribution and that it satisfies the Markov condi-
tion, i.e., that the probability of each variable given its parents is independent of its non-descendants
in the graph. For instance, ifXi is an ancestor of neitherXj nor Xk, then Pr(xi |pa(xi),xj ,xk) =
Pr(xi |pa(xi)).

Figure 1 shows an example Bayesian network modeling four variables: a diseaseD, a symptom
S, a medical test resultT, and admission to hospitalH. A direct arc betweenD andSdenotes the
fact that whether or not an individual is a carrier of the diseaseD will impact the likelihood of her
showing the symptomS. Similarly, an arc fromD to T denotes that presence ofD influences the
test resultT. Arc S→ H means that the probability that an individual goes to hospital depends on
whether she shows symptomS.

Lack of directed arcs is also a way of expressing knowledge, notably assertions of conditional
independence. For instance, the absence of arcT → H means that the patient’s decision to go to

297



DRUZDZEL AND DÍEZ
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Figure 1: Example Bayesian network consisting of four variables:D, S, T, andH.

hospital depends only on whether she observes symptomS. It does not depend directly onD because
she does not know whether she has the disease or not, nor onT because the test is not performed
until she is admitted to the hospital. These causal assertions can be translated into statements of
conditional independence:H is independent ofD andT givenS. In mathematical notation,

Pr(h|s) = Pr(h|s,d) = Pr(h|s, t) = Pr(h|s,d, t) .

Please note that this a particular instance of Markov condition:H is independent of its non-
descendants (D andT) given its parents (S).

In the same way, the absence of linkS→ T means that the result of the test does only depend on
D and not on the presence of the symptom, and the absence of linkT→Shas a similar interpretation.
Again, this causal knowledge translates into probabilistic assertions:S and T are conditionally
independent givenD:

Pr(s, t|d) = Pr(s|d) Pr(t|d)

or

Pr(s|d, t) = Pr(s|d) ,

which is another instance of Markov condition.
These properties imply that

Pr(d,s, t,h) = Pr(h|d,s, t) Pr(s|d, t) Pr(t|d) Pr(d)
= Pr(d) Pr(s|d) Pr(t|d) Pr(h|s, t) ,

i.e., the joint probability distribution over the graph nodes can be factored into the product of the
conditional probabilities of each node given its parents in the graph. Please note that this expression
is just Equation 1 applied to this particular example network.

The assignment of values to observed variables is usually calledevidence. In medical diagnosis
the evidence is made up by the patient’s antecedents, symptoms, signs, and test results. The most
important type of reasoning in a probabilistic system based on Bayesian networks is known asbelief
updatingor evidence propagation, which amounts to computing the probability distribution over the
variables of interest given the evidence. In the example model of Figure 1, the variable of interest
could beD and the focus of computation could be the posterior probability distribution overD
given the observed values ofSandT, i.e., Pr(d|s, t). In the case of influence diagrams, the focus of
computation is identifying a decision option that gives the highest expected utility (possibly given
some observations).
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2.2 Subpopulations and Selection Variables

It is important at this point to realize that the probability of any evente, Pr(e), is expressed within
some contextξ and should be formally written as Pr(e|ξ). When a model is constructed, it is by
default assumed that the joint probability distribution over its variables is conditioned on some
context. Since this implies that every prior, conditional, and posterior probability in that model is
conditioned on this context, the context is omitted from the formulae for the sake of clarity and
notational convenience.

It is useful to realize that in addition to numerical properties of the model, its structural proper-
ties are also conditional on the context. This means that the entire structure of the graph is condi-
tioned on the context and, as a consequence, whether any two variables are dependent or indepen-
dent is a property of the context in which the model was built. For instance, two diseases that are
a priori independent in the general population, will be in general correlated in the context of a hos-
pital. This phenomenon, known as Berkson bias (Berkson, 1946), is a particular case of a selection
bias.

The example model in Figure 1, for example, might have been built for the general population
of Pittsburgh, Pennsylvania. A model for patients of the University of Pittsburgh Medical Center
might look structurally different and be quantified by a different set of numerical parameters. Con-
ditioning has clear implications on data that we collect for different populations. And so, we will
in general observe different frequencies and possibly different dependencies in data collected for
the general population of Pittsburgh than we will in data collected at the University of Pittsburgh
Medical Center.

In a probabilistic model, context can be expressed by means of observed (instantiated) model
variables. In this way, we can build a model that is general and make it later applicable to a sub-
population by instantiating an appropriate selection variable. For example, if there is a data set
collected at the hospital referred to in the example model of Figure 1, the data set will be condi-
tioned on hospital admissionH. We can indicate this by setting the variableH to +h right in the
model. Often such a conditioning variable is referred to as aselection variable, and+h as these-
lection value. When a certain conditional probability differs from that of the general population,
for instance, whenP(d|+ h) 6= P(d), we say that there is a bias. We realize some obvious biases,
such as those due to the fact that the data is collected at a hospital, but often forget that biases (or
context variables) can be very subtle. Thus, while it is often acknowledged that post-mortem data
are expected to be biased, it is often ignored that data collected from alive patients are in general
biased as well.

In combining knowledge (or data) from two different sources, the most important factor are the
selection variables and the corresponding biases in the knowledge (or data). The foremost question
is whether these selection variables are compatible with one another.

