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Abstract

Explanation of reasoning in expert systems is necessary for debugging the knowledge base,
for facilitating their acceptance by human users, and for using them as tutoring systems.
Influence diagrams have proved to be effective tools for building decision-support systems,
but explanation of their reasoning is difficult, because inference in probabilistic graphical
models seems to have little relation with human thinking. The current paper describes
some explanation capabilities for influence diagrams and how they have been implemented
in Elvira, a public software tool.

1 Introduction

Influence diagrams (IDs) are a probabilistic
graphical model for modelling decision prob-
lems. They constitute a simple graphical for-
malism that makes it possible to represent the
three main components of decision problems:
the uncertainty, due to the existence of variables
not controlled by the decision maker, the deci-
sions or actions under their direct control, and
their preferences about the possible outcomes.

In the context of expert systems, either prob-
abilistic or heuristic, the development of ex-
planation facilities is important for three main
reasons (Lacave and Dı́ez, 2002). First, be-
cause the construction of those systems with the
help of human experts is a difficult and time-
consuming task, prone to errors and omissions.
An explanation tool can help the experts and
the knowledge engineers to debug the system
when it does not yield the expected results and
even before a malfunction occurs. Second, be-
cause human beings are reluctant to accept the
advice offered by a machine if they are not able
to understand how the system arrived at those
recommendations; this reluctancy is especially
clear in medicine (Wallis and Shortliffe, 1984).
And third, because an expert system used as an
intelligent tutor must be able to communicate
to the apprentice the knowledge it contains, the

way in which the knowledge has been applied for
arriving at a conclusion, and what would have
happened if the user had introduced different
pieces of evidence (what-if reasoning).

These reasons are especially relevant in the
case of probabilistic expert systems, because the
elicitation of probabilities is a difficult task that
usually requires debugging and refinement, and
because the algorithms for the computation of
probabilities and utilities are, at least appar-
ently, very different from human reasoning.

Unfortunately, most expert systems and com-
mercial tools available today, either heuristic
or probabilistic, have no explanation capabili-
ties. In this paper we describe some explanation
methods developed as a response to the needs
that we have detected when building and debug-
ging medical expert systems (Dı́ez et al., 1997;
Luque et al., 2005) and when teaching proba-
bilistic graphical models to pre- and postgradu-
ate students of computer science and medicine
(Dı́ez, 2004). These new methods have been
implemented in Elvira, a public software tool.

1.1 Elvira

Elvira1 is a tool for building and evaluating
graphical probabilistic models (Elvira Consor-

1At http://www.ia.uned.es/∼elvira it is possible to
obtain the source code and several technical documents
about Elvira.



tium, 2002) developed as a join project of sev-
eral Spanish universities. It contains a graphi-
cal interface for editing networks, with specific
options for canonical models, exact and approx-
imate algorithms for both discrete and contin-
uous variables, explanation facilities, learning
methods for building networks from databases,
etc. Although some of the algorithms can work
with both discrete and continuous variables,
most of the explanation capabilities assume that
all the variables are discrete.

2 Influence diagrams

2.1 Definition of an ID

An influence diagram (ID) consists of a directed
acyclic graph that contains three kinds of nodes:
chance nodes VC , decision nodes VD and util-
ity nodes VU—see Figure 1. Chance nodes rep-
resent random variables not controlled by the
decision maker. Decision nodes correspond to
actions under the direct control of the deci-
sion maker. Utility nodes represent the deci-
sion maker’s preferences. Utility nodes can not
be parents of chance or decision nodes. Given
that each node represents a variable, we will use
the terms variable and node interchangeably.

In the extended framework proposed by
Tatman and Shachter (1990) there are two
kinds of utility nodes: ordinary utility nodes,
whose parents are decision and/or chance nodes,
and super-value nodes, whose parents are util-
ity nodes, and can be in turn of two types, sum
and product. We assume that there is a utility
node U0, which is either the only utility node or
a descendant of all the other utility nodes, and
therefore has no children.2

There are three kinds of arcs in an ID, de-
pending on the type of node they go into. Arcs
into chance nodes represent probabilistic depen-
dency. Arcs into decision nodes represent avail-
ability of information, i.e., an arc X → D means
that the state of X is known when making deci-

2An ID that does not fulfill this condition can be
transformed by adding a super-value node U0 of type
sum whose parents are the utility nodes that did not
have descendants. The expected utility and the optimal
strategy (both defined below) of the transformed dia-
gram are the same as those of the original one.

sion D. Arcs into utility nodes represent func-
tional dependence: for ordinary utility nodes,
they represent the domain of the associated util-
ity function; for a super-value node they in-
dicate that the associated utility is a function
(sum or product) of the utility functions of its
parents.

