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Abstract

Algorithms for learning Bayesian networks (BNs) behave as a black box that takes a
database as an input and returns a network as the output. In contrast, OpenMarkov,
our tool for probabilistic graphical models, includes the option to run the algorithms in
a step-by-step fashion, presenting a ranked list of operations (such as adding, removing,
or inverting links) the user can select, while allowing live edition of the BN throughout
the learning process. The application offers some data preprocessing options and the
possibility to use a model network to guide the learning process. This functionality in
OpenMarkov can be employed to learn BNs with partial expert knowledge, to debug new
algorithms, and as a pedagogical tool.

1 Introduction

A probabilistic graphical model (PGM) consists
of a joint probability distribution defined on a
set of variables V and a graph containing a
node for each variable X in V; the structure
of the graph imposes some relations of con-
ditional independence on the structure of the
network, which depend mainly on the type of
graph. Some types of PGMs are Bayesian net-
works (BNs), Markov networks, influence dia-
grams, hidden Markov models, factored MDPs
and POMDPs, etc.1

In many cases PGMs are built from expert
knowledge: causal relations are used to draw
the arcs of the graph, and the conditional prob-

1www.cisiad.uned.es.

abilities are obtained from the literature (for
example, medical journals), from databases, or
from experts’ estimations. The difficulty and
tediousness of this approach has led to an in-
creasing interest for learning methods that can
generate PGMs from databases automatically.
This is the preferred approach when there is a
large database with few or none missing values,
and no causal knowledge. However, in many
cases the size of the database does not allow to
learn a PGM that accurately represents the con-
ditional independencies existing in the domain
of application. Practitioners of these methods
often encounter that the PGM obtained con-
tains some links that the expert considers as ob-
viously spurious, but given that in general the
algorithms perform as black boxes, it is diffi-
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cult to determine to what degree those links are
really supported by the data.

Another problem is that most learning algo-
rithms do not return causal models. In the
last decade the number of studies aimed at
obtaining causal models from databases has
grown exponentially (the UAI Conference held
in Barcelona in July 2011 was a clear illustration
of this phenomenon). However in many cases
the problem does not lie in the algorithm but
on the lack of information in the database: the
only conclusion that can be drawn reliably from
a set of data—provided that it is big enough and
not biased—is the set of correlations that exist
in the real world. These correlations rule out
some causal models, but the number of mod-
els compatible with the data is usually very
large. Many of those models clash with com-
mon knowledge of the experts, but it is not easy
to feed that knowledge into automatic causal
learning algorithms. For this reason, it would
be useful to have interactive learning algorithms
that propose a list of changes to improve the
accuracy of the network but allow an expert to
select only those that do not contradict his/her
knowledge.

Secondly, interactive learning could be also
of great interest for researchers and developers
of new algorithms. An interactive learning tool
able to show on a graphical interface the dif-
ferent actions that the algorithm is considering
at each step and the scores assigned to them
may be very useful to debug the algorithm, for
example, by observing how a shift in some of
the parameters leads to a different selection of
actions.

Thirdly, interactive learning programs may
have a high pedagogical value by allowing the
students to know the actions that the algorithm
has evaluated at each step and why it has se-
lected each action. Then it is possible to run
a different algorithm, for example with a dif-
ferent search strategy or a different metric, and
observe why it selects different actions at each
step.

For these reasons we decided to implement an
interactive learning module on OpenMarkov, an
open-source software tool for editing and eval-

uating PGMs. The interactive learning mod-
ule includes a user-friendly graphical interface
that allows to overcome all the above-pointed
problems, with the corresponding benefit for ex-
perts, researchers, developers and students.

The rest of this paper is structured as fol-
lows. In Section 2 we give a brief overview
of Bayesian network learning and of the Open-
Markov tool. Section 3 describes the different
options available to the user for learning BNs
interactively in OpenMarkov. Section 4 presents
a case study: how to learn interactively the BN
Alarm, a model frequently used in the literature
as a benchmark for learning algorithms. In Sec-
tion 5 we discuss the advantages of our approach
and similar approaches, and Section 6 contains
the conclusions and proposals for future work.