2.3 Building Bayesian Networks

The construction of a Bayesian network consists typically of three phases: (1) selecting the model
variables and their possible values, (2) determining the structure of the graph, and (3) obtaining the
conditional probability distribution over each of the model variables.1

1. In practice, most Bayesian networks use discrete variables, due to the difficulty of eliciting and representing
conditional probabilities involving arbitrary continuous variables—except for some typical distributions, such as
Gaussian—and the difficulty of propagating evidence in networks with arbitrary continuous distributions.
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The most straightforward way of building a Bayesian network consists of choosing a database,
taking its variables as the variables of the Bayesian network, and applying some of the Bayesian
network learning algorithms available in the literature (e.g., Cooper and Herskovits, 1992, Pearl
and Verma, 1991, Spirtes et al., 1993). Most of these algorithms require that the database contain
a sufficiently large number of cases, that there are no missing values or, if there are, that they are
missing at random, that there are no selection biases, etc. However, databases almost always refer to
subpopulations, whose probabilistic/statistical dependencies and independencies may be quite dif-
ferent from those of the target population for which the model is built. We have already mentioned
in the previous sectionBerkson bias(Berkson, 1946), which is one of the many selection biases
studied in the literature. A learning algorithm applied to a hospital database will most likely draw
links between diseases which are probabilistically independent in the general population. Another
serious problem with learning probabilistic models from data is the following. It is not uncom-
mon that some of the configurations required for conditional probability distributions—which in
the case of discrete variables are conditional probability tables (CPTs)—are only represented by a
small number of cases, if any. For instance, given a symptom whose parents in the graph represent
several diseases, it is quite likely that the database does not contain any patient suffering from all
the diseases, and therefore it is impossible to estimate the corresponding conditional probabilities.

For these reasons, automatic learning methods alone are often insufficient in practice, and it
is necessary to resort to human experts’ knowledge. When a knowledge engineer relies purely
on an expert, the structure of the network is determined by drawing causal links among nodes,
and probabilities are obtained by subjective estimates. While building the structure of a model
is in itself a challenging task that needs much care, most practitioners consider it doable. In our
experience, most medical experts, for example, either give similar graphical structures or converge
on the same structure after some discussion (D´ıez et al., 1997, Druzdzel and van der Gaag, 2000,
Oniśko et al., 2001). Directed graphical models built in practice usually mimic the causal structure
of a domain, which, given the fundamental role of causality in scientific understanding, explains
expert agreement on the structure of models. The main drawback of this method is that sometimes
there is not enough causal knowledge to establish the structure of the network with certainty. The
second step in building a model based on expert opinion is quantifying the structure of a directed
graphical model with numerical probabilities. Estimation of probabilities required for a typical
real-world application is a tedious and time-consuming task because of the number of parameters
required (typically hundreds or even thousands of numbers). Since the expert time is scarce and,
therefore, costly, knowledge engineers utilize various sources of information. These may include,
for example, textbooks, epidemiological studies and databases.

While the automatic-learning approach is attractive because it spares a lot of tedious elicitation
effort, extracting conditional independencies from a small data set, necessary for learning the net-
work structure, may be unreliable. A hybrid approach for the construction of Bayesian networks
consists in building the structure of a causal graph with the help of human experts, who in turn rely
on their experience and available literature, and combining this structural information with quan-
titative estimates of conditional probabilities obtained from a database. Elicitation of the structure
from experts turns out to be doable in practice, even for large networks, and this approach is popu-
lar in practice. This hybrid approach is also the base of causal inference in epidemiology, in which
causal graphs built from expert knowledge guide the analysis of epidemiologic data (Greenland
et al., 1999, Pearl, 2000, Hern´an et al., 2002).
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3. Problems of Naive Use of Data

3.1 The Risk of Combining Knowledge from Different Sources

We show through an example2 how unwary combination of knowledge from different sources may
lead to severe deviations in the estimation of probability. Let us imagine that two internal medicine
residents have decided to build a simple diagnostic decision support system for a certain diseaseD.
In the first version of the system, they decided to model onlyD and its most important symptomS.
They started by creating the model structure, consisting of two nodes,D andS(Figure 2).

m

m?

D

S

Figure 2: Example model under construction.

In the second stage, the residents focused on obtaining numerical parameters for their network.
These parameters consist of Pr(+d), the prevalence ofD, and the conditional probabilities of the
symptom given the disease, Pr(+s|+ d) and Pr(¬s|¬d), also known assensitivityandspecificity
of the symptom, respectively. They decided to obtain these parameters from a data set of previous
patient cases collected at their hospital. While there was no disagreement about sensitivity and
specificity of the symptom, the residents had different opinion about the prevalence. One of them
said that they need to take the prevalence as observed in their hospital, while the other suggested that
they should take the prevalence for the general population, so that their system remains unbiased.
After all, the second resident argued, one of the reasons why people were admitted to the hospital
was because of the presence of symptomS, so if they used the hospital prevalence rate, the evidence
would be double-counted. They ended up using the latter.

While the reader may disagree with the arguments made by either of the residents, it is easy
to imagine obtaining the same model by the sheer fact that prevalence of a disease in the general
population is often easy to find in a statistics yearbook or a morbidity table and the sensitivity and
specificity may be in practice obtained from hospital records or elicited from an expert with clinical
experience, i.e., one who has seen a large number of cases in clinical settings.

Let the prevalence of the disease, Pr(+d), taken from an epidemiological study performed in
the town in question, be Pr(+d) = 0.01597. Let the hospital data be summarized by Table 1.

N +d ¬d Total
+s 729 63 792
¬s 1 174 175

Total 730 237 967

Table 1: Distribution of the disease and test result in the hospital population.

