
Carmen: An open source project
for probabilistic graphical models

Manuel Arias and Francisco J. Dı́ez
Dept. Inteligencia Artificial. UNED
Juan del Rosal, 16. 28040 Madrid

Abstract

Carmen is an open-source software package for probabilistic graphical models (PGMs),
which aims at being useful for different research groups and for building real-world appli-
cations. After reviewing similar projects launched in the last years, we analyze the general
properties of Carmen and how it adheres to the principles of software engineering, in par-
ticular by including exhaustive documentation and systematic tests. We then describe the
current state of development, i.e., which algorithms and modules have been implemented
so far, and discuss the results of a preliminary analysis of its performance.

1 Introduction

Graphical probabilistic models (PGMs), such
as Bayesian networks and influence diagrams,
are a powerful tool for uncertain reasoning
in real-world problems (Pearl, 1988). Sev-
eral computer packages for building and
evaluating PGMs have been developed in
the last years—see K. Murphy’s list at
www.cs.ubc.ca/~murphyk/Software/bnsoft.html.
In particular, many researchers, practioners,
and teachers of PGMs felt the advisability
of having an open source package supported
by a large community of programmers. One
of the main reasons is that every people or
group who wished to use a PGM had to do
a lot of programming from scratch. Another
reason was that an open source tool would
allow to compare the performance of different
algorithms.

Several projects started with the objective of
building such a tool. However, in our opinion, it
still makes sense to try to build an open source
tool for PGMs, as we discuss at length in Sec-
tion 2. The tool that we present in this paper
is Carmen.

The rest of the paper is structured as follows.
In Section 2 we review some of the open source
packages developed in the last years. Then we
describe Carmen’s general properties (Sec. 3),

the methods and modules implemented so far
(Sec. 4) and a rough premilinary comparison
of Carmen’s performance with three well-known
tools (Sec. 5). In Section 6 we state the delivery
schedule and conclude in Section 7.

In this paper we assume that the reader is fa-
miliar with PGMs. Due to the lack of space, we
do not give references to standard algorithms,
such as variable elimination, Hugin, lazy propa-
gation, etc., nor for well-known computer appli-
cations, such as CVS, subversion, listserv, etc.

2 Previous work

In Table 1 we list some open source programs
for PGMs.1 In the following, we analyze four of
the most successful packages: BNT, PNL, Weka,
and Elvira, in order to show that, despite all
these open-source projects started in the last
years, it still makes sense to propose a new one
that aspires to involve developers from different
research groups.

1Some members of the free software community in-
sist on the difference between “free software” and “open
source software”, arguing that the latter is confusing.
However, for most of the people “open source” means
not only that the source code is visible, but also that
it can be modified and distributed; i.e., both terms are
synonymous. Furthermore, we prefer “open source” be-
cause it avoids the ambiguity of “free”: for instance, in
K. Murphy’s list, the latter does not mean “free soft-
ware” but “free of charge”.

1

Proc. Fourth European Workshop on Probabilistic Graphical Models (PGM-08)
Hirtshals (Denmark), 2008, pp. 25-32. 



B
N

T

P
N

L

O
B

P

J
av

a
B

ay
es

B
N

J

R
is

o

B
ay

es
L
in

e

W
ek

a

E
lv

ir
a

C
a
rm

en

Language Matlab C++ Python Java Java Java Java Java Java Java
License GPL IOSL GPL GPL GPL GPL LGPL GPL LGPL
User manuals yes no yes yes yes yes no yes yes yes
Users list/forum yes no yes no yes yes yes yes yes yes
Developer manuals no no no no no no no yes yes yes
Developers list yes no yes no yes yes yes yes yes yes
Source HTML docs no no no yes no yes yes yes yes yes
Version control no no yes no yes yes yes yes yes yes
Bug tracker no no yes yes yes yes yes yes no yes
Start 1999 2003 2006 1996 2004 2000 2003 1993 1997 2004
Stopped 2007 2005 2007 2001 2004 2004 2003 – – –

Table 1: Open-source packages for PGMs. The URLs for these packages can be found in K. Mur-
phy’s list, at www.cs.ubc.ca/~murphyk/Software/bnsoft.html. (OBP = OpenBayes for Python.
IOSL = Intel Open Source License.)

2.1 BNT and its successors

BNT (BayesNetToolbox) was built by Kevin
Murphy (2001) on Matlab, a numerical matrix-
oriented environment, which includes a specific
programming language. The reasons for its
success are the many features implemented in
BNT (Bayesian networks, influence diagrams,
dynamic models, learning and inference with
both discrete and continuous variables...), its
robustness, and the clarity of the code and its
documentation.