2 Background

2.1 Learning Bayesian networks

Learning Bayesian networks is one of the most
important research areas in the field of BNs.
Every year, around one third of the total publi-
cations in that area are related to automatic
learning. Just like in manual construction,
automatic learning of BNs presents two as-
pects: parametric learning and structural learn-
ing. Parametric learning consists of computing
the conditional probabilities given by the struc-
ture of the network using the observed frequen-
cies on the database. Structural learning tries
to find the graph that best represents the prob-
ability distribution based on the frequencies in
the database.

Structural learning methods There are
two main methods for building the graph of
a BN from a database. The first one consist
of detecting the probabilistic conditional inde-
pendencies present in the database. The most
famous algorithm of this type is the PC algo-
rithm (Spirtes and Glymour, 1991; Spirtes et
al., 2000). The second method, called search
and score, consists of performing a heuristic
search through the space of possible structures,
using a metric that measures how well each
structure can represent the probability distri-
bution of the variables in the database. Several



metrics have been proposed in the literature:
Bayesian (which include K2 and BDe as par-
ticular cases), cross-entropy, AIC, and MDL—
see (Bouckaert, 2004) for references. K2, the
first algorithm of this type, performed a search
by departing from a network without links and
adding at each step the link leading to the high-
est score, provided that the score was positive
(Cooper and Herskovits, 1991). The method
that proceeds by examining one operation at
each step (adding, removing, or inverting a link)
is called hill climbing.

2.2 OpenMarkov

This project started in 2002 at the Department
of Artificial Intelligence of the Universidad Na-
cional de Educación a Distancia (UNED), in
Madrid, Spain. Its original name was Carmen
(Arias and Dı́ez, 2008), but in 2010 it was re-
named as OpenMarkov.2 We departed from our
experience in the construction of Elvira (Elvira
Consortium, 2002),3 an open-source tool begun
in 1997 as a joint project of several Spanish uni-
versities, but everything in the new program
was redesigned and the code of OpenMarkov was
built from scratch. The language chosen to de-
velop OpenMarkov was Java, mainly to make it
multi-platform.

OpenMarkov is able to represent several
types of networks, such as Bayesian networks,
Markov networks, influence diagrams, LIM-
IDs, and decision analysis networks (DANs),
as well as several types of temporal mod-
els: dynamic Bayesian networks, Markov pro-
cesses with atemporal decisions (MPADs),
MDPs, POMDPs, Dec-POMDPs, and dynamic
LIMIDs—see (Arias et al., 2011) for definitions
and references. Currently it can only evalu-
ate Bayesian networks, influence diagrams, and
MPADs. Each network type is defined by a set
of constraints (Arias et al., 2011, Appendix A),
which leads to the possibility of defining new
types of networks easily by combining the ex-
isting constraints and, if necessary, by adding
new ones. Constraints play also an important

2www.openmarkov.org.
3www.ia.uned.es/~elvira.

role in the learning of BNs, as we will discuss
below.

There are three types of variables in Open-
Markov: finite-states, numerical, and dis-
cretized. A discretized variable has a finite set
of states, each one having an associated numeric
interval.

The graphical user interface (GUI) is very
similar to those of other software tools for
PGMs, especially to that of Elvira. It has
two working modes: edition and inference. It
has been designed for internationalization; cur-
rently messages can be displayed in English and
Spanish. For further details, see OpenMarkov’s
web pages and wiki.4

3 Options for learning BNs in
OpenMarkov

In this section we describe the main options
that OpenMarkov offers for learning BNs inter-
actively.

3.1 Using a model network

OpenMarkov gives the user the option to use an
existing network as a model for the one that will
be learned. There are four options. The first is
to use the model only to determine the posi-
tions of the nodes. When we learn a network
from a database we can place the nodes on the
screen by dragging them with the mouse, try-
ing to minimize the number of links crossing one
another; but if we learn another network from
the same database (for example, using different
options for the algorithm), we should drag re-
place the nodes again. OpenMarkov facilitates
this task by placing the nodes in the same po-
sitions as in a network built previously.