2. We have recently discovered that a version of this example has been presented previously by Knottnerus (1987).
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Sensitivity and specificity extracted from this table are

Sens= Pr(+s|+d) = 729/730= 0.99863 (2)

Spec= Pr(¬s|¬d) = 174/237= 0.73418 (3)

In our example model, the variable of interest isD and the focus of computation is the posterior
probability distribution overD given an observed value ofS. According to the thus constructed
model, the possibility that a patient presenting with symptomSsuffers fromD is

Pr(+d|+s) =
Pr(+s|+d) Pr(+d)

Pr(+s|+d) Pr(+d)+Pr(+s|¬d) Pr(¬d)
= 0.05748. (4)

Leaving aside a possible error in estimating the probabilities from the database, the procedure fol-
lowed seems to be correct. Nevertheless, we are going to show in the next section that this model
and the posterior probability computed by it, Pr(+d|+s)≈ 6%, are incorrect.

Analysis of the problem To understand this problem, we should model the variableH, hospital
admission, explicitly. Figure 3 shows a graph modeling variablesD, S, andH. Admission to the
hospital depends directly only on observing the symptomS, i.e., H is independent ofD given S.3

In other words, Pr(h|s,d) = Pr(h|s). Given the symptomS, knowing whether the patient is in the
hospital does not influence our belief in the presence of the disease, i.e.,

Pr(d|s,h) = Pr(d|s) , (5)

which means that once we know about the presence or absence of the symptomS, the information
that the patient has been admitted to the hospital does not affect the diagnosis.

m

m

mj

?

?

D

S

H = +h

Figure 3: A causal model for the hospital data set. Note that since each entry in the data is collected
for a hospital patient, the model is effectively conditioned onH = +h, presence in the
hospital, which is the selection variable of the hospital data set. We encoded this by a
double circle in the model.

The second resident in our example suggested that using the prevalence ofD observed in the
hospital would not be appropriate because it would double-count the evidence from observingS. In
order to demonstrate that the argument behind the resident’s reasoning is fallacious, we will first
assume that the population of the town in question is distributed as shown in Table 2.

3. Please see Section 2.1 for a discussion of the meaning of linksD→ SandS→H and the relevance of the lack of link
D→ H.
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N +d ¬d Total
+s 972 84 1,056
¬s 532 92,568 93,100

Total 1,504 92,652 94,156

Table 2: Distribution of the disease and the symptom in the general population.

If a patient presenting withS is admitted to the hospital with probability Pr(+h|+ s) = 0.75
and a patient not presenting withS is admitted with probability Pr(+h|¬s) = 1/532= 0.00188, the
frequencies captured in the database (shown in Table 1) are consistent with the probabilistic model
of the general population.

The prevalence ofD is Pr(+d) = 0.01597, in agreement with the result of the epidemiological
study. Nevertheless, sensitivity and specificity of symptomS in the general population are

Sens= Pr(+s|+d) = 972/1,504= 0.64628

Spec= Pr(¬s|¬d) = 92,568/92,652= 0.99909

which are quite different from the sensitivity and specificity among the hospital patients (see Equa-
tions 2 and 3). This difference can be attributed purely to the effect of conditioning on the patient
population, i.e., looking only at those patients who are in the hospital. Given our assumption that,
apart from the causal links shown in Figure 3, random variation was the only factor influencing
presence or absence of the symptom and admission to the hospital, these patients may be in every
respect identical to individuals in the general population. So, there are no genetic, cultural, or di-
etary reasons why these patients show a different sensitivity or specificity ofS. We can compute
Pr(+d|+ s) by applying Bayes theorem or by reading the proportions in question directly from
Table 2:

Pr(+d|+s) =
972

1,056
= 0.92045. (6)

This result differs over an order of magnitude from the value Pr(+d|+s)≈ 0.06 obtained in Equa-
tion 4. What is the explanation of this apparent paradox?

The answer is that the frequencies contained in the database do not reflect the probabilities
Pr(d,s) but rather Pr(d,s|+ h). For this reason, Equations 2 and 3 are wrong: they do not repre-
sent the true sensitivity and specificity, Pr(+s|+d) and Pr(¬s|¬d), but rather Pr(+s|+d,+h) and
Pr(¬s|¬d,+h) respectively. A proper application of Bayes theorem is then

Pr(d|s,h) =
Pr(s|d,h) Pr(d|h)

Pr(s|+d,h) Pr(+d|h)+Pr(s|¬d,h) Pr(¬d|h)
.

From the hospital database, we obtain the prevalence ofD among the hospital patients Pr(+d|+h) =
730/967= 0.75491. Hence

Pr(+d|+s,+h) =
0.99863 0.75491

0.99863 0.75491+0.26582 0.24509
= 0.92045.

Comparing this result with Equation 6, we verify that Pr(+d|+s) = Pr(+d|+s,+h), in agreement
with Equation 5.4

4. We found that a similar analysis based on odds-likelihood ratios was offered by Knottnerus (1987).
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In summary, when building the above model, it is correct to take the values of prevalence,
sensitivity, and specificity either from the general population or from the hospital data. In both
cases, the model predicts correctly the posterior probability of the diseaseD. But if we mix data
from these two sources, the model and the resulting diagnosis can be completely wrong.

However, the next example shows that a model can be wrong even if all its conditional proba-
bilities are obtained from the same data source.

3.2 A Wrong Subpopulation Model

Let us consider two symptoms,S1 andS2, of a certain diseaseD, such that bothS1 andS2 may make
the patient go to hospital (Figure 4).
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Figure 4: Example model with two symptoms.