The main limitations of BNT stem from its
dependence on Matlab, which requires an ex-
pensive licence (although there is a relatively
cheap student licence), is much slower than
other programming languages, and has limited
support for object-oriented programming.

This has motivated several attempts to build
a new program on an efficient language, but
none of them has been able to replace BNT.
The OpenBayes project, initiated by R. Dy-
bowski and K. Murphy in 2001, was aban-
donned some months later without even ar-
riving at a decision about which programming
language to use. In 2005, Intel Labs in Rus-
sia, with the collaboration of K. Murphy, re-
leased PNL (Probabilistic Networks Library),
an open-source C++ library for PGMs. The
project was abandonned that same year. Simi-
larly, the project OpenBayes for Python was

stopped before the release of version 0.2, which
was announced in February 2007.

2.2 Weka

This project started in 1993 at the University
of Waikato, in New Zealand, with the purpose
of including several data mining methods in a
single tool. The Bayesian network (BN) classi-
fiers were implemented by Remco R. Bouckaert
(2004).

The main advantages of Weka is that it
has good documentation, which facilitates the
development of new learning algorithms, and
the possibility of empirically comparing many
methods, not only those that build BNs, but
also “traditional algorithms”, like C4.5, nearest
neighbors, etc.

2.3 gR

R is “a language and environment for statistical
computing and graphics”. It is an evolution of
a previous language, S. gR was a subproject of
R aimed at providing facilities for PGMs. The
development of gR stoppped in 2003.

2.4 Elvira

Elvira (Elvira Consortium, 2002) started in
1997 as a join project of several Spanish univer-
sities. The main objectives were to foster the
collaboration of the different groups working on
PGMs in our country and to build a package

2



that be (1) a workbench for new PGM algo-
rithms, (2) a tool for tuition, (3) a tool for build-
ing real-world applications, and (4) an open-
source program. It was very successful in almost
all of them. The meetings of the project were an
interesting forum for the exchange of ideas. The
Elvira program, whose development still contin-
ues, has served to try new methods that led to
around 15 or 20 PhD theses and many papers;
as a consequence, Elvira is probably the tool
having more algorithms for inference and learn-
ing PGMs. As a tool for tuition, Elvira has been
used by hundreds of computer science studends
and postgraduate medical students, in at least
8 countries. Several applications were built or
are currently under development using Elvira,
most of them for medical problems, but also for
other domains.

However, Elvira has not been so successful
as an open-source tool: as far as we can tell,
aside from the Spanish groups involved in the
project, only a few Mexican researchers use it.
Some European colleagues who started using it
gave up because of the difficulties they encoun-
tered. In our opinion, it was a consequence of
the “publish or perish” pressure: some members
of Elvira argued that writing extensive docu-
mentation, reorganizing the source code, opti-
mizing the basic data structures, improving the
interface, giving support to external developers,
etc., are time-consuming tasks that return little
benefit.

On the other hand, an important drawback
of Elvira is the lack of efficiency (see the ex-
periments in 5), due to the fact that some of
the basic data structures and algorithms do not
scale up properly. Unfortunately, any attempt
to optimize one class or method might cause
an unpredictable number of conflicts with other
classes: currently Elvira contains over 600 Java
files; the biggest one occupies 390 KB and has
almost 10,000 lines; the second and the third
occupy around 200 KB. Finally, the program
is still buggy, mainly its GUI, but debugging
Elvira is not easy. Similarly, adding new func-
tionalities is more and more a daunting task.

These are the main reasons why we decided
to build a new tool, that takes profit from the

many good ideas implemented in Elvira, and
also from the lessons that we learnt during its
development, thus trying to avoid some of the
mistakes that we made.

2.5 Discussion

The end of the development of BNT and
the “death” of its successors shows that it
is still desirable to build an open-source
program that does not depend on Mat-
lab. Another drawback of BNT is that
it has ceased to add new features—see
www.cs.ubc.ca/~murphyk/Software/BNT/whyNotSourceforge.html.

Weka might be a good candidate, but in our
opinion, a general-purpose package for PGMs
should be developed as an independent project,
rather than as an appendix of a data mining
tool: even though the two fields overlap in the
construction of BN classifiers, they have very
different goals and needs. For instance, when
building stand-alone applications, such as med-
ical expert systems, it would be desirable to
have a library that has only some inference al-
gorithms, without the need to include all the
learning methods implemented in Weka. Ad-
ditionally, it is significant, in our opinion, that
despite the excellent work done by R. Bouck-
aert, nobody in the PGM community has tried
to use Weka for any purpose other than learning
BNs.