The other three options are whether the al-
gorithm can add, remove, or invert the links
present in the model network. They are useful,
for example, when we wish that the algorithm
preserves all the links in the model network.
The first option (i.e., using the model only to
place the nodes) is incompatible with the other
three, which are compatible with one another.

4www.openmarkov.org, wiki.openmarkov.org.
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There are other uses of the model network,
that we describe below.

3.2 Data preprocessing

Unfortunately data in the databases is usually
not suitable to be directly fed to the learning
algorithm and has to be preprocessed. Open-
Markov offers the following options.

Selection of variables Usually raw data-
bases contain information that is irrelevant for
the model (e.g. the patient’s name). Open-
Markov can learn a network that contains all
the variables in the database, but it is also pos-
sible to tell it to use only those present in the
model network. The third possibility is to select
the variables one by one from a list.

Discretization of numeric variables Cur-
rently OpenMarkov can only learn BNs with
variables having finite states. Therefore, the
numeric variables in the database must be dis-
cretized before feeding the data to the learning
algorithm. OpenMarkov can discretize a vari-
able in different ways. First, the user can in-
dicate a number of intervals and then indicate
whether the intervals must have the same width
(considering the maximum and the minimum
for that variable in the database) or the same
frequency (i.e., the number of database registers
for every interval will be the same). Second, if
the variable is discretized in the model network,
its intervals can be used to assign each num-
ber in the database to a state. For example, if
a variable has three states, “negative”, “null”,
and “positive”, with three associated intervals,
(−∞, 0), [0, 0], and (0,+∞), respectively, these
intervals can be used to discretize the values in
the database. This way, creating a model net-
work is a way of specifying how numeric vari-
ables should be discretized.

Imputation of missing values Currently
OpenMarkov offers only two ways to fill in the
gaps in the database: either to ignore every reg-
ister that contains at least one missing value, or
to write the value “missing” in every empty cell,
which is then treated as if it were an ordinary
value.

3.3 List of suggested edits

In OpenMarkov an edit is an atomic modifica-
tion of a data structure. There are three ed-
its that an interactive learning algorithm can
propose: adding, removing, or inverting a link.
The list is composed by sorting the edits accord-
ing to their scores. The hill climbing algorithm
computes the scores using the metric selected
by the user. The PC algorithm performs many
statistical test in which the null hypothesis is
that two variables are not correlated given other
variables. Roughly speaking, a high p resulting
from the test suggests that two variables are
conditionally independent, i.e., that a link can
be removed. Therefore, the p value can be used
as a score to rank the edits, each edit being the
removal of a link.

Interactive learning is performed by having
two windows: one showing the graph of the net-
work and another one showing the proposed ed-
its. The user can select any edit from the list,
not necessarily the one having the highest score,
and the change will be immediately displayed on
the network window. Alternatively, the user can
add or remove any link from the graph. In both
cases, the scores will be recalculated and a new
list will be proposed. Figure 1 shows the lists
of suggested edits shown during the interactive
learning process.

Additional options There are additional op-
tions to control the flow of the algorithm. One
of them is tell OpenMarkov to show only the
edits having a positive score. Another option
is to show only the edits allowed by the con-
straints associated to the network. For exam-
ple, a constraint stemming from the definition
of the BN is that the graph cannot contain cy-
cles. A constraint that the user can impose is
that a node cannot have more than n parents.
If the user selects the “Show only allowed edits”
option, those incompatible with the constraints
will not be shown in the list, even if they have
a high score.

Finally, the user has the possibility of block-
ing a certain edit to prevent the system from
offering it again and again. Blocked edits can
be later unblocked at any moment.



Figure 1: A moment of the interactive learning process: list of edits proposed by OpenMarkov and
the network being learned.