Figure 1: ID with two decisions (ovals), two
chance nodes (squares) and three utility nodes
(diamonds). There is a directed path including
all the decisions and node U0.

Standard IDs require that there is a directed
path that includes all the decision nodes and
indicates the order in which the decisions are
made. This in turn induces a partition of
VC such that for an ID having n decisions
{D0, . . . , Dn−1}, the partition contains n + 1
subsets {C0,C1, ...,Cn}, where Ci is the set
of chance variables C such that there is a link
C → Di and no link C → Dj with j < i; i.e.,
Ci represents the set of random variables known
for Di and unknown for previous decisions. Cn

is the set of variables having no link to any deci-
sion, i.e., the variables whose true value is never
known directly.

Given a chance or decision variable V , two
decisions Di and Dj such that i < j, and two
links V → Di and V → Dj , the former link



is said to be a no-forgetting link. In the above
example, T → D would be a non-forgetting link.

The variables known to the decision maker
when deciding on Di are called informational
predecessors of Di and denoted by IPred(Di).
Assuming the no-forgetting hypothesis, we have
that IPred(Di) = IPred(Di−1) ∪ {Di−1} ∪Ci =
C0 ∪ {D0} ∪C1 ∪ . . . ∪ {Di−1} ∪Ci.

The quantitative information that defines an
ID is given by assigning to each random node
C a probability distribution P (c|pa(C)) for
each configuration of its parents, pa(C), as-
signing to each ordinary utility node U a func-
tion ψU (pa(U)) that maps each configuration
of its parents onto a real number, and assign-
ing a utility-combination function to each super-
value node. The domain of each function U is
given by its functional predecessors, FPred(U).
For an ordinary utility node, FPred(U) =
Pa(U), and for a super-value node FPred(U) =⋃

U ′∈Pa(U) FPred(U ′).
For instance, in the ID of Figure 1, we have

that FPred(U1) = {X, D}, FPred(U2) = {T}
and FPred(U0) = {X, D, T}.

In order to simplify our notation, we will
sometimes assume without loss of generality
that for any utility node U we have that
FPred(U) = VC ∪VD.

2.2 Policies and expected utilities

For each configuration vD of the decision vari-
ables VD we have a joint distribution over the
set of random variables VC :

P (vC : vD) =
∏

C∈VC

P (c|pa(C)) (1)

which represents the probability of configura-
tion vC when the decision variables are exter-
nally set to the values given by vD (Cowell et
al., 1999).

A stochastic policy for a decision D is a prob-
ability distribution defined over D and condi-
tioned on the set of its informational predeces-
sors, PD(d|IPred(D)). If PD is degenerate (con-
sisting of ones and zeros only) then we say the
policy is deterministic.

A strategy ∆ for an ID is a set of policies, one
for each decision, {PD|D ∈ VD}. A strategy

∆ induces a joint distribution over VC ∪ VD

defined by

P∆(vC ,vD)

= P (vC : vD)
∏

D∈VD

PD(d|IPred(D))

=
∏

C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|pa(D)) (2)

Let I be an ID, ∆ a strategy for I and r
a configuration defined over a set of variables
R ⊆ VC ∪ VD such that P∆(r) 6= 0. The
probability distribution induced by strategy ∆
given the configuration r, defined over R′ =
(VC ∪VD) \R, is given by:

P∆(r′|r) =
P∆(r, r′)
P∆(r)

. (3)

Using this distribution we can compute the ex-
pected utility of U under strategy ∆ given the
configuration r as:

EUU (∆, r) =
∑

r′
P∆(r′|r)ψU (r, r′) . (4)

For the terminal utility node U0, EUU0(∆, r) is
said to be the expected utility of strategy ∆ given
the configuration r, and denoted by EU(∆, r).

We define the expected utility of U under
strategy ∆ as EUU (∆) = EUU (∆, ¨), where
¨ is the empty configuration. We also define
the expected utility of strategy ∆ as EU(∆) =
EUU0(∆). We have that

EUU (∆) =
∑
r

P∆(r)EUU (∆, r) . (5)

An optimal strategy is a strategy ∆opt that
maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU(∆) , (6)

where ∆∗ is the set of all strategies for I. Each
policy in an optimal strategy is said to be an
optimal policy. The maximum expected utility
(MEU) is

MEU = EU(∆opt) = max
∆∈∆∗

EU(∆) . (7)



The evaluation of an ID consists in finding
the MEU and an optimal strategy. It can be
proved (Cowell et al., 1999; Jensen, 2001) that