Elvira has many of the features of an open
source program that might be used by a large
community of programmers, but unfortunately
this was not one of the priorities of the project:
its developers concentrated their efforts in cre-
ating new algorithms rather than in analyzing
design issues (which would have made the code
more efficient and easier to mantain) and writ-
ing extensive documentation (which would fa-
cilitate the task of external developers).

We have discussed in detail these packages
to explain why, in spite of the excellent contri-
butions that they have made, we think that it
still makes sense to develop a new open source
package. In the rest of the paper, we will try to
show how the new package that we are devel-
oping might meet the needs and expectations of
the PGM community.

3



3 Carmen’s general properties

3.1 Programming language

The development language for Carmen is Java,
mainly in order to allow it to run on differ-
ent platforms. Since the begining we used
version 1.5, which introduced new syntacti-
cal features, such as typed collections (for in-
stance, ArrayList<CertainClass>) and en-
hanced loops, which significantly facilitate the
iteration on lists.

3.2 Documentation

There are two kinds of documentation for the
Carmen project: on-line comments and PDF
documents. On-line documentation consists
of comments included in the Java files, and
works in combination with Sun’s Javadoc util-
ity,2 which generates a set of HTML pages with
many cross-references. We devoted a significant
effort to carefully choosing the names of fields,
methods, and variables, and to writing thorough
and clear explanations.

Sun has proposed a set of tags for document-
ing the Java code, such as @author, @param,
@return, etc. We have extended this collec-
tion with new tags especially intended for guar-
anteeing the correctness of the code. For in-
stance, @precondition indicates a condition
that must be fulfilled before invoking a certain
method; @postcondition is a logical condition
fulfilled after the execution of a certain method;
@paramCondition indicates a property that the
parameters must satisfy; @invariant refers to a
logical property always satisfies by the objects
of a certain class; @frozen means that an at-
tribute is set by the constructor and will not
be modified afterwards; and @sideEffect refers
to secondary effects of the the execution of a
method. These tags may be useful for the veri-
fication of the source code by human program-
mers and in the future might be adapted to be
used by automatic verification tools.

Additionally, we are generating PDF docu-
ments, which offer a general overview of Carmen
and contain several UML diagrams, mainly of
types class, object, sequence, and components.

2http://java.sun.com/j2se/javadoc.

3.3 Testing

We have built a test suite for each class in Car-
men with JUnit.3 After introducing a modifica-
tion in Carmen, we run the battery of tests in
order to detect possible bugs in the program. It
would be desirable that each new package con-
tributed by an external developer come with its
JUnit test, at least for those packages thay might
be used by real-world applications.

3.4 Version control and support for
developers

As a version control tool, we chose subversion,
which offers several advantages over CVS. Fol-
lowing subversion’s standard, Carmen’s repos-
itory is organized in three directories: trunk,
branch, and tag, which facilitates the collab-
oration of different programmers. The utility
WebSVN allows Carmen’s developers to receive
customized notifications of changes in subver-
sion, via RSS. In the near future we will install
a distribution list (majordomo or listserv) and
a bug tracking utility (probably Trac,4 because
it was designed to integrate with subversion).
Later on, we will set up a web utility for the
automatic registration of users and developers.

In our opinion, these facilities are a requisite
for the success of any open source project.

4 Carmen’s implementation

4.1 Basic data structures

The package graph implements graph opera-
tions, such as adding nodes or links. In prin-
ciple it can be used for any kind of graph. In
the case of a probabilistic network, each node
represents a chance variable, a decision, or a
utility; in a cluster tree, each node represents a
set of chance variables; in the case of a Markov
transition diagram, each node might represent
a state of a variable.

The package networks is specific of probabilis-
tic graphical models. Each network has an asso-
ciated graph and a set of restrictions (see Fig-
ure 1). This allows to maximun flexibility for
defining new types of PGMs. For example, the

3http://www.junit.org.
4http://trac.edgewall.org.

4



Figure 1: Main data structures for probabilistic
networks.

only default restriction for a Markov network is
OnlyUndirectedLinks. Both a Bayesian network
and an influence diagram have the restrictions
OnlyDirectedLinks and NoCycles; the former also
has an OnlyChanceNodes restriction, while the
latter has additional restrictions for preventing
certain types of links; for instance, the children
of utility nodes can only be utility nodes.