A knowledge engineer builds a model for the hospital population with three nodes,{D,S1,S2},
and two causal links{D → S1,D → S2}. Variable H is implicit in this model, because all the
probabilities are conditioned on+h. This model seems correct because the causal graph represents
all the causal mechanisms between these variables and all the probabilities have been obtained from
the subpopulation to which the model will be applied. However, we prove that this model is wrong
by giving numerical values to the parameters and comparing its results with those of the general-
population model.

We assume that Pr(+d) = 10−5, Pr(+si | + d) = 0.9, Pr(¬si |¬d) = 0.999,
Pr(+h|+ s1,+s2) = 1, Pr(+h|+ s1,¬s2) = Pr(+h|¬s1,+s2) = 0.7, and Pr(+h|¬s1,¬s2) = 0.001.
According with the causal graph given in Figure 4, the join probability is

Pr(d,s1,s2,h) = Pr(d) Pr(s1|d) Pr(s2|d) Pr(h|s1,s2) . (7)

In contrast, in the hospital model, whose graph does not containH,

PrH(d,s1,s2) = PrH(d) PrH(s1|d) PrH(s2|d) . (8)

The probabilities that the knowledge engineer obtains from hospital data are:

PrH(+d) = Pr(d|+h) = 0.019,

PrH(+si |+d) = Pr(+si |+d,+h) = 0.927,

PrH(¬si |¬d) = Pr(¬si |¬d,+h) = 0.708.

The substitution of these values into Equation 8 leads to

PrH(+d|+s1,+s2) =
PrH(+d,+s1,+s2)

PrH(+d,+s1,+s2)+PrH(+d,+s1,+s2)
= 0.166. (9)
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In contrast, the general population model (Figure 4 and Equation 7) leads to

Pr(+d|+s1,+s2,+h) = Pr(+d|+s1,+s2) = 0.976. (10)

Analysis of the problem Why is the hospital model wrong? Because the general population
model states that

Pr(d,s1,s2|+h) 6= Pr(d|+h) Pr(s1|d,+h) Pr(s2|d,+h) ,

and for this reason Equation 8 is incorrect. Put another way, the causal graph for the hospital model
correctly represents the causal mechanisms by means of linksD→ S1 andD→ S2, but the proba-
bilistic model corresponding to this simplified causal graph states thatS1 andS2 are conditionally
independent givenD, which is false for the hospital subpopulation, because the selection value+h
introduces a correlation between the symptoms.

We might think that the cause of the problem is that the knowledge engineer did not includeH
in the causal graph for the hospital. As a remedy, we might try to use instead the graph in Figure 4,
which containsH, and build a Bayesian network by adding the hospital probabilities. The join
probability would then be

PrH(d,s1,s2,+h) = PrH(d) PrH(s1|d) PrH(s2|d) PrH(+h|s1,s2) .

But when both symptoms are present PrH(+h|+s1,+s2) = 1, and this leads us back to Equation 8,
which gave the wrong result PrH(+d|+s1,+s2) = 0.166.

It would seem that it is not possible to build a subpopulation model, not even by representing
explicitly the selection variables. The remainder of this paper will show that this conclusion is false.

3.3 Discussion

In the first example we have seen that the combination of knowledge from different sources may lead
to wrong results. Therefore, one rule for building Bayesian networks might be: “do not combine
knowledge from different sources.” Since the knowledge must be obtained from a single source, a
refined version of this rule might be: “obtain all the data from the subpopulation to which the model
will be applied.” In fact, medical literature on the assessment of diagnostic tests often recommends
to select “the adequate patient population” and to make sure that the patient belongs to the same
subpopulation for which the test was assessed (see, for instance, van der Schouw et al., 1995, or
Sackett et al., 1997, page 83).

However, neither of these rules is necessary or sufficient. They are not sufficient because, ac-
cording to the previous example, a model may give wrong results even if the causal graph were
correct and all the probabilities were obtained from the population to which the model were to be
applied. They are not necessary because, as we will show in Section 4.1, in some cases it is correct
to combine data from different subpopulations. An additional reason why the second rule is not
necessary is that, as we saw in the example in Section 3.1, in some cases the general-population
model gives the correct result for the hospital subpopulation. Furthermore, the general population
model gives the correct posterior probabilities for all possible subpopulations, while subpopulation
models are often wrong. This may be the case even when they are applied to the populations from
which they were built—see the example in Section 3.2. As an alternative, in Section 4.2 we will
offer a sufficient criterion for the correctness of a subpopulation model, and from this criterion we
derive a method for building causal Bayesian networks based on selected data.
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4. How to Use Subpopulation Data

The main problem faced in quantifying a Bayesian network for some general-population is that
typically we do not know many required general-population parameters. We only know some prob-
abilities corresponding to one or several subpopulations, and a key question is how these can be
utilized in the construction of a model for the general population. We will focus on two important
practical questions: (1) how to utilize available subpopulation data in building a causal model for the
general population, and (2) how to build a model specific to a certain subpopulation characterized
by a known selection variableX, assuming the selection valueX = xs.

The starting point of our approach is a causal graph that explicitly represents the general popu-
lation and, within this graph, the selection variable for the available subpopulation. We assume that
it is possible to construct such a graph based on the scientific literature and knowledge elicited from
experts. We will be using this graph as a guide for determining how to combine data from different
sources.

Our first result allows to identify which conditional probabilities in a certain subpopulation are
unbiased, i.e., unaltered by the selection process. This allows us to estimate such parameters from
the subpopulation and introduce them into the general-population model.