4 Case study

In order to explore the benefits of interactive
learning, we study the case of learning the well-
known ALARM network (Beinlich et al., 1989),
which has 37 nodes and 46 links. The nodes
are classified into three levels. The first level
contains diagnostic nodes, which have no pre-
decessors. The second level contains interme-
diate variables, representing pathophysiological
anomalies that cannot be observed directly. The
third contains measurement nodes, which repre-
sent clinical variables that can be observed or
measured, and do not have children. The net-
work contains no link from a lower level to an
upper level.

Using this network we generated a database
containing 10,000 samples and applied the hill-
climbing algorithm with the K2 metric. We
applied the learning algorithm automatically in
OpenMarkov, resulting in a model with 50 links,
13 of which were not in the original network,
even though 6 of them were inverted links of
the original network. On the other hand, 9 of
the original links were missing in the network
learned.5

Then we learned the network interactively us-
ing elementary causal knowledge, according to

5The files used in this study are available at www.
openmarkov.org/learning so that the results can be re-
produced by other researchers.

which we did not accept the addition of any link
from a measurement node to an intermediate
or a diagnostic node, nor from an intermediate
node to a diagnostic node. Figure 2 shows an
example of a moment in the interactive learning
process where the edit with the highest score co-
travenes the causal knowledge. In this case, we
chose to apply the second edit, which produces
the same link but in the opposite direction.

The resulting net contained 47 links: only 2 of
them were not in the original network and only
one of the original links was missing. The two
links “invented” by the learning algorithm were
the last to be added and had such a low score
that they might have been detected as spuri-
ous by the expert. We also observed that the
missing link, from INSUFFANESTH to CATE-
CHOL, has a very weak influence in the original
network.

This experiment shows that even a portion of
very rudimentary knowledge about the domain
may lead to a significant improvement in the
network built by our interactive learning algo-
rithm.

5 Discussion

5.1 Advantages of our approach

As mentioned in the introduction, a problem
of learning algorithms is that they often create
spurious links due to small correlations exist-

http://www.openmarkov.org/learning
http://www.openmarkov.org/learning


Figure 2: The edit suggested at the top of the list contravenes our causal knowledge because
VENTLUNG is an intermediate variable and INTUBATION is a diagnostic variable.

ing in the database. Another problem is that in
general the models obtained are not causal, not
only because of the inherent limitation of most
algorithms, but mainly because the information
contained in the database does not permit to
distinguish whether X is a direct cause of Y ,
or X is a cause of Y , or if there is a directed
causal path between them involving other vari-
ables, or they have a common cause, or there is
a selection bias in the database (Glymour and
Cooper, 1999; Druzdzel and Dı́ez, 2003).

OpenMarkov allows human users, who may be
experts in their respective areas but novices in
the field of probabilistic modelling, to supervise
the execution of learning algorithms. The algo-
rithm proposes some incremental modifications
of the network, based on the information con-
tained in the database, and the user has the
opportunity to apply some of the changes pro-
posed by the tool or impose others at any mo-
ment of the learning process, based on their ex-
pertise. Even if this might lead to a lower qual-
ity of the network according to the metric, the
result might be better from the point of view
of users’ acceptability, because human experts
are reluctant to accept the advice of a machine
if they cannot follow its reasoning (Teach and
Shortliffe, 1984).

An interactive learning tool might as well be
useful for researchers that have developed a new
algorithm and wish to trace its execution in or-
der to debug or fine-tune it. This process can

be done by inserting in the algorithm a few lines
of code that print a trace on the standard out-
put or in a file, but it is much nicer to observe
graphically the operations performed by the al-
gorithm, step by step, together with the qualita-
tive information associated with the next modi-
fications that the algorithm has evaluated. Ob-
viously, this requires that the researchers im-
plement the new functionality (such as a new
metric, a new search technique, or a completely
novel learning method). OpenMarkov’s architec-
ture has been carefully to permit these exten-
sions: each new method can be implemented
as a Maven subproject, that OpenMarkov will
detect at run time as a plug-in.6 This way, re-
searchers can extend OpenMarkov dynamically
without modifying the “official” source code.

