POMDPs in OpenMarkov and ProbModelXML

M. Arias? F. J. Diez*

M. A. Palacios-Alonso?

M. Yebra® J. Fernandez?

'Dept. Artificial Intelligence. UNED. Juan del Rosal, 16. 28040 Madrid. Spain

2Computer Science Department. National Institute of Astrophysics, Optics and Electronics.
Luis Enrique Erro 1. 72840 Tonantzintla. Mexico

3HC Energia. Plaza de la Gesta, 2. 33007 Oviedo. Spain

ABSTRACT

OpenMarkov is an open-source tool for editing and evaluating
probabilistic graphical models, such as Bayesian networks,
influence diagrams, MDPs, POMDPs, Dec-POMDPs, etc.
ProbModelXML is a format for encoding probabilistic graph-
ical models. In this paper we explain how to edit MDPs and
POMDPs using OpenMarkov’s graphical user interface, and
how these models can be stored in ProbModelXML.

1. INTRODUCTION

Markov decision processes (MDPs) were developed around
the mid-20th century as a tool for planning, more specifi-
cally, for solving multistage decision problems in which the
outcomes are partly random and partly under the control of
a decision maker [4]. The main limitation of those models
was the assumption that the state of the system is always
known with certainty, which is unrealistic in most cases. The
relaxation of this assumption led to the emergence of par-
tially observable Markov decision processes (POMDPs) |3,
in which the state of the system is not directly observable,
bLE_;] there is a variable that correlates probabilistically with
it

A probabilistic graphical model (PGM) consists of a prob-
ability distribution P defined on a set of variables V and a
graph G such that each node in the graph represents one of
the variables of V and the structure of the graph represents
the probabilistic relations in P. Roughly speaking, we can
say that in general each link in G represents a dependency
in P and each link absent in GG represents a relation of con-
ditional independency in P. The exact relation between G
and P depends on the type of PGM, mainly on whether
the links in G are directed or undirected. The first types of
PGMs were influence diagrams [16] and Bayesian networks
122].

Some types of PGMs have a dynamic version (in this con-
text, “dynamic” is a synonym for “periodic”), in which each
node represents a variable (a real-world property) in a par-
ticular instant of time, as shown in Figure These dy-
namic PGMs generalize Markov models developed several
decades earlier. Thus, dynamic Bayesian networks [8] gen-

'In this paper we reserve the term “MDP” for fully-
observable Markov decision processes, and will write
“(PO)MDP” to refer to both MDPs and POMDPs.

The Seventh Annual Workshop on Multiagent Sequential
Decision-Making Under Uncertainty (MSDM-2012), held in
conjunction with A AMAS, June 2012, in Valencia, Spain.

eralize Markov chains and hidden Markov models [20]; fac-
tored MDPs [5} |6] and factored POMDPs (7] generalize flat
(i.e., non-factored) MDPs and POMDPs, respectively.

Factored (PO)MDPs can model efficiently many problems
that in practice could not be represented with flat models,
and new algorithms developed in the last years are able to
solve problems several orders of magnitude bigger than those
affordable in the recent past |14} 23] [25].

In practice, the use of PGMs and (PO)MDPs requires two
steps: building a model and doing inference on that model.
There are many tools for building Bayesian networks and in-
fluence diagrams using a graphical user interface (GUI)—see
Section [2.2}—but to our knowledge only one of them, Netica,
claims that it can be used to build (PO)MDPs; however it
uses a non-standard representation, and is not open-source
(see again Sec. , Therefore, the usual way of building a
(PO)MDP is to generate an ASCII file using a text editor—
or an XML editor, in its case—, which makes the process
difficult, time-consuming, and prone to errors. In the field of
robotics, where the practitioners of (PO)MDPs are usually
computer scientists or engineers, this task is a burden but
not an obstacle for the use of this type of models. On the
contrary, it is extremely rare to find a health professional
with the expertise and the patience necessaries to build a
(PO)MDP using a text editor. For this reason, it might be
very helpful to have a software tool with a friendly GUI for
building (PO)MDPs, especially in some domains, such as
medicine [12|. That tool should be open-source in order to
allow researchers to modify and extend it.

We have mentioned in passing the need of a format for
storing the models. Several formats have been proposed
for PGMs, but only of them is able to encode Bayesian net-
works, influence diagrams, and factored (PO)MDPs: DNET,
which is the native format of Netica. However, to our knowl-
edge this format has never been used to build a (PO)MDP
for a real-world application; in Sections and we dis-
cuss the reasons that may explain it.

In this context, we decided to build OpenMarkO\B an
open-source tool for building and evaluating several types
of PGMs, including Bayesian networks, influence diagrams,
and several types of Markovian models. We are also devel-
oping ProbModelXML, an XML format for encoding those
models, with a wide variety of potentials, including tables,
trees, ADDs, and canonical models, such as the noisy OR,
noisy MAX, noisy AND, etc. [10].