The distinction between ProbNode and Vari-
able (cf. Fig. 1) is introduced to save memory
space when a variable shared by several struc-
tures; for instance, a Bayesian network, its po-
tentials, its moral graph (in fact, a Markov net-
work), and a clique tree.

The package editSupport has two purposes:
to allow undo/redo operations on ProbNets and
to inform the listeners, i.e., the objects inter-
ested in the changes performed on a probNet.
Each modification, such as adding or removing
a node or a link or modifying a potential, is per-
formed by first creating an instance of PNEdit
and then passing this object to an instance of
PNESupport (where PNE stands for “probabilis-
tic network edit”), which informs the listeners,
executes the “edit”, and tracks it in a pushdown
list to be able to undo it if necessary.

4.1.1 Edits

In general, each modification of a probabilis-
tic network is performed by building a PNEdit.
This design address three goals. First, to imple-
ment the undo/redo operations, because class

PNEdit implements the Java Swing interface Un-
doableEdit. Second, to supervise the fulfillment
of restrictions. For instance, the NoCycles re-
striction may register as a listener at a Prob-
Net to be able to veto certain additions of links.
And third, to inform other classes about the
changes performed to a ProbNet. For instance,
an elimination heuristic might store the num-
ber of neighbors of each node, or a learning al-
gorithms might store some scores in a cache;
such information should be updated after the
removal of a variable or the addition of a link.
Similarly, the GUI might be interested in dis-
playing the changes introduced by an inference
algorithm (like variable elimination or arc rever-
sal) or by a learning algorithm. This way, the
possibility of adding listeners to the network of-
fers a high degree of flexibility for fulfill these
purposes and many others that future develop-
ers might imagine.

4.2 Inference

4.2.1 Purely probabilistic networks
The package inference contains methods

for computing the posterior probabilities of
Bayesian networks, Markov networks, and in
general any kind of network that satisfies the
OnlyChanceNodes restriction. The key feature
of these models is that the joint probability is
given by the product of a list of probabilistic
potentials.

Each inference algorithm is implemented as a
class that implements the Java interface Eviden-
cePropagation, whose main methods are individ-
ualProbabilities and joinProbability. The former
receives a list of variablesOfInterest and an evi-
denceCase, and returns a list of potentials, each
one giving the posterior probability of a vari-
able. An evidence case consists of several find-
ings. Each finding is formed by a variable and
the value that it takes. The method joinProba-
bility receives a list of variables of interest, called
query, and an evidenceCase, and returns a single
potential.

Currently, we have implemented three infer-
ence algorithms for purely probabilistic net-
works: variable elimination, Hugin propaga-
tion, and lazy propagation. The two latter are

5



implemented as subclasses of ClusterPropaga-
tion, because they operate on the same struc-
ture, HuginForest. Currently Carmen offers
three elimination heuristics: SimpleElimination,
which chooses the node having fewer neighbors,
CanoMoralElimination (Cano and Moral, 1995),
and FileElimination.5

In the future, we will propose our students
to add other heuristics and other exact and ap-
proximate algorithms, and to carry out experi-
mental comparisons among them.

4.3 Influence diagrams

We have implemented the standard variable
elimination method for influence diagrams
(Jensen and Nielsen, 2007) and will later code a
variable elimination method for diagrams with
super-value nodes (Luque and Dı́ez, 2004).

4.4 Learning

Carmen can learn Bayesian networks from
databases using basic search and score tech-
niques. The only search method implemented
so far is hill climbing. The metrics im-
plemented currently are Bayesian (which in-
cludes K2 and BDe as particular cases), cross-
entropy, AIC, and MDL—see (Bouckaert, 2004;
Neapolitan, 1990) for references. The file for-
mats that Carmen can read are dbc (used by
Elvira), arff (used by Weka), and Microsoft
Excel.

In the future we will add other search meth-
ods, learning algorithms based on the detection
of conditional independences, and learning al-
gorithms for databases with missing values.

4.5 Markov models

One of our postgraduate students is im-
plementing dynamic Bayesian networks,
DBNs (Dean and Kanazawa, 1989), and
factored Markov decision processes, MDPs
(Boutilier et al., 2000), and another one will
implement dynamic limited-memory influence
diagrams, DLIMIDs (van Gerven et al., 2007).

5FileElimination is not properly a heuristic method,
because it reads the list of variables from a file. It is used
for forcing Carmen to use a certain elimination order, for
sake of comparison with other software tools (see Sec. 5).