Our second result allows us to build a model specific for a certain subpopulation characterized
by a selection value,xs. The parameters of this model are taken from the subpopulation, even if
they are different from those of the general population. However, this method requires that the
graph satisfies a certain condition, namely that it is linearly ordered forXs (see Definition 2 and
Theorem 4). We also prove that it is always possible to make a graph linearly ordered forXs by
adding new links.

4.1 Introducing Subpopulation Data in a General-Population Model

Theorem 1 Given a selection variable Xs in a Bayesian network and a node Xi (other than Xs),
such that Xi is not an ancestor of Xs, the conditional probability distribution of Xi givenpa(Xi) is
the same in the general population and in the subpopulation induced by value xs, i.e.,

Pr(xi |pa(xi),xs) = Pr(xi |pa(xi)) (11)

Proof The theorem is just a special case of Markov condition, satisfied in directed probabilistic
graphs:Xi is conditionally independent of its non-descendants, in particularXs, given its parents,
pa(Xi).

To illustrate this, let us consider again the example discussed in Section 2.1 (Figure 1). In
this network, nodeT is not an ancestor of the selection variableH. According to Theorem 1, the
conditional probability ofT given D is the same for the general population and for the hospital
subpopulation:

Pr(t|d) = Pr(t|d,h) . (12)

(Please note that this equation is a particular instance of Equation 11.) As a consequence, it is
possible to estimate the sensitivity and specificity ofT with respect toD at the hospital and introduce
them into the general-population model.
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In contrast, nodeS is an ancestor of the selection variableH, and this implies that the sensitivity
and specificity ofS with respect toD will differ between the general population and the hospital
subpopulation.

Finally, we would like to note that in this example the probability Pr(h|s) is irrelevant to the
posterior probability distribution ofD. To verify this, please note that Pr(d|s,h) = Pr(d|s) and
Pr(d|s, t,h) = Pr(d|s, t). Both Pr(d|s) and Pr(d|s, t) can be obtained from Pr(d,s, t), which is repre-
sented in the model by the following factorization: Pr(d,s, t) = Pr(d) Pr(s|d) Pr(t|d).

4.2 Building a Subpopulation Model

In the previous section, we have shown that it is possible to use subpopulation probabilities, but
only when they coincide with the general population probabilities. In this section we show how to
build a model based on subpopulation conditional probabilities, even if they differ from those of the
general population. The criterion for testing whether it is possible is again given by a corresponding
causal graph.

Definition 2 A graph is linearly ordered for Xs iff

∀Xi, Xi ∈ {Xs}∪anc(Xs), ∃Xj , Xj ∈ pa(Xi), ∃Xk, Xk ∈ pa(Xi)
=⇒ (Xj = Xk)∨ (Xj ∈ pa(Xk))∨ (Xk ∈ pa(Xj))

This property can be phrased as follows: ifXs or an ancestor ofXs (sayXi) has two parents (Xj

andXk), then one of the two must be a parent of the other. Obviously, if each ancestor ofXs has only
one parent, then the graph is linearly ordered forXs. The propositions in the Appendix give more
insight into the properties of linearly ordered graphs.

Definition 3 A causal Bayesian network is linearly ordered for Xs if its graph is linearly ordered
for Xs.

Theorem 4 Given a Bayesian network that is linearly ordered for Xs, for each configurationxR of
the variables inXR = X\{Xs}, it holds that

Pr(xR|xs) = ∏
i 6=s

Pr(xi |pa(xi),xs) .

The proof is given in the Appendix.
For instance, the graph in Figure 3 is linearly ordered forH because the selection variableH has

only two ancestors,D andS, each having only one parent. Theorem 4 asserts that it is possible to
build a model whose graph is given by removingH (see Figure 2) and the conditional probabilities
for D andScan be taken from the hospital subpopulation—for instance, from a database.

The causal graph in Figure 1 is also linearly ordered forH, for the same reason, and again it is
possible to removeH and take the three conditional probabilities from the hospital subpopulation.
Furthermore, the causal graph asserts that the conditional probability forT is the same in the general
population as it is at the hospital (see the previous section, in particular Equation 12), and can be
taken from any of them. In summary, in this example it is possible to estimate the conditional
probabilities forD andSeither from the general population or from the hospital subpopulation (but
never to combine them) and in the same way it is possible to take the conditional probability forT
from any of both populations, because it is the same in both.
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The reader might ask: “Why is it not possible to apply this method when the graph is not linearly
ordered forXs?” The answer is that if the graph is not linearly ordered forXs, thenXs will have at
least two ancestorsXi andXj in X such that neither one is an ancestor of the other. It means that
even ifXi andXj are (a priori or conditionally) independent in the general-population model, this
independence is lost in the subpopulation—this phenomenon is known as Berkson bias (Berkson,
1946). The example in Section 3.2 showed that the introduction of subpopulation data in a graph
that is not linearly ordered for the selection variableH led to wrong computations of probability.

However, it is always possible to make a graph linearly ordered forXs by applying the following
algorithm:

1. make an ordered list ofX such that∀i, pa(Xi)⊆ {X1, . . . ,Xi};5

2. A← Xs;

3. while A has parents

(a) B← last node in pa(A), according to the list created in step 1;

(b) for each nodeC in pa(A)\{B},
if link C → A is not in the graph, add it;

(c) A← B

end while

Please note that the new graph is acyclic (because it does not introduce any linkXi → Xj with
i > j) and the ancestors ofXs in the new graph are the same as those in the original graph (because
the algorithm only introduces links between the ancestors ofXs).