The purpose of presenting our work at the MSDM-2012
workshop is threefold. First, to offer our tools to the com-

2w openmarkov.org.

http://www.openmarkov.org

4 OpenMarkov

File Edit Inference Wiew Window Tools Help

D||@|et] @fwor Z]@| 7| & |m|@]|x]o||[» o|m|e]]

L] *coffee-robot.pgmsx

(User has coffee [0])

(Robot has coffee [0]

Robot is wet [0]

wl User has coffee [1])
r—ar s

Robot has coffee [1])

| Robotis wet[1]

A

Raining outside [0] }

Wet pavement [1]

[Robot has umbrella [0])

/‘-—1 Raining outside [1]
»{ Robot has umbrella [1]

[Robot's location [0]

Afs location [1])

Battery state [0]

Action [0]

Battery state [1]

Charge observed [1] j

Reward for coffee [0]

"y

Cost of action [0]

Cost of being wet [0]

Figure 1: A factored POMDP as shown in OpenMarkov.

munity of (PO)MDPs practitioners. Second, to receive their
feedback: if a significant number of potential users demand
a new feature in OpenMarkov and/or in ProbModelXML, we
will consider the possibility of adding it. And third, to find
researchers interested in integrating in OpenMarkov the algo-
rithms they have already implemented. This would not only
be useful for evaluating (PO)MDPs inside OpenMarkov’s
GUI; it would permit to use OpenMarkov as a workbench
for comparing the performance of different algorithms, pro-
vided that they use the same basic data structures, to make
the comparison meaningful.

The rest of this paper is structured as follows: Section
presents background material about dynamic models and
reviews some of the software tools and formats for PGMs
and (PO)MDPs developed in the past. Section [3| offers an
overview of OpenMarkov and Section [4] describes briefly the
ProbModelXML format. Section [5| explains how to build
(PO)MDPs using OpenMarkov’s GUI and how multiagent
models are stored in ProbModelXML. Finally, Section [7]sum-
marizes the conclusions and discusses some lines for future
research.

2. STATE OF THE ART

2.1 Dynamic models

As mentioned in the introduction, in a dynamic model,
some variables are indexed by time: t € {0,...,h}, where h

is the horizon of the model, which can be inﬁniteEl If there
is a variable X* for a certain t, then there is also a variable
X" foreach t’ € {0,...,h}—see Figure where the number
between brackets denotes the index t. The subgraph that
contains all the nodes X' having the same temporal index ¢
and the links between them is known as the ¢-th time slice.

A constraint of dynamic models is that they can not have
links to the past, i.e., of the form X* — Y" with ¢t > ¢. If
there is a k € NT such that every link X' — Y satisfies
that ¢ — ¢ < k (which means that all the parents of a node
Y*" are in the ¢'-th slice or in the previous k slices), and this
property is not satisfied for any smaller value of k, we say
that the model is of k-th order. In practice, it is usual to
work with first-order models (k = 1).

A node X is stationary after k if it has the same neighbors
and the same potentials (probabilities and utilities) after the
k-th slice. Put formally, for each ¢t > k,

e there is a link between X* and Y? if and only if there
is a link of the same type between X* and Y*;

e if there is a conditional probability P(z*|pa(X*)), then
P(z'lpa(X")) = P(a"|pa(X*));

3In standard MDPs and POMDPs all the variables are in-
dexed by time. However, we admit the possibility of atem-
ral variables, whose value does not change with time—see
2

e if there is a utility function U¥(pa(U*)), then
U'(pa(U")) = U* (pa(U*));

and some of these properties are not fulfilled for any k' < k.

A dynamic model is stationary after k if all its nodes are
stationary after k£ and there is no other ¥’ < k that makes
the model stationary. Such a model admits a compact rep-
resentation that contains only the first k slices. Station-
ary first-order models, which constitute the most common
case, can be represented by only the first two time slices. In
particular MDPs and POMDPs are almost always station-
ary and first-order, and usually have infinite horizons, and
for these reasons their standard representation is a two-slice
model, as in Figure

2.2 Software tools for PGMs and (PO)MDPs

Several computer packages for PGMs have been developed
in the last years; nearly all of them are contained in Kevin
Murphy’s listE| Table |3 shows those that are open-source.
Some of them have GUIs for building PGMs, but all of them,
except OpenMarkov, limit themselves to Bayesian networks
and influence diagrams, i.e., they offer no support for (PO)-
MDPs.

Conversely, there exist several open-source tools for (PO)-
MDPs, such as Anthony Cassandra’s pomdp—solWEI, Jesse
Hoey’s SPUDD [14E|, Pascal Poupart’s Symbolic Perseus
[23]'} and the APPL tool developed at the National Univer-
sity of Singaporﬂ but none of them has a GUI for editing
and evaluating this type of models.