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψ(vC ,vD) . (8)

For instance, the MEU for the ID in Figure 1,
assuming that U0 is of type sum, is

MEU = max
t

∑
y

max
d

∑
x

P (x) · P (y|t, x)·

· (U1(x, d) + U2(t))︸ ︷︷ ︸
U0(x,d,t)

. (9)

2.3 Cooper policy networks

When a strategy ∆ = {PD|D ∈ VD} is de-
fined for an ID, we can convert this into a
Bayesian network, called Cooper policy net-
work (CPN), as follows: each decision D
is replaced by a chance node with probabil-
ity potential PD and parents IPred(D), and
each utility node U is converted into a chance
node whose parents are its functional predeces-
sors (cf. Sec. 2.1); the values of new chance
variables are {+u,¬u} and its probability is
PCPN (+u|FPred(U)) =normU (U(FPred(U))),
where normU is a bijective linear transforma-
tion that maps the utilities onto the interval
[0, 1] (Cooper, 1988).

For instance, the CPN for the ID in Figure 1 is
displayed in Figure 2. Please note the addition
of the non-forgetting link T → D and that the
parents of node U0 are no longer U1 and U2 but
T , X, and D, which were chance or decision
nodes in the ID.

The joint distribution of the CPN is:

PCPN (vC ,vD,vU )

= P∆(vC ,vD)
∏

U∈VU

PU (u|pa(U)) . (10)

For a configuration r defined over a set of vari-
ables R ⊆ VC ∪VD and U a utility node, it is
possible to prove that

PCPN (r) =P∆(r) (11)
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Figure 2: Cooper policy network (PN) for the
ID in Figure 1.

PCPN (+u|r) = normU (EUU (∆, r)) . (12)

This equation allows us to compute EUU (∆, r)
as norm−1

U (PCPN (+u|r)); i.e., the expected util-
ity for a node U in the ID can be computed from
the marginal probability of the corresponding
node in the CPN.

3 Explanation of influence diagrams
in Elvira

3.1 Explanation of the model

The explanation of IDs in Elvira is based, to a
great extent, on the methods developed for ex-
planation of Bayesian networks (Lacave et al.,
2000; Lacave et al., 2006b). One of the meth-
ods that have proven to be more useful is the
automatic colorings of links. The definitions in
(Lacave et al., 2006b) for the sign of influence
and magnitude of influence, inspired on (Well-
man, 1990), have been adapted to incoming arcs
to ordinary utility nodes.

Specifically, the magnitude of the influence
gives a relative measure of how a variable is in-
fluencing an ordinary utility node (see (Lacave
et al., 2006a) for further details). Then, the in-
fluence of a link pointing to a utility node is
positive when higher values of A lead to higher
utilities. Cooper’s transformation normU guar-
antees that the magnitude of the influence is
normalized.

For instance, in Figure 1 the link X → Y is
colored in red because it represents a positive
influence: the presence of the disease increases
the probability of a positive result of the test.
The link X → U1 is colored in blue because it



represents a negative influence: the disease de-
creases the expected quality of life. The link
D → U1 is colored in purple because the influ-
ence that it represents is undefined: the treat-
ment is beneficial for patients suffering from X
but detrimental for healthy patients.

Additionally, when a decision node has been
assigned a policy, either by optimization or im-
posed by the user (see Sec. 3.3), the correspond-
ing probability distribution PD can be used to
color the links pointing to that node, as shown
in Figure 1.

The coloring of links has been very useful in
Elvira for debugging Bayesian networks (Lacave
et al., 2006b) and IDs, in particular for detect-
ing some cases in which the numerical probabil-
ities did not correspond to the qualitative rela-
tions determined by human experts, and also for
checking the effect that the informational pre-
decessors of a decision node have on its policy.

3.2 Explanation of reasoning:
cases of evidence

In Section 2.3 we have seen that, given a strat-
egy, an ID can be converted into a CPN, which
is a true Bayesian network. Consequently, all
the explanation capabilities for BNs, such as
Elvira’s ability to manage evidence cases are
also available for IDs.

A finding states with certainty the value
taken on a chance or decision variable. A set of
findings is called evidence and corresponds to a
certain configuration e of a set of observed vari-
ables E. An evidence case is determined by an
evidence e and the posterior probabilities and
the expected utilities induced by it.

A distinguishable feature of Elvira is its abil-
ity to manage several evidence cases simultane-
ously. A special evidence case is the prior case,
which is the first case created and corresponds
to the absence of evidence.