As an example, the graph in Figure 4 can be made linearly ordered forH by building an ordered
list of nodes{D,S1,S2,H}. Since pa(H) = {S1,S2} and S2 is the last node in pa(H), the algo-
rithm draws a linkS1→ S2. The hospital model has then three nodes,{D,S1,S2}, and three links
{D→ S1,D→ S2,S1→ S2}. The conditional probabilities Pr(d), Pr(s1|d), and Pr(s2|d,s1) can be
estimated from the hospital data, because Theorem 4 guarantees that

Pr(d,s1,s2|+h) = Pr(d|+h) Pr(s1|d,+h) Pr(s2|d,s1,+h) .

In particular, this model yields the correct value of Pr(+d|+s1,+s2,+h):

Pr(+d|+s1,+s2,+h) =
Pr(+d,+s1,+s2|+h)

Pr(+s1,+s2|+h)

=
Pr(+d,+s1,+s2|+h)

Pr(+d,+s1,+s2|+h)+Pr(¬d,+s1,+s2|+h)
= 0.976.

Please compare it with Equations 9 and 10.

The general method for building a subpopulation model works as follows:

1. Build a causal graph that includes the selection variableXs;

5. Condition pa(Xi)⊆ {X1, . . . ,Xi−1}means that the parents ofXi must be numbered beforeXi . The list can be built by
recursively removing a node without parents from the graph and putting it at the end of the list.
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2. Make the graph linearly ordered forXs;

3. RemoveXs and its links from the graph;

4. Estimate the CPTs from subpopulation data.

Theorem 4 guarantees that the probabilities computed from this model will be the same as those we
would obtain from the general population model.

One limitation of this method is that the addition of new links increases the size of the CPTs.
When the probabilities are obtained from a database, the reduction in the number of database cases
available for estimating each parameter endangers the accuracy of the model. When the probabilities
are obtained from subjective estimates, the difficulty is even bigger. For instance, in the above ex-
ample it would virtually impossible for a human expert to give different values for Pr(s2|d,+s1,+h)
and Pr(s2|d,¬s1,+h), given thatS1 andS2 are conditionally independent givenD, and the impact of
S1 onS2 is due to the conditioning onH. It would even be difficult to say whether Pr(s2|d,+s1,+h)
is bigger or smaller than Pr(s2|d,¬s1,+h), let alone to assign numerical values to these parameters.

A minor problem is the fact that the links introduced by the above algorithm are not causal, and
this might complicate the process of generating explanations for the user (Lacave and D´ıez, 2002).
When explaining the model to the user, it would be necessary to differentiate causal links, which
represent dependencies induced by causal influences, from the links added in order to make the
graph linearly ordered, which represent dependencies induced by selection mechanisms.

5. Conclusions

Knowledge engineers quantifying probabilistic models usually combine various sources of infor-
mation, such as existing textbooks, statistical reports, databases, and expert judgement. However,
lack of attention to whether the sources are compatible and whether they can be combined may lead
to erroneous behavior of the model. For instance, an unwary knowledge engineer might combine
the prevalence of a certain disease, obtained from a general-population study, with the sensitivity
and specificity of a certain test obtained at hospital. This combination of information may lead to a
several orders of magnitude error in the computation of the posterior probabilities of interest. While
the reader might think that no experienced knowledge engineer would make such a mistake, the fact
that sensitivity and specificity may be biased when obtained from a subpopulation has never been
mentioned in Bayesian network literature. Even in medical literature, it is not uncommon to find
values of sensitivity and specificity without an explanation of how they were obtained, because they
are assumed to be invariant. After all, sensitivity and specificity do not depend on the prevalence.
We realize that different population characteristics, such as sex, race, diet, etc., can influence both
sensitivity and specificity, but we forget about purely statistical phenomena such as conditioning.
Please note that in our first motivating example (Section 3.1), the population in the hospital con-
sisted of identical individuals for all that matters. It was not the special characteristics of the hospital
patients that made them develop the symptom more or less likely than the general population. Bi-
ases related to sensitivity and specificity of medical tests have been reported in epidemiological
literature over the last two decades, although without the framework of directed probabilistic graphs
the descriptions rely mainly on contingency tables and are somewhat obscure (D´ıez et al., 2003).

Our motivating examples were based on a medical data set, but the same argument can be made
with respect to numbers obtained from human experts. Subjective probability judgments have been

309



DRUZDZEL AND DÍEZ

shown to rely on judgmental heuristics (Kahneman et al., 1982) and they are very sensitive to prior
experiences (in fact prior experiences are often all that probability judgments are based on). Humans
have been shown to be able to match the probability of observed events with an amazing precision in
certain experiments (Estes, 1976). Physicians working in a hospital will tend to match the sensitivity
and specificity of medical symptoms and tests that they observe in their practice. These are often
determined by the circumstances, such as what brought the patients to the hospital or clinic in the
first place. Physician experts will tend to at least adjust the parameters to what they observe in their
practice. While their experience is valuable for building decision models for the particular clinics
where they have worked, in general they cannot be readily used in other settings. Similarly, one
cannot assume that this knowledge can be combined with data originating from other settings.

In our examples, the variable that led to selection biases was the fact that the patient was ad-
mitted to the hospital. There is a plenitude of other variables that might lead to a similar bias. In
some cases, for example, a possible bias variable may be the very fact that a patient is alive. An
important conclusion of our paper is that, contrary to the usual practice in knowledge engineering,
such variables may not be ignored.