There is only one tool for Bayesian networks and influence
diagrams that claims to offer support for POMDPs: Neticaﬂ
but it is not open-source; it is a commercial program devel-
oped by a private company, Norsys. Additionally, the ability
to build (PO)MDPs is claimed only once: in the introduction
of the specification of Netica’s DNET format (see below). In
any case, Netica does not represent POMDPs in the stan-
dard way, i.e., in the form of a two-slice model (see Fig. ,
but by means of labeled links, such that each variable X is
represented by a single node in the model (instead of having
anode X' for each time slice t) and a link from X to Y with
a label n in the compact model represents a link from X' to
Y**" for every ¢ in the expanded model. Another limitation
of Netica and DNET is that they cannot represent trees nor
ADDs, which are almost indispensable when building real-
world applications. Finally, the most important limitation
of Netica with respect to (PO)MDPs is that apparently it
offers no specific algorithm for evaluating this type of mod-
els; the only way of evaluating them consists of expanding
the network up to a certain horizon and obtaining its poli-
cies as if it were an influence diagram, but in general this
approach is unfeasible except for very small problems and
very short horizons.

2.3 Formats for PGMs and (PO)MDPs

Several formats have been proposed for storing PGMs.
In general, each format has been developed for a partic-
ular software tool: DNET was developed for Netica, DSC

4www.cs.ubc.ca/“murphyk/Software/bnsoft . html

Spomdp . org/pomdp/code.
www.computing.dundee.ac.uk/staff/jessehoey/spudd.

Twww.cs.uwaterloo.ca/ ppoupart/software.html|

8bigbird.comp.nus.edu.sg/pmwiki/farm/appl.

Tvww. norsys.com/netica.htmll

and XBN for Microsoft’s MSBNx, XDSL for Smile and GE-
NIE, etc. (The references for these formats and tools can be
found in [2].) The only format intended to become a kind
of standard is)(MLBIF1E7 proposed by Fabio Cozman with
suggestions from a few other people. Unfortunately, this for-
mat is restricted to the representation of Bayesian networks
with finite-state variables.

Similarly, several formats have been developed for (PO)-
MDPs, each one designed for a particular software tool:
there is format for Cassandra’s pomdp-solve, another one
for Hoey’s SPUDD, the PomdpXML format for APPL...
(Again, the references for these formats and tools can be
found in [2|.) SPUDD’s format is able to encode factored
POMDPs, but Cassandra’s format and Pomdp XML can only
represent flat POMDPs. A drawback of SPUDD’s format is
that it is not XML; it uses a Lisp-like syntax with some
peculiarities that make it difficult to build a parser.

Two additional formats were proposed to encode the prob-
lems proposed at the Probabilistic Planning Track of the In-
ternational Planning Competition (IPC). The Probabilistic
Planning Domain Definition Language (PPDDL)E used at
the 4th and 5th IPC in 2004 and 2006 respectively, was able
to encode factored MDPs with finite-state variables. The
Relational Dynamic Influence Diagram Language (RDDL),
used at the 7th IPC in 2011, was able to represent rela-
tional (PO)MDPs with both finite-state and continuous vari-
ables These formats were not intended to encode non-
temporal Bayesian networks and influence diagrams, but
they has enough expressive power to represent them as well.

3. OPENMARKOV

This project started in 2003 at the Department of Artifi-
cial Intelligence of the Universidad Nacional de Educacién a
Distancia (UNED), in Madrid, Spain. Its original name was
Carmen [1], but in 2010 it was renamed as OpenMarkov. We
departed from our experience in the construction of Elvira
[13|H an open-source tool begun in 1997 as a join project
of several Spanish universities, but everything in the new
program was redesigned and the code of OpenMarkov was
built from scratch.

Programming language

The development language for OpenMarkov is Java, mainly
in order to allow it to run on different platforms. Since
the beginning we used version 1.5, which introduced new
syntactical features, such as typed collections (for instance,
ArrayList<CertainClass>) and enhanced loops, which sig-
nificantly facilitate the iteration on lists.

Data structures

A probabilistic network is represented in OpenMarkovas a
generic data structure consisting mainly of a graph, a set of
variables, and a set of potentials. Each type of network is
defined by a set of constraints, as shown in Table [J] It is
possible to implement new types of networks easily by com-
bining the existing constraints and, if necessary, by adding
new ones.

10sites.poli.usp.br/p/fabio.cozman/Research/
InterchangeFormat.

Hyww . tempastic.org/papers/CMU-CS-04-167 . pdf.

12ysers.cecs.anu.edu.au/"ssanner/IPPC_2011/RDDL. pdf.