One of the evidence cases is marked as the
current case. Its probabilities and utilities are
displayed in the nodes. For the rest of the cases,
the probabilities and utilities are displayed only
by bars, in order to visually compare how they
vary when new evidence is introduced.

The information displayed for nodes depends

on the kind of node. Chance and decision
nodes present bars and numbers correspond-
ing to posterior probabilities of their states,
P∆(v|e), as given by Equation 3. This is the
probability that a chance variable takes a cer-
tain value or the probability that the decision
maker chooses a certain option (Nilsson and
Jensen, 1998)—please note that in Equation 3
there is no distinction between chance and de-
cision nodes. Utility nodes show the expected
utilities, EUU (∆, e), given by Equation 4. The
guide bar indicates the range of the utilities.

Figure 3: ID in Elvira with two evidence cases:
(a) the prior case (no evidence); (b) a case with
the evidence e = {+y}.

Figure 3 shows the result of evaluating the
ID in Figure 1. The link T → D is drawn as
a discontinuous arrow to indicate that it has
been added by the evaluation of the diagram.
In this example, as there was no policy imposed
by the user (see below), Elvira computed the
optimal strategy. In this figure two evidence
cases are displayed. The first one is the prior
case, i.e., the case in which there is no evidence.
The second evidence case is given by e = {+y};
i.e., it displays the probabilities and utilities
of the subpopulation of patients in which the
test gives a positive result. Node Y is colored
in gray to highlight the fact that there is ev-
idence about it. The probability of +x, rep-
resented by a red bar, is 0.70; the green bar
close to it represents the probability of +x for



the prior case, i.e., the prevalence of the disease;
the red bar is longer than the green one because
P (+x|+ y) > P (+x). The global utility for the
second case is 81.05, which is smaller than the
green bar close to it (the expected utility for the
general population) because the presence of the
symptom worsens the prognosis. The red bar
for Treatment=yes is the probability that a pa-
tient having a positive result in the test receives
the treatment; this probability is 100% because
the optimal strategy determines that all symp-
tomatic patients must be treated.

The possibility of introducing evidence in
Elvira has been useful for building IDs in medi-
cine: when we were interested in computing the
posterior probability of diagnoses given several
sets of findings, we need to manually convert the
ID into a Bayesian network by removing deci-
sion and utility nodes, and each time the ID was
modified we have to convert it into a Bayesian
network to compute the probabilities. Now the
probabilities can be computed directly on the
ID.

3.2.1 Clarifying the concept of
evidence in influence diagrams

In order to avoid confusions, we must men-
tion that Ezawa’s method (1998) for introduc-
ing evidence in IDs is very different from the
way that is introduced in Elvira. For Ezawa,
the introduction of evidence e leads to a differ-
ent decision problem in which the values of the
variables in E would be known with certainty
before making any decision. For instance, in-
troducing evidence {+x} in the ID in Figure 1
would imply that X would be known when mak-
ing decisions T and D. Therefore, the expected
utility of the new decision problem would be

max
t

∑
y

max
d

P (y|+x : t, d)·(U1(+x, d) + U2(t)︸ ︷︷ ︸)
U0(+x,d,t)

.

where P (y|+x : t, d) = P (+x, y : t, d)/P (+x) =
P (y|+x : t). In spite of the apparent similarity
of this expression with Equation 9, the optimal
strategy changes significantly to “always treat,
without testing”, because if we know with cer-
tainty that the disease X is present the result

of the test is irrelevant. The MEU for this de-
cision problem is U1(+x,+d).

In contrast, the introduction of evidence in
Elvira (which may include “findings” for deci-
sion variables as well) does not lead to a new de-
cision scenario nor to a different strategy, since
the strategy is determined before introducing
the “evidence”. Put another way, in Elvira we
adopt the point view of an external observer of a
system that includes the decision maker as one
of its components. The probabilities and ex-
pected utilities given by Equations 2 and 4 are
those corresponding to the subpopulation indi-
cated by e when treated with strategy ∆. For
instance, given the evidence {+x}, the probabil-
ity P∆(+t|+x) shown by Elvira is the probabil-
ity that a patient suffering from X receives the
test, which is 100% (it was 0% in Ezawa’s sce-
nario), and P∆(+d|+ x) is the probability that
he receives the treatment; contrary to Ezawa’s
scenario, this probability may differ from 100%
because of false negatives. The expected utility
for a patient suffering from X is

EU(∆, {+x}) =

=
∑

t,y,d

P∆(t, y, d|+ x) · (U1(+x, d) + U2(t)︸ ︷︷ ︸)
U0(+x,d,t)

.

where P∆(t, y, d| + x) = P∆(t) · P (y|t,+x) ·
P∆(d|t, y).