Finally, an interactive learning program may
be useful as a pedagogical tool to explain the
performance of different algorithms: rather
than observing the input and the output, stu-
dents may follow the progression of the algo-
rithm step by step, understanding why each
change was selected, seeing the effects of tak-
ing different actions to those proposed by the
system and comparing different algorithms.

5.2 Related work

Interactive structural learning was proposed by
Sucar and Mart́ınez-Arroyo (1998) as a means

6See https://bitbucket.org/cisiad/org.
openmarkov/wiki/OpenMarkov-organization.pdf.
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for human-computer collaboration in the search
for the optimal network structure. Their system
initially builds a tree automatically and then al-
lows the user to modify it by adding, removing
or inverting arcs. The strength of the correla-
tion between the variables connected by a link
is denoted graphically by the width of the link.
It also shows a score representing the quality of
the model, which is inversely related with the
complexity of the network and the distance be-
tween the probability distributions specified by
the network and the data.

Our work, developed independently, is also
based on the idea of combining a learning algo-
rithm and expert knowledge to build a model
interactively. The main difference is that our
system guides the expert through the creation
process step-by-step instead of providing the fi-
nal result of the learning algorithm and asking
the expert to fine tune it. We think that our
approach contributes to a better understanding
of the behavior of the learning algorithm and
therefore makes collaboration with the expert
easier.

The idea of showing a score that represents
the quality of the model is also present somehow
in our approach, because the scores associated
to each edit in the score and search algorithm
represent the increment in the quality of the
model, given by the complexity of the network
and the distance between the probability distri-
bution of the network and that of the data.

In the future, we will implement in Open-
Markov the possibility of representing the type
of correlation (positive, negative, or null) by a
color and the strength of the correlation by the
thickness of the link, as we did in Elvira (Lacave
et al., 2006; Lacave et al., 2007), thus making
our approach more similar to that of Sucar and
Mart́ınez-Arroyo.

Later de Campos and Castellano (2007) en-
coded expert knowledge in the form of a set of
restrictions that the learning algorithm had to
satisfy. They used three types of restrictions:
presence of a link, absence of a link, and partial
ordering of the variables. They proved that, for
several data sets, this approach improved the
quality of the networks learnt. Our work is sim-

ilar in that, by means of the model network,
we can impose or prevent the presence of some
links in the network learnt, but we do not have
yet partial order restrictions. However, it would
be easy to implement any restriction—not only
those used by de Campos and Castellano—as
an OpenMarkov constraint, as explained in Sec-
tion 3.3. Another difference is that in Open-
Markov it is possible to specify whether the
model network imposes the presence or absence
of a link, or it only “suggests” them as a start-
ing point, that can be overriden depending the
scores computed by the algorithm.

Another similarity between their work and
ours is that both of them have been combined
with score-and-search and independence-based
algorithms. However, the main difference is that
their approach is not interactive: their restric-
tions must be declared before the execution of
the algorithm, which then runs automatically,
while in OpenMarkov every action proposed by
the algorithm can be accepted or rejected by
the user, who can also impose any action at any
moment of the process, thus giving full control
to the user.

6 Conclusions and Future Work

In this paper we have described an interactive
learning approach for learning Bayesian net-
works from databases, which may be very use-
ful for the experts in different application do-
mains, as well as for researchers and students in
the field of PGMs. We have shown with a case
study that even very rudimentary causal knowl-
edge about the domain may lead to a significant
improvement of the network build interactively
with a learning algorithm.

The main lines for future development
would be to borrow some ideas from the
work of Sucar and Mart́ınez-Arroyo (1998) and
de Campos and Castellano (2007), such as rep-
resenting graphically the strength of the corre-
lation between variables and having richer types
of constraints. It would be also useful to show
an absolute quality measure of the net rather
than the incremental one we currently have,
given by the complexity of the network and the



distance between the probability distribution of
the network and that of the data. This quality
measure could be used to compare the result-
ing nets of the interactive and non-interactive
learning processes.

Another research line would be to adapt
our approach to learning Bayesian classifiers, a
somewhat different problem, as the objective is
not to build the network that better represents
the probability distribution of the data, but the
network that better classifies new cases.
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