134ww.ia.uned.es/ elvira/.

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
http://pomdp.org/pomdp/code
http://www.computing.dundee.ac.uk/staff/jessehoey/spudd
http://www.cs.uwaterloo.ca/~ppoupart/software.html
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl
http:// www.norsys.com/netica.html
http://sites.poli.usp.br/p/fabio.cozman/Research/InterchangeFormat
http://sites.poli.usp.br/p/fabio.cozman/Research/InterchangeFormat
http://www.tempastic.org/papers/CMU-CS-04-167.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://www.ia.uned.es/~elvira/

>
g
g 8 <)
Z g | 2 =

g 5‘% g H o) % 5 ﬁ = =) Ay

4 % 2 Z 8| o I © Z Z, /M

= = & = & =) o M > = o
Bayesian networks yes yes yes yes yes yes yes yes yes yes yes
Influence diagrams no no yes yes no yes yes no no no no
Dynamic models no no no yes no no yes no no no no
Programming language | Java | Java | Java | Matlab | Java | Java Java Java C++ | Java | Python
License GPL | GPL ? GPL GPL | GPL | EUPL | LGPL | IOSL | GPL GPL
User manuals yes yes yes yes yes yes no* no no yes yes
Developer manuals yes no no no no yes no* no no no no
Users list/forum yes no no yes yes yes yes yes no yes yes
Developers list /forum yes no yes yes yes yes yes yes no yes yes
Source HTML docs yes yes yes no yes yes yes yes no no no
Version control yes no yes no yes yes yes yes no yes yes
Bug tracker yes yes no no yes yes yes yes no yes yes
Start 1993 | 1996 | 1997 1999 2000 | 2000 2002 2003 2003 | 2004 2006
Stopped — 2001 — 2007 2004 — — 2003 2005 | 2004 2007

Table 1: Open-source packages for Bayesian networks.

Some of those tools can also build and evaluate influence

diagrams. The URLs for these packages can be found in K. Murphy’s list, at www.cs.ubc.ca/ murphyk/Software/bnsoft.
html, except for UnBBayes (unbbayes.sourceforge.net) and OpenMarkov (www.openmarkov.org). A star in a cell means

that this feature will be available in the near future.

OpenMarkov accepts three types of variables: finite-states,
numerical, and discretized, and two types of links: directed
and undirected. It also has several types of potentials: uni-
form (mainly used to assign a default potential to each node
in networks that only contain directed links), table (the most
frequently used potential), delta (i.e., Kronecker delta for
finite-state variables and Dirac delta for numeric variables),
tree/ADD, several canonical models (OR, AND, MAX, MIN,
etc.), sum, product, linear combination, conditional Gaus-
sian, exponential, mixture of exponentials, and logistic re-
gression. There are also three potentials for dynamic models:
same as previous, cycle length shift, and Weibull distribu-
tion. In the future we will add other types of potentials,
such as mixtures of polynomials. (See 2] for a detailed de-
scription of the types potentials and the network types, with
bibliographical references.)

OpenMarkov is able to represent several types of networks,
such as Bayesian networks, Markov networks, influence dia-
grams, LIMIDs, and decision analysis networks (DANs), as
well as several types of temporal models: dynamic Bayesian
networks, simple Markov models, MDPs, POMDPs, Dec-
POMDPs, and dynamic LIMIDSFE] Currently OpenMarkov
can only evaluate Bayesian networks, influence diagrams,
and simple Markov models, but it can be used to build sev-
eral types of models, such as (PO)MDPs, that might be read
by any other tool able to parse the ProbModelXML format.

Algorithms

We have implemented in OpenMarkov the most usual algo-
rithms for Bayesian networks and influence diagrams, such
as variable elimination [27, |9] and clique tree propagation
[19L|17]. We also programmed some algorithms for evaluat-
ing MDPs, such as value iteration [4], policy iteration [15],
and modified policy iteration [24], but they are not inte-
grated in the last version of OpenMarkov, which underwent

MThree of these models have been proposed originally by our
group: DANS, simple Markov models, and dynamic LIMIDs.

a major refactoring at the end of 2011. In OpenMarkov it is
possible to learn Bayesian networks interactively from data-
bases by applying the two most popular methods: search-
and-score, with several metrics, and the PC algorithm [21].

Graphical user interface

The graphical user interface (GUI) is very similar to those of
other software tools for PGMs, especially to that of Elvira.
It has two main working modes: edition and inference. It has
been designed for internationalization; currently messages
can be displayed in English or Spanish, and other languages
can be easily added using Java’s facilities.

Testing

In order to guarantee as much as possible the robustness of
the tool, we have built a test suite for each class in Open-
Markov with JUnitF_E] After introducing a modification in
OpenMarkov, we run the battery of tests in order to detect
possible bugs in the program.