Finally, we must underlie that both ap-
proaches are not rivals. They correspond to
different points of view when considering evi-
dence in IDs and can complement each other in
order to perform a better decision analysis and
to explain the reasoning.3

3.3 What-if reasoning: analysis of
non-optimal strategies

In Elvira it is possible to have a strategy in
which some of the policies are imposed by the
user and the others are computed by maximiza-
tion. The way of imposing a policy consists
in setting a probability distribution PD for the
corresponding decision D by means of Elvira’s

3In the future, we will implement in Elvira Ezawa’s
method and the possibility of computing the expected
value of perfect information (EVPI).



GUI; the process is identical to editing the con-
ditional probability table of a chance node. In
fact, such a decision will be treated by Elvira as
it were a chance node, and the maximization is
performed only on the rest of the decision nodes.

This way, in addition to computing the op-
timal strategy (when the user has imposed no
policy), as any other software tool for influence
diagrams, Elvira also permits to analyze how
the expected utilities and the rest of the policies
would vary if the decision maker chose a non-
optimal policy for some of the decisions (what-if
reasoning).

The reason for implementing this explanation
facility is that when we were building a cer-
tain medical influence diagram (Luque et al.,
2005) our expert wondered why the model rec-
ommended not to perform a certain test. We
wished to compute the a posteriori probability
of the disease given a positive result in the test,
but we could not introduce this “evidence”, be-
cause it was incompatible with the optimal pol-
icy (not to test). After we implemented the pos-
sibility of imposing non-optimal policies (in this
case, performing the test) we could see that the
posterior probability of the disease remained be-
low the treatment threshold even after a posi-
tive result in the test, and given that the result
of the test would be irrelevant, it is not worthy
to do it.

3.4 Decision trees

Elvira can expand a decision tree corresponding
to an ID, with the possibility of expanding and
contracting its branches to the desired level of
detail. This is especially useful when building
IDs in medicine, because physicians are used to
thinking in terms of scenarios and most of them
are familiar with decision trees, while very few
have heard about influence diagrams. One dif-
ference of Elvira with respect to other software
tools is the possibility of expanding the nodes in
the decision tree to explore the decomposition of
its utility given by the structure of super-value
nodes of the ID.

3.5 Sensitivity analysis

Recently Elvira has been endowed with some
well-known sensitivity analysis tools, such as
one-way sensitivity analysis, tornado diagrams,
and spider diagrams, which can be combined
with the above-mentioned methods for the ex-
planation of reasoning. For instance, given the
ID in Figure 1, one-way sensitivity analysis on
the prevalence of the disease X can be used to
determine the threshold treatment, and we can
later see whether the result of test Y makes the
probability of X cross that threshold. In the
construction of more complex IDs this has been
useful for understanding why some tests are nec-
essary or not, and why sometimes the result of
a test is irrelevant.

4 Conclusions

The explanation of reasoning in expert systems
is necessary for debugging the knowledge base,
for facilitating their acceptance by human users,
and for using them as tutoring systems. This is
especially important in the case of influence dia-
grams, because inference in probabilistic graph-
ical models seems to have little relation with
human thinking. Nevertheless, in general cur-
rent software tools for building and evaluating
decision trees and IDs offer very little support
for analyzing the “reasoning”: usually they only
permit to compute the value of information, to
perform some kind of sensitivity analysis, or to
expand a decision tree, which can be hardly con-
sidered as explanation capabilities.

In this paper we have described some facili-
ties implemented in Elvira that have been useful
for understanding the knowledge contained in
a certain ID, and why its evaluation has led to
certain results, i.e., the optimal strategy and the
expected utility. They can analyze how the pos-
terior probabilities, policies, and expected util-
ities would vary if the decision maker applied a
different (non-optimal) strategy. Most of these
explanation facilities are based on the construc-
tion of a so-called Cooper policy network, which
is a true Bayesian network, and consequently all
the explanation options that were implemented
for Bayesian networks in Elvira are also avail-



able for IDs, such as the possibility of handling
several evidence cases simultaneously. Another
novelty of Elvira with respect to most software
tools for IDs is the ability to include super-value
nodes in the IDs, even when expanding the de-
cision tree equivalent to an ID.

We have also mentioned in this paper how
these explanation facilities, which we have de-
veloped as a response to the needs that we
have encountered when building medical mod-
els, have helped us to explain the IDs to the
physicians collaborating with us and to debug
those models (see (Lacave et al., 2006a) for fur-
ther details).
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