Later we would like to add partially observ-
able Markov decision processes, POMDPs
(Åström, 1965), which are much more difficult
to solve than MDPs.

4.6 Graphical user interface (GUI)

Two undergraduate students are implementing
a GUI for Carmen, whose look will be very sim-
ilar to Elvira’s.

5 Performance of Carmen

As a first approach to assessing the performance
of Carmen, we have compared it with some well-
known software tools, such as Elvira (version
0.16), GeNIE (v. 2.0), Hugin (v. 5.6), and Net-
ica (v. 3.14).6 We have built some test networks
with a double requirement: small number of
nodes and states (to make the network tractable
by the demo versions of some programs) and big
clusters in the clique tree, to make the measure-
ment of time more reliable.

A solution has been the definition of networks
containing m × n nodes Xi,j , m nodes Ri, and
n nodes Cj . Each node Ri is a child of all the
Xi,j ’s (the i-th row) and each Cj is a child of all
the Xi,j ’s (the j-th column), with 0 ≤ i ≤ m−1
and 0 ≤ j ≤ n − 1. The size of the largest
clique is roughly m × n, which means that the
complexity of a network grows extremely fast
with the number of nodes.

We have made some experiments with a 6×6
network by introducing evidence on all the R
and C nodes. Both GeNIE and Netica needed
around 3-4 seconds to compile the network and
1.5 seconds to propagate evidence, i.e., to com-
pute the posterior probabilities of all the X
nodes. Hugin needed around 10 seconds to com-
pile the network and the same amount of time to
propagate evidence; these times were the same
for the four triangulation algorithms offered by
that version of Hugin. Carmen, in turn, needed
0.42 seconds to compile the network and 16.0
to propagate evidence. Given that GeNIE and
Netica are all implemented in C or C++, it is
not surprising that they are around 10 times

6See www2.sis.pitt.edu/~genie, www.hugin.com,
and www.norsys.com.

6



faster than Carmen, which is implemented in
Java.

Elvira ran out of memory for the 6 × 6 net-
work; when both tools were compared on a 5×5
network, Carmen was over 100 times faster than
Elvira.

The fact that in our experiments Hugin was
slower than GeNIE and Netica might due to the
fact that we used an old version of that pro-
gram, which seems to be based on non-efficient
triangulations. In fact, when analyzing Hugin’s
log files, we saw that the biggest clique for that
network contained 24 variables, while Carmen,
which used the heuristic method by Cano and
Moral, built a tree whose biggest clique con-
tains only 22 variables. When we forced Car-
men to use the same elimination ordering as
Hugin and, consequently, to propagate evidence
on a tree containing the same cliques, Carmen
needed 50.4 seconds, i.e., it was five times slower
than Hugin with the same triangulation and it
was three times slower than Carmen itself with
the tree built with the Cano-Moral heuristic.

However, the fact that Carmen is slower when
propagating evidence can be compensated by
the fact that it is able to compile the network
around 7 to 10 times faster than GeNIE and
Netica. This means that, instead of always us-
ing the same clique tree, we can speed up the
propagation of evidence by pruning the barren
nodes (i.e., nodes that are neither variables of
interest nor parents of evidence nodes) before
compiling the network, which in general speeds
up significantly the propagation of evidence: the
time spent in compiling the pruned network is
negligible compared to the time saved in the
phase of inference.

In any case, we insist, these are only very pre-
liminary results. It is necessary to perform fur-
ther experiments with diffent kinds of networks,
such as as those in the Bayesian Network Repos-
itory,7, comparing Carmen with other software
tools.

7www.cs.huji.ac.il/labs/compbio/Repository.

5.1 Discussion

In the implementation of Carmen we have
used several well-known software design pat-
terns (Gamma et al., 2005): the undo/redo op-
erations are based on the Command pattern, lis-
teners an example of Observer, etc. In the same
way, the GUI will be based on the arquitectural
pattern MVC (Model-View-Controler). Some of
these patterns have been combined and adapted
to our particular needs. In a future paper we
will analyze in detail how we are applying the
principles and methods of software engineering
in an attempt to make Carmen as efficient, ro-
bust, clearly organized, and extensible as possi-
ble.

6 Release schedule

We intend to release a beta version of Car-
men before the end of 2008. As an advance,
some preliminary information can be found
at http://www.cisiad.uned.es/carmen.
It is possible to browse the JavaDoc
pages, linked to the source code, at
http://www.cisiad.uned.es/carmen/javadoc.
After receiving the feedback from the PGM
community (hopefully), we will later release
the first stable version of Carmen.