Code hosting and version control system

As a version control tool, we initially chose subversion, in-
stalled on a local server, but in October 2011 we reorganized
the code into a set of Maven subprojects and migrated the
code to Bitbucket, a code-hosting system similar to Source-
Forge, JavaSource, or Google Code. It offers two control
version systems: Mercurial and Git; OpenMarkov uses Mer-
curial. It also offers wikis, issue trackers, and other facilities.
We use Mercurial to store in Bitbucket a working copy of
OpenMarkov’s Java source code. There is also a wiki and an
issue tracker for each subproject.

Using Maven, OpenMarkov is deployed on a local nexus
repository[i;g], which contains three types of files: Java source
code of snapshots and releases (in contrast with Bitbucket,

15 A
WWW.junit.org.
nexus. openmarkov.org.

www.cs.ubc.ca/~murphyk/Software/bnsoft.html
www.cs.ubc.ca/~murphyk/Software/bnsoft.html
unbbayes.sourceforge.net
www.openmarkov.org
http://www.junit.org
http://nexus.openmarkov.org

NoEmptyName

DistinctVariableNames

OnlyFiniteStatesVariables

OnlyNumericVariables

OnlyChanceNodes

OnlyOneUtilityNode

OnlyAtemporal Variables

OnlyTemporal Variables

OnlyOneAgent

DistinctLinks

NoMultipleLinks

OnlyDirectedLinks

OnlyUndirectedLinks

NoRestriction

NoRevelationArc

NoSelfLoop

NoCycle

NoClosedPath

MaxNumParents

O] O | =< =l =l 2| =< =<| <] < 2| < 1 | <] O Of <| <| BayesianNetwork
1| Ol O] Q| | | <| =l 2] < | <| 2| <| I | <] O O <| =< MarkovNetwork

NoUtilityParent

1Ol Q| <| = < =< 2| < <] =< < =) 2| || =] O O <| <| DynamicBayesianNetwork

NoSupervalueNode - | -

NoMixedParents — -

NoBackwardLink — —

1| O] O| O O| Of <i| < = =< 2| <| <| <| <] 2| <| O 2| O O| <| | InfluenceDiagram

1Ol Q| Ol Ol O <| | Z| 2] 2| <| <| <| <| Z| <| O Z| O| O| <| <| DecisionAnalysisNetwork

10| O] O 0| Of <| | | <| 2| | <| < =<| 2| <| O| 2| O| O| <| <| LIMID

~<| O O O O O | <| <| <| 2| <| < | <| 2| 2| O| 'Z| O O| <| <| SimpleMarkovModel
= O| 0| O Q| Of | | < | Z| < <| <| 2| | 2| O| 2| O O| <| <| Dec-POMDP

= O O O Q| O | | | <| 2| =<| <| <| <| <l Z| O| Z| O O| <| <| DynamicLIMID

= O] O O O| O | <| =i < 2| =i| <| <| <| <| Z| O] Z| O O <| <| MDP
<[Q| O] O Q| Of =i| < < <| 2| =i < <| =< I Z] O| z| O] O| <| <| POMDP

=<

Table 2: Constraints used in OpenMarkov.

The letter in each cell indicates whether a constraint is associated with

a network type: Y = yes, N = no, O = optionally. A dash means that a constraint does not make sense because of the
presence of another constraint—see [2]. Each constraint has a default behavior; a bold letter in this table means that the
default behavior has been overriden for a particular type of network.

which stores the whole version history, including the most
recent files not yet deployed), compiled Java binaries, and
Javadoc HTML files. For further details, see OpenMarkov’s
wiki[T"]

4. PROBMODELXML
4.1 Motivation

As mentioned in the introduction, we decided to develop
a new format for PGMs aimed at becoming a common lan-
guage for several research groups and several software tools.
The first requisite was that the format should accommo-
date different types of models (Bayesian networks, Markov
networks, influence diagrams, POMDPs; etc.), three types
of variables (finite-states, numerical, and discretized), a va-
riety of potentials (table, tree/ADD, canonical models...),
and a wide range of properties. However, given that it is
impossible to foresee from the beginning all the needs that
will emerge in the future, the format should be extensible,
i.e., it should be able to represent new types of models and
new properties without changing the specification of the for-
mat. Second, the syntax and the semantics of the format
should be clearly documented, in order to avoid ambigui-

Ygiki. openmarkov.org.

ties and misinterpretations. Third, the syntax of the format
should be based on the Extensible Markup Language (XML)
specification produced by the World Wide Web Consortium
(W3C)F_g] mainly because XML is much easier to parse than
other types of syntaxes: there exist many tools for pars-
ing XML from several programming languages (Java, C++,
etc.), with the corresponding utilities for writing XML files
from those languages, as well as other tools for specifying
XML formats and for validating them (DTD, XML Schema,
Relax NG, ISO DSDL...).