The assertion that combining data from two different sources is dangerous may seem trivial.
However, to our knowledge, the literature on building probabilistic expert systems has never men-
tioned the risk of combining knowledge from textbooks, databases, and human experts. In fact,
it has been known that conditioning affects qualitative, structural properties of models, such as
probabilistic independence, but to our knowledge no attention has been paid to its impact on such
seemingly robust local properties as conditional probabilities.

On the other hand, an over-cautious position of never combining numerical data obtained from
different sources would result in disregarding valuable information, which might be useful in model
construction. In fact, we have shown in Section 3.3 that the criteria “do not combine knowledge
from different sources” and “obtain all the data from the subpopulation in which the model will
be applied” are neither necessary nor sufficient to guarantee the correctness of the model. For
this reason, we have introduced a criterion for combining data from different sources, namely that
the causal graph, built from expert knowledge, is linearly ordered (see Definition 2). We have
also offered an algorithm for making the graph linearly ordered by adding links that represent the
probabilistic dependencies induced by selection mechanisms. Knowledge engineers must not ignore
this property, because the absence of those links may lead to important errors in the computation of
the probabilities, even when all the probabilities were obtained from the subpopulation in which the
model is applied (cf. Section 3.2).

In summary, there are two ways to build a probabilistic model based on a causal graph. The first
one is to build ageneral-population model, in which some parameters may be taken from certain
subpopulations only if the probabilities are not biased by selection mechanisms (cf. Section 4.1).
The main difficulty of this approach is to make the experts estimate general-population probabilities,
since, in general, human expertise is based on selected populations. The second approach is to build
a subpopulation modelin which the selection variables have been replaced by non-causal links (cf.
Section 4.2). However, we argued that subjective estimates are even more difficult in this case, and
for this reason we recommend knowledge engineers to build general-population models.

Although the main focus or our paper is knowledge engineering, it may be shed light on other
fields. From the point of view of machine learning, it emphasizes the importance of selection biases
in the automatic construction of causal models from databases. It can also be useful when one or
several agents look for information (for instance, by searching the Internet) and try to build a model
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by combining information extracted from several sources. In this scenario, the agent should use
qualitative knowledge as a guide for combining numerical data. A particular case of this scheme
would be the development of a tool for automated elicitation of knowledge through interaction with
human experts, similar to those that exist for building rule-based expert systems. Finally, from
the point of view of statistics, this paper can be useful for the application of causal models in
epidemiology (Greenland et al., 1999, Pearl, 2000, Hern´an et al., 2002), in which the analysis of
data (in general, selected data) is based on a causal graph built from expert knowledge. Our analysis
might also be applied to meta-analysis,6 because both the data of each study and the collection of
studies are prone to selection biases (see, for instance, Macaskill et al., 2001).
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Appendix. Proof of Theorem 4

Proposition 5 LetPr(x) be a probability distribution defined on a set of variablesX = {X1, . . . ,Xn}
andxR a configuration of the variables inXR = X\{Xs}. Then

Pr(xR|xs) = ∏
i 6=s

Pr(xi |x1, . . . ,xi−1,xs) .

Proof We have

Pr(x) =
s+1

∏
i=n

Pr(xi |x1, . . . ,xi−1)
1

∏
i=s−1

Pr(xi |x1, . . . ,xi−1,xs) Pr(xs) .

Please note thats+1≤ i ≤ n implies thatXs∈ {X1, . . . ,Xi−1}, and then

Pr(xi |x1, . . . ,xi−1) = Pr(xi |x1, . . . ,xi−1,xs) ,

which proves the proposition.

Proposition 6 If a graph is linearly ordered for Xs and X′s is an ancestor of Xs, then the graph is
linearly ordered for X′s.

6. Meta-analysis, a technique that has become popular in the last years, especially in medicine, consists in extracting
data from different epidemiological studies published in the literature and combining them in order to draw more
reliable or more precise conclusions.
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Proof It follows from Definition 2, because if a nodeXi is an ancestor ofX′s then it is also an an-
cestor ofXs.

Proposition 7 If a graph is linearly ordered for Xs and Xs has at least one parent, then there is a
nodepaL(Xs) ∈ pa(Xs) such that all the other parents of Xs are also parents ofpaL(Xs).

Proof We can set a total ordering in pa(Xs) by this definition:Xi < Xj iff there is a linkXi → Xj .
(The absence of cycles in the graph guarantees transitivity. It is a total order because there is a link
for each pair of parents.) The last node in this ordering is paL(Xs).

Corollary 8 If a graph is linearly ordered for Xs and Xs has at least one parent, then there exists a
nodepaL(Xs) ∈ pa(Xs) such that

pa(Xs) = {paL(Xs)}∪pa(paL(Xs))

and
anc(Xs) = {paL(Xs)}∪anc(paL(Xs)) (13)

whereanc(Xi) is the set of ancestors of Xi.

Corollary 9 If a graph is linearly ordered for Xs and Xi is a parent of Xs, then there exists a unique
chain of nodes,chain(Xi,Xs) = {Y1, . . . ,Ym}, such thatpaL(Xs) =Ym, paL(Ym) =Ym−1, . . . , paL(Y1) =
Xi. Additionally, each parent of Xs other than Xi is either inchain(Xi,Xs) or in pa(Xi):

pa(Xs) = chain(Xi,Xs)∪{Xi}∪pa(Xi) .