7 Conclusion

In Section 2 we showed that, even thought it
may seem that there are many open source
packages for PGMs, only Weka and Elvira are
currently active, and we argued that it still
makes sense to offer a new package that might
be useful for researchers of different groups and
for building real-world applications. For this
reason we decided to build Carmen, a project
in which we are trying to adhere to the prin-
ciples of software engineering in order to make
our package robust, efficient, scalable, and ex-
tensible. A particular effort has been devoted to
clearly documenting the source code, by means
of tools such as Javadoc and UML, not only to
facilitate the work of the programmers that will
use Carmen, but also as a requisite to make the
software robust to future additions and changes.
We have also developed an extensive battery of

7



tests (in JUnit) for checking the stability of Car-
men under new modifications.

We have already implemented algorithms for
inference in Bayesian networks and influence
diagrams with discrete variables, as well as
the standard “search and score” learning algo-
rithms. Other learning methods, several types
Markovian decision models, and a GUI are un-
der development.

A preliminary evaluation of Carmen’s per-
formance seems to indicate that it is efficient
enough (when compared to commercial tools)
to be used in real-world applications.

We would like to present Carmen to the
PGM community at the PGM-08 conference, in
Hirtshals, Denmark, to attrack the interest of
other researchers that might be willing to con-
tribute to this project.

Acknoledgements

José E. Mendoza and Alberto M. Ruiz are im-
plementing Carmen’s GUI, Jorge Fernández is
implementing Markov decision processes, and
Jesús Oliva is implemeting some learning algo-
rithms, all under the supervision of the authors
of this paper. Manuel Luque has helped to set
up a web server for Carmen.

We thank all the members of the Elvira
project for all that they have taught us.

This work has been supported by the Spanish
Ministry of Education and Science, under grant
TIN-2006-11152.

References

[Åström1965] K. J. Åström. 1965. Optimal con-
trol of Markov decision processes with incomplete
state estimation. Journal of Mathematical Anal-
ysis and Applications, 10:174–205.

[Bouckaert2004] R. R. Bouckaert. 2004. Bayesian
networks in Weka. Technical Report 14/2004,
Computer Science Department, University of
Waikato, New Zealand.

[Boutilier et al.2000] C. Boutilier, R. Dearden, and
M. Goldszmidt. 2000. Stochastic dynamic pro-
gramming with factored representations. Artifi-
cial Intelligence, 121(1-2):49–107.

[Cano and Moral1995] A. Cano and S. Moral. 1995.
Heuristic algorithms for the triangulation of

graphs. In B. Bouchon-Meunie, R. R. Yager,
and I. A. Zadeh, editors, Advances in Intelligent
Computing (IPMU-94), pages 98–107. Springer-
Verlag, Berlin.

[Dean and Kanazawa1989] T. Dean and K. Kana-
zawa. 1989. A model for reasoning about persis-
tence and causation. Computational Intelligence,
5:142–150.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating
and using probabilistic graphical models. In
Proceedings of the First European Workshop on
Probabilistic Graphical Models (PGM’02), pages
1–11, Cuenca, Spain.

[Gamma et al.2005] E. Gamma, R. Helm, R. John-
son, and J. Vlissides. 2005. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA.

[Jensen and Nielsen2007] F. V. Jensen and T. D.
Nielsen. 2007. Bayesian Networks and Decision
Graphs. Springer-Verlag, New York, second edi-
tion.

[Luque and Dı́ez2004] M. Luque and F. J. Dı́ez.
2004. Variable elimination for influence diagrams
with super-value nodes. In P. Lucas, editor, Pro-
ceedings of the Second European Workshop on
Probabilistic Graphical Models, pages 145–152.

[Murphy2001] K. Murphy. 2001. The Bayes net tool-
box for Matlab. Computing Science and Statis-
tics, 33:1–20.

[Neapolitan1990] R. E. Neapolitan. 1990. Probabilis-
tic Reasoning in Expert Systems: Theory and Al-
gorithms. Wiley-Interscience, New York.

[Pearl1988] J. Pearl. 1988. Probabilistic Reasoning
in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, San Mateo, CA.

[van Gerven et al.2007] M. A. J. van Gerven, F. J.
Dı́ez, B. G. Taal, and P. J. F. Lucas. 2007. Se-
lecting treatment strategies with dynamic limited-
memory influence diagrams. Artificial Intelli-
gence in Medicine, 40:171–186.

8