4.2 Specification of models
The skeleton of a ProbModelXML file is:

<7xml version="1.0" encoding=“UTF-8" 7>
<ProbModelXML formatVersion=string >
<ProbNet type=enumNetworkType />0.1
<InferenceOptions />¢ 1
<Policies />¢..1
<Evidence />(]“1
</ProbModelXML>

and the extension we propose for those files is .pgmx. The
skeleton of a probabilistic network is:

1 yww.w3. org/XMLL

http://wiki.openmarkov.org
http://www.w3.org/XML

<ProbNet type=enumNetworkType >
<AdditionalConstraints />¢. 1
<Comment />¢.1
<DecisionCriteria /> 1
<Agents />¢..1
<Language />0..1
<AdditionalProperties />¢..1
<Variables />
<Links />
<Potentials />

</ProbNet>

The tag <AdditionalProperties> is used to extend the
ProbModelXML format by representing other properties not
explicit in this format. An additional property can appear
in the context of a ProbNet, an Evidence Case, a Criterion
(for multicriteria decision making), an Agent (in multi-agent
models), a Variable, a State of a variable, a Potential and a
Policy. In all the cases, the skeleton for encoding additional
properties is as follows:

<AdditionalProperties>
<Property name=string value=string />1..»
</AdditionalProperties>

A complete specification of the ProbModelXML format,
with detailed explanations and many examples can be found
in [2].

S. (POYMDPS IN OPENMARKOV AND
PROBMODELXML

5.1 Editing (PO)MDPs with OpenMarkov’s
GUI

The code of OpenMarkov’s GUI does not depend directly
on the type of network, but on the constraints. Therefore
it is very easy to extend the GUI to deal with new types of
networks: it suffices to modify the aspects that depend on
the new constraints, if any. Given that the constraints that
define an influence diagram are almost the same as those
for a POMDPs or a Dec-POMDP (cf. Table , the edi-
tion of these three types of models is very similar. Figure [I]
shows a factored POMDP that models a robot designed for
serving coffee to a single user. This example, proposed by
Jesse Hoey and encoded in SPUDD format |14], is included
with the source code of Pascal Poupart’s software Symbolic
Perseus[™]

As that figure shows, in OpenMarkov, rectangles repre-
sent decisions (actions), rounded rectangles represent chance
variables, and hexagons represent utility nodes, i.e., costs
and rewards. In this figure, the number in square brackets
indicates the time slice to which a node belongs. A link from
a node in a time slice to a node in the same slice is said to
be intratemporal; a link from a time slice to the next one is
said to be intertemporal. Links from the second time slice to
the first one are not allowed, because it would contradict our
notion of causality. A link X — D, where D is a decision, is
called an informational link and means that the value that
variable X has taken is observed when making decision D.

Yhttp://www.cs.uwaterloo.ca/ ppoupart/software.
html. A direct link for this example is www.cs.uwaterloo.
ca/“ppoupart/software/symbolicPerseus/problems/
coffee/coffee3po.txt.

In this example, there are two observable variables, Charge
observed, that gives information about the state of the bat-
tery, and Wet pavement, which provides indirect evidence on
whether it is raining or not

As in the case of Bayesian networks and influence dia-
grams, each chance node in the first time slice has an asso-
ciated probability potential, which in this example is a prior
probability, because no chance node in that slice has parents,
but in other examples there may be intratemporal links in
the first slice. If a node has parents, either in the same time
slice or in the previous one, its associated probability is con-
ditioned on that parent. For instance, the probability of Wet
pavement in this example is conditioned on the current value
of Raining outside and on the Action chosen in the previous
time slice; when Action[0] was different from measurewet, the
probabilities of the two values of this variable, namely wet
and dry, are the same, and therefore this “observation” does
not affect the probability of Raining outside.

As in the case of influence diagrams, each utility node has
an associated utility potential that depends on the parent of
that node in the graph. In this example there is one reward
that takes a positive value when the chance variable User
has coffee takes the value yes, and four costs, that depend
on the Action chosen. In other examples, a utility (node)
may depend on both chance variables and actions.

The edition of a potential in OpenMarkov depends on the
type of potential. If the potential is a table, its edition is
very similar to that of other software tools for PGMs. If the
potential is a tree or an ADD, the window for editing it is
based on Java’s JTree class and the corresponding panels,
listeners, etc., as shown in Figure [

5.2 Multiagent POMDPs

Multiagent POMDPs can be specified in the ProbModel XML
format by using the Agents tag that we have seen above in
the specification of probabilistic networks. The skeleton for
this tag is:

<Agents>
<Agent name=string>
<AdditionalProperties />¢. 1
</Agent>s ,
</Agents>

For example, in a surveillance system we might have two
agents:

<Agents>
<Agent name=*“video camera’ />
<Agent name=“mobile robot” />
</Agents>

Then, each decision variable can be assigned to a partic-
ular agent, as in the following example:

20Information arcs were used by the first time in an influence
diagram [16]. Later, they have been used in other PGMs,
such as factored POMDPs (7], LIMIDs [18], and DLIMIDs
|26l [12] to indicate which variables are observable.