Please note that chain(Xi,Xs) = /0 if and only if Xi = paL(Xs).
The following proposition generalizes this corollary to the case in whichXi is an ancestor ofXs

(not necessarily a parent):

Proposition 10 If a graph is linearly ordered for Xs and Xi is an ancestor of Xs, then there exists a
unique chain of nodes,chain(Xi ,Xs) = {Y1, . . . ,Ym}, such thatpaL(Xs) = Ym, paL(Ym) = Ym−1, . . . ,
paL(Y1) = Xi. Additionally, each ancestor of Xs other than Xi is either inchain(Xi ,Xs) or in anc(Xi):

anc(Xs) = chain(Xi,Xs)∪{Xi}∪anc(Xi) . (14)

Proof If Xi is an ancestor ofXs, then eitherXi ∈ pa(Xs)—and Corollary 9 applies—or there exists a
chain{Z1, . . . ,Zp} such thatXi ∈ pa(Z1),Z1 ∈ pa(Z2), . . . ,Zp ∈ pa(Xs). Then,

chain(Xi,Xs) = chain(Xi,Z1)∪{Z1}∪chain(Xi,Z2)∪ . . .∪{Zp}∪chain(Zp,Xs) .

Equation 14 follows from the recursive application of Equation 13 to the nodes in chain(Xi,Xs),
from Xs to Xi.
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Proposition 11 Let us have a Bayesian network linearly ordered for Xs, such that, for all j,pa(Xj)⊆
{X1, . . . ,Xj−1}. If Xi is an ancestor of Xs, then

Pr(xs|x1, . . . ,xi) = Pr(xs|xi ,pa(xi)) .

Proof Given chain(Xi,Xs) (cf. Proposition 10),

Pr(xs,y1, . . . ,ym,x1, . . . ,xi) =

Pr(xs|y1, . . . ,ym,x1, . . . ,xi)
m

∏
j=1

Pr(yj |y1, . . . ,yj−1,x1, . . . ,xi) Pr(x1, . . . ,xi) .

Since pa(Xs) ⊆ anc(Xs) ⊆ {Y1, . . . ,Ym,X1, . . . ,Xi} (see Equation 14), the Markov property implies
that

Pr(xs|y1, . . . ,ym,x1, . . . ,xi) = Pr(xs|pa(xs)) = Pr(xs|ym,pa(ym)) .

For the same reason, the fact that the graph is linearly ordered for allYj implies that

1≤ j < m, Pr(yj |y1, . . . ,yj−1,x1, . . . ,xi) = Pr(yj |pa(yj)) = Pr(yj |yj−1,pa(yj−1))

and
Pr(y1|x1, . . . ,xi) = Pr(yj |pa(yj)) = Pr(y1|xi ,pa(xi)) .

Therefore

Pr(xs|x1, . . . ,xi) = [Pr(x1, . . . ,xi)]−1∑
y1

· · ·∑
ym

Pr(xs,y1, . . . ,ym,x1, . . . ,xi)

= ∑
y1

· · ·∑
ym

Pr(xs|ym,pa(ym))
m

∏
j=1

Pr(yj |pa(yj)) .

In this equation, we apply recursively the properties that

1≤ j ≤m, ∑
yj

Pr(xs|yj ,pa(yj)) Pr(yj |pa(yj)) = Pr(xs|pa(yj))

and
1 < j ≤m, Pr(xs|pa(yj)) = Pr(xs|yj−1,pa(yj−1)) ,

in order to arrive at

Pr(xs|x1, . . . ,xi) = Pr(xs|pa(y1)) = Pr(xs|xi ,pa(xi)) .

Proposition 12 Let us have a Bayesian network linearly ordered for Xs, such that, for all j,pa(Xj)⊆
{X1, . . . ,Xj−1}. For each node Xi in XR = X\{Xs},

Pr(xi |x1, . . . ,xi−1,xs) = Pr(xi |pa(xi),xs) .
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Proof If Xi is not an ancestor ofXs, then

Pr(xi |x1, . . . ,xi−1,xs) = Pr(xi |pa(xi)) = Pr(xi |pa(xi),xs)

Otherwise,

Pr(xi |x1, . . . ,xi−1,xs) =
Pr(xi |x1, . . . ,xi−1) Pr(xs|x1, . . . ,xi)

Pr(xs|x1, . . . ,xi−1)
.

We have that
Pr(xi |x1, . . . ,xi−1) = Pr(xi |pa(xi)) .

From Proposition 11,
Pr(xs|x1, . . . ,xi) = Pr(xs|xi ,pa(xi))

and

Pr(xs|x1, . . . ,xi−1) = ∑
xi

Pr(xs|x1, . . . ,xi) Pr(xi |x1, . . . ,xi−1)

= ∑
xi

Pr(xs|xi ,pa(xi)) Pr(xi |pa(xi))

= Pr(xs|pa(xi)) .

Therefore,

Pr(xi |x1, . . . ,xi−1,xs) =
Pr(xi |pa(xi)) Pr(xs|xi ,pa(xi))

Pr(xs|pa(xi))
= Pr(xi |pa(xi),xs) .

We are now ready to prove the theorem.
Proof [Theorem 4] It is always possible to re-label the nodes inX in such a way that the parents
of a node are numbered before that node: pa(Xi)⊆ {X1, . . . ,Xi−1}. From Propositions 5 and 12, we
have

Pr(xR|xs) =
n

∏
i=1

Pr(xi |x1, . . . ,xi−1,xs) =
n

∏
i=1

Pr(xi |pa(xi),xs) .
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