On the contrary there are other models that do not require
information links. One type of them are MDPs |4} 6], which
assume that all the variables are observable. Other type
are decision analysis networks, which use revelation arcs to
indicate when some variables become observed [11].

http://www.cs.uwaterloo.ca/~ppoupart/software.html
http://www.cs.uwaterloo.ca/~ppoupart/software.html
http://www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems/coffee/coffee3po.txt
http://www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems/coffee/coffee3po.txt
http://www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/problems/coffee/coffee3po.txt

43 Node Potential: Robot is wet [1]

Relation Type:

& Optimal pelicy. © Probabilistic policy) Deterministic policy: ‘

----- { Action [0])

E} Action [0]={nothing, measurewet, move, get umbrella, buy carefully, buy fast, recharge, dry off} |

“{User has coffee [01}

E} User has coffee [0]=na |

- |Jgar has coffee [1] = no

B User has coffes [0]=yes
; - PUser has coffee [1) = {0.1, 0.9}
=-| ction [0]=deliver coffes

“{User has coffee [0]}

E} User has caffee [0]=yes |
- P(User has coffee [1]) = {0.9, 0.1}
B User has coffee [0]=no f
E----Q:P.\'.;l:mt has coffee [OD
E} Robot has coffee [0]=no
- User has coffee [1] = no
& | Robot has coffee [O]=yes

{Robot's location [0])

EI Robot's location [0]=office |

EI Robot's location [0]=shop
o Lger has coffee [1] = no

[cx

- Pfldger has coffee [1]) = {0.2, 0.8}

Cancel

Figure 2: Edition of a tree/ADD potential in OpenMarkov.

<Variable name=“Switch” type=“FiniteStates”
role=“Decision” timeSlice=“0" >
<Agent name=“video camera” >
<States>
<State name=“off” />
<State name=“on” />
</States>
</Variable>

Multiagent models can be edited in OpenMarkov by first
defining a list of agent and then associating each decision to
an agent by means of a push-down widget.

6. RELATED WORK

ProbModelXML is similar to the RDDL format mentioned
in Section which can represent relational models and
logic relations, while ProbModelXML cannot. On the other
hand the latter can represent more types of networks and
potentials, including Dec-POMDPs. Another advantage of
ProbModelXML is its XML syntax. It would be interesting
to extend ProbModelXML to cover all the features included
in RDDL.

The RDDL simulatorlzl is a program that can show graph-
ically the models written in this format, but it cannot edit

2lcode.google. com/p/rddlsim.

them. In contrast, it can evaluate those models, while Open-
Markov cannot.

7. CONCLUSIONS AND FUTURE WORK

OpenMarkov is an open-source tool for editing and evaluat-
ing probabilistic graphical models. If permits to edit several
types of probabilistic networks, including MDPs, POMDPs
and Dec-POMDPs, and it is easy to extend it to deal with
other types of networks. It also implements several types
of potentials, including tables, trees, and ADDs. The na-
tive format for OpenMarkov is ProbModelXML. Given that
the format and the tool have been developed in parallel, the
types of variables, potentials, and networks are essentially
the same in both of them, even though some of the features
included in the specification of the format have not yet been
implemented in OpenMarkov. This is one of the first tasks
in the agenda of OpenMarkov’s developers. Other tasks are
to continue debugging OpenMarkov, mainly its GUI, which
is the most difficult component to debug, and to extend its
documentation. Later, we will consider the possibility of
integrating in OpenMarkov some of the existing algorithms
for evaluating POMDPs; we have received some nice offers
from researchers of other groups, but currently we cannot
address that issue given the limited amount of resources in
our group.

http://code.google.com/p/rddlsim

Acknowledgments

We thank Jesse Hoey for providing with us the coffee robot
example and several useful comments. We thank one of the
anonymous reviewers for making us aware of the existence
of PPDDL and RDDL. We are grateful to all the people
who have collaborated in the OpenMarkov project.

This work has been supported by grants TIN-2006-11152
and TIN2009-09158, of the Spanish Ministry of Science and
Technology, and by FONCICYT grant 85195.

8.
[1]

[10]

[11]

[12]

REFERENCES

M. Arias and F. J. Diez. Carmen: An open source
project for probabilistic graphical models. In
Proceedings of the Fourth European Workshop on
Probabilistic Graphical Models (PGM’08), pages
25-32, Hirtshals, Denmark, 2008.

M. Arias, F. J. Diez, and M. P. Palacios.
ProbModelXML. A format for encoding probabilistic
graphical models. Technical Report CISTAD-11-02,
UNED, Madrid, Spain, 2011.

K. J. Astrom. Optimal control of Markov decision
processes with incomplete state estimation. Journal of
Mathematical Analysis and Applications, 10:174-205,
1965.

R. E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

C. Boutilier, R. Dearden, and M. Goldszmidt.
Exploiting structure in policy construction. In
Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), pages
1104-1111, Montreal, Canada, 1995.

C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored
representations. Artificial Intelligence, 121:49-107,
2000.

C. Boutilier and D. Poole. Computing optimal policies
for partially observable decision processes using
compact representations. In Proceedings of the
Thirteenth National Conference on Artificial
Intelligence (AAAI-96, pages 1168-1175, Portland,
OR, 1996. AAAI Press.

T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational
Intelligence, 5:142-150, 1989.

R. Dechter. Bucket elimination: A unifying framework
for probabilistic inference. In Proceedings of the
Proceedings of the Twelfth Conference Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-96), pages 211-219, San Francisco, CA, 1996.
Morgan Kaufmann.

F. J. Diez and M. J. Druzdzel. Canonical probabilistic
models for knowledge engineering. Technical Report
CISIAD-06-01, UNED, Madrid, Spain, 2006.

F. J. Diez and M. Luque. Representing decision
problems with decision analysis networks. Technical
Report CISIAD-10-01, UNED, Madrid, Spain, 2010.
F. J. Diez and M. A. J. van Gerven. Dynamic
LIMIDs. In L. E. Sucar, J. Hoey, and E. Morales,
editors, Decision Theory Models for Applications in
Artificial Intelligence: Concepts and Solutions, pages
164-189. IGI Global, Hershey, PA, 2011.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

The Elvira Consortium. Elvira: An environment for
creating and using probabilistic graphical models. In
J. A. Gdmez and A. Salmerén, editors, Proceedings of
the First European Workshop on Probabilistic
Graphical Models (PGM’02), pages 1-11, Cuenca,
Spain, 2002.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI’99), pages 279-288,
Stockholm, Sweden, 1999. Morgan Kaufmann, San
Francisco, CA.

R. A. Howard. Dynamic Programming and Markov
Processes. The MIT Press, Cambridge, MA, 1960.

R. A. Howard and J. E. Matheson. Influence
diagrams. In R. A. Howard and J. E. Matheson,
editors, Readings on the Principles and Applications
of Decision Analysis, pages 719-762. Strategic
Decisions Group, Menlo Park, CA, 1984.

F. V. Jensen, K. G. Olesen, and S. K. Andersen. An
algebra of Bayesian belief universes for
knowledge-based systems. Networks, 20:637-660, 1990.
S. L. Lauritzen and D. Nilsson. Representing and
solving decision problems with limited information.
Management Science, 47:1235-1251, 2001.

S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B,
50:157—-224, 1988.

K. Murphy. Dynamic Bayesian Networks:
Representation, Inference and Learning. PhD thesis,
Computer Science Division, University of California,
Berkeley, 2002.

R. E. Neapolitan. Learning Bayesian Networks.
Prentice-Hall, Upper Saddle River, NJ, 2004.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

P. Poupart. Ezploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision
Processes. PhD thesis, Dept. of Computer Science,
University of Toronto, Canada, 2005.

M. L. Puterman and M. Shin. Modified policy
iteration algorithms for discounted Markov decision
processes. Management Science, 24:1127-1137, 1978.
M. T. J. Spaan and N. Vlassis. Perseus: Randomized
point-based value iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195-220, 2005.

M. A. J. van Gerven, F. J. Diez, B. G. Taal, and

P. J. F. Lucas. Selecting treatment strategies with
dynamic limited-memory influence diagrams. Artificial
Intelligence in Medicine, 40:171-186, 2007.

N. L. Zhang and D. Poole. Intercausal independence
and heterogeneous factorization. In Proceedings of the
10th Conference on Uncertainty in Artificial
Intelligence (UAI’94), pages 606—14, Seattle, WA,
1994. Morgan Kaufmann, San Francisco, CA.

	Introduction
	State of the art
	Dynamic models
	Software tools for PGMs and (PO)MDPs
	Formats for PGMs and (PO)MDPs

	OpenMarkov
	ProbModelXML
	Motivation
	Specification of models

	(PO)MDPs in OpenMarkov and ProbModelXML
	Editing (PO)MDPs with OpenMarkov's GUI
	Multiagent POMDPs

	Related work
	Conclusions and future work
